The XATEX reference guide

Will Robertson

October 5, 2009

Introduction

This document serves to summarise X₁T_EX's additional features without being so much as a 'users' guide'. Note that much of the functionality addressed here is provided in abstracted form in various LaTeX packages and ConTeXt modules.

The descriptions here should be a fairly exhaustive list of the new primitives and features of X₂T_EX. Descriptions are still a little aenemic, however. I don't have much time to maintain this document, so contributions are highly welcomed:)

License

Copyright 2007–2009 Will Robertson. This work, XeTeX-reference.ltx, also known as 'xetexref', is distributed under the terms of the LaTeX Project Public License (http://www.latex-project.org/lppl.txt), version 1.3c or later (your choice), and maintained by Will Robertson.

This basically means you are free to re-distribute this file as you wish; you may also make changes to this file or use its contents for another purpose, in which case you should make it clear, by way of a name-change or some other means, that your changed version is a modified version of the original. Please read the license text for more detailed information.

Contents

I	X _{II} T _E X specifics	2
1	The \font command	3
	1.1 Font options	3
	1.2 Font features	4
	1.2.1 Arbitrary AAT or OpenType features	4
	1.2.2 Options for all fonts	4
	1.2.3 OpenType script and language support	5
	1.2.4 Multiple Master and Variable Axes AAT font support	5
	1.2.5 Vertical typesetting	6
II	New commands	6
2	Font primitives	6
	2.1 OpenType fonts	9
	2.2 AAT fonts	9
	2.2.1 Features	9
	2.2.2 Feature selectors	10
	2.2.3 Variation axes	10
	2.3 Maths fonts	11
3	Character classes	12
4	Encodings	14
5	Line breaking	14
6	6 Graphics	
7	7 Parity with pdfT _E X	
8	Misc.	16

Part I

X_HT_EX specifics

1 The \font command

The \font command has seen significant addition in X Π EX to facilitate rich font feature selection. Under TEX, fonts were selected like so: \font\1="font name" with various options appended such as 'at 10pt' or 'scaled 1.2', with obvious meaning. This syntax has been extended in X Π EX by passing additions options through the font name.

This syntax looks something like

\font\1="\font name\cdot\font options\:\font features\" \(T_EX\) font features\\
The \(\font\) name\(\) is the actual name of the font (e.g., 'Charis SIL') and the only mandatory part of the above syntax.

When using the xdvipdfmx driver (not yet the default in Mac OS X), it is possible to use fonts that aren't installed in the operating system by surrounding their name with square brackets. The current directory and the texmf trees are searched for files named in this way, or the path may be embedded in the font declaration. *E.g.*,

\font\1="[fp9r8a]"	Selects 'FPL Neu' in the current directory
\font\1="[/myfonts/fp9r8a]"	Selects 'FPL Neu' somewhere else
\font\1="[lmroman10-regular]"	Selects a Latin Modern font in the TDS

1.1 Font options

Font options are only applicable when the font is selected through the operating system (*i.e.*, without square brackets), and may be any concatenation of the following:

- /B Use the bold version of the selected font.
- /I Use the italic version of the selected font.
- /BI Use the bold italic version of the selected font.
- /IB Same as /BI.
- $\sqrt{S}=x$ Use the version of the selected font corresponding to the optical size x pt.
- /AAT Explicitly use the ATSUI renderer (Mac OS X only).
- /ICU Explicitly use the ICU OpenType renderer (only useful on Mac OS X).

1.2 Font features

The font features is a comma or semi-colon separated list activating or deactivating various AAT or OpenType font features, which will vary by font. The X_HT_EX documentation files aat-info.tex and opentype-info.tex provide per-font lists of supported features.

1.2.1 Arbitrary AAT or OpenType features

OpenType font features are chosen with standard tags 1 . They may be either commaor semicolon-separated, and prepended with a + to turn them on and a - to turn them off.

Example:

```
\font\warnock="Warnock Pro/I/S=5:+smcp" at 12pt
\warnock This is the OpenType font Warnock Pro in italic
with small caps at a small optical size.
```

This is the OpenType font Warnock Pro in italic with small caps at a small optical size.

Varying depending on the language and script in use (see section §1.2.3 on the following page), a small number of OpenType features, if they exist, will be activated by default.

AAT font features are specified by strings within each font. Therefore, even equivalent features between different fonts can have different names.

Example:

```
\font\hoefler="Hoefler Text/B:Letter Case=Small Caps" at 12pt \hoefler This is the AAT font Hoefler Text in bold with small caps.
```

This is the AAT font Hoefler Text in bold with small caps.

