next up previous
Next: About this document ...

Math examples


$\displaystyle \phi(\lambda)$ $\displaystyle =$ $\displaystyle \frac{1} {2 \pi i}\int^{c+i\infty}_{c-i\infty}
\exp \left( u \ln u + \lambda u \right ) du$   for $\displaystyle c \geq 0$ (1)
$\displaystyle \lambda$ $\displaystyle =$ $\displaystyle \frac{\epsilon -\bar{\epsilon} }{\xi}
- \gamma' - \beta^2 - \ln \frac{\xi} {E_{\rm max}}$ (2)
$\displaystyle \gamma$ $\displaystyle =$ $\displaystyle 0.577215\dots \mathrm{\hspace{5mm}(Euler's\ constant)}$ (3)
$\displaystyle \gamma'$ $\displaystyle =$ $\displaystyle 0.422784\dots = 1 - \gamma$ (4)
$\displaystyle \epsilon , \bar{\epsilon}$ $\displaystyle =$ actual/average energy loss (5)

Since (6) or (7d) should hold for arbitrary $ \delta\mathbf{c}$-vectors, it is clear that $ \mathcal{N}(A) = \mathcal{R}(B)$ and that when $ y=B(x)$ one has...
...the Pythagorians knew infinitely many solutions in integers to $ a^2+b^2=c^2$. That no non-trivial integer solutions exist for $ a^n+b^n=c^n$ with integers $ n>2$ has long been suspected (Fermat, c.1637). Only during the current decade has this been proved (Wiles, 1995).


$\displaystyle V \mathbf{\pi}^{sr}$ $\displaystyle =$ $\displaystyle \left< \sum_i M_i \mathbf{V}_i \mathbf{V}_i
+ \sum_i \sum_{j>i} \mathbf{R}_{ij} \mathbf{F}_{ij}\right>$ (6)
  $\displaystyle =$ $\displaystyle \left< \sum_i M_i \mathbf{V}_i \mathbf{V}_i
+ \sum_{i}\sum_{j>i}\...
... j\beta}
- \sum_i \sum_\alpha \mathbf{p}_{i\alpha} \mathbf{f}_{i\alpha} \right>$  

\begin{subequations}\begin{align}B_{ij}^\alpha & = \left(B_{ij}^\alpha\right)_0 ...
...\beta}{\d X_i} \frac{\d N_k^\alpha}{\d X_j} \right)\end{align}\end{subequations}



Subsections
next up previous
Next: About this document ...
Michel Goossens
1999-03-30