1.2.2 Options for all fonts

Some font features may be applied for any font. These are mapping=

Uses the specified font mapping for this font. This uses the TECKit engine to transform unicode characters in the last-minute processing stage of the source. For example, mapping=tex-text will enable the classical mappings from ugly ascii ``---'' to proper typographical glyphs "—", and so on.

http://www.microsoft.com/typography/otspec/featuretags.htm

color=RRGGBB[TT]

Triple pair of hex values to specify the colour in RGB space, with an optional value for the transparency.

letterspace=x

Adds x/S space between letters in words, where S is the font size.

embolden=x

Increase the envelope of each glyph by the set amount (this makes the letters look 'more bold'). x=0 corresponds to no change; x=1.5 is a good default value.

extend=x

Stretch each glyph horizontally by a factor of x (i.e., x=1 corresponds to no change).

slant=x

Slant each glyph by the set amount. x=0 corresponds to no change; x=0.2 is a good default value.

1.2.3 OpenType script and language support

OpenType font features (and font behaviour) can vary by script² ('alphabet') and by language³. These are selected with four and three letter tags, respectively. script=<script tag>

Selects the font script.

language=<lang tag>

Selects the font language.

1.2.4 Multiple Master and Variable Axes AAT font support

weight=x

Selects the normalised font weight, x.

width=x

Selects the normalised font width, x.

optical size=x

Selects the optical size, x pt. Note the difference between the /S font option, which selects discrete fonts.

²http://www.microsoft.com/typography/otspec/scripttags.htm

³http://www.microsoft.com/typography/otspec/languagetags.htm

1.2.5 Vertical typesetting

vertical

Enables glyph rotation in the output so vertical typesetting can be performed.

Part II

New commands

2 Font primitives

\XeTeXuseglyphmetrics

Counter to specify if the height and depth of characters are taken into account while typesetting (\geq 1). Otherwise (< 1), a single height and depth for the entire alphabet is used. Gives better output but is slower. Activated (\geq 1) by default.

Example:

\XeTeXglyph \Glyph slot

Inserts the glyph in *slot* of the current font. **Font specific**, so will give different output for different fonts.

\XeTeXglyphindex "\Glyph name\" \space\ or \relax

Expands to the *'glyph slot'* corresponding to the (possibly font specific) *'glyph name'* in the currently selected font. Only works for TrueType fonts (or TrueType-based OpenType fonts) at present. Use fontforge or similar to discover glyph names.

\XeTeXcharglyph \Char code

Expands to the default glyph number of character (*Char code*) in the current font, or 0 if the character is not available in the font.

Example:

```
\int \int -1 = Charis SIL'' 1
The glyph slot in Charis SIL for the Yen symbol is:
    \t the \t font-specific glyph name
Or: \the\XeTeXcharqlyph"00A5. % the unicode character slot
This glyph may be typeset with the font-specific glyph slot:
\XeTeXglyph150,
or the unicode character slot:
\char"00A5.
The glyph slot in Charis SIL for the Yen symbol is: 150. Or: 150.
```

This glyph may be typeset with the font-specific glyph slot: ¥, or the unicode character slot: ¥.

\XeTeXglyphbounds \(\lefta edge \) \(\lefta glyph number \)

Expands to a dimension corresponding to one of the bounds of a glyph, where *edge* is an integer from 1 to 4 indicating left/top/right/bottom edge respectively, and glyph number is an integer glyph index in the current font (only valid for True-Type/OpenType/PostScript fonts loaded 'natively', not TFM-based fonts). The left and right measurements are the glyph sidebearings, measured 'inwards' from the origin and advance respectively, so for a glyph that fits completely within its 'cell' they will both be positive; for a glyph that 'overhangs' to the left or right, they will be negative. The actual width of the glyph's bounding box, therefore, is the character width (advance) minus both these sidebearings. The top and bottom are measured from the baseline, like T_FX's height and depth; the height of the bounding box is the sum of these two dimensions.

```
Example:
\def\shadebbox#1{%}
\leavevmode\rlap{%
 \dim 0=\fontcharwd\font\#1\%
 \edef\gid{\the\XeTeXcharglyph\#1}%
 \advance\dimen0 by -\XeTeXglyphbounds1 \gid
 \advance\dimen0 by -\XeTeXglyphbounds3 \gid
 \kern\XeTeXglyphbounds1 \gid
 \special{color push rgb 1 1 0.66667}%
 \vrule width \dimen0
       height \XeTeXglyphbounds2 \gid
       depth \XeTeXglyphbounds4 \gid
 \special{color pop}%
 \kern\XeTeXglyphbounds3 \gid}%
 #1}
\noindent
\int \int x=Charis SIL/I'' at 24pt x
\ \shadebbox{*} \ \shadebbox{=}
AWaf; * =
```

\XeTeXfonttype \(font \)

Expands to a number corresponding to which renderer is used for a *font*:

- of or TFX (a legacy TFM-based font);
- for ATSUI (usually an AAT font);
- 2 for ICU (an OpenType font);
- 3 for Graphite.

Example:

```
\newcommand\whattype[1]{%
  \texttt{\fontname#1} is rendered by
  \ifcase\XeTeXfonttype#1\TeX\or ATSUI\or ICU\fi.\par}
\font\1="cmr10"
\font\2="Hoefler Text"
\font\3="Charis SIL"
\font\4="Charis SIL/AAT"
\whattype\1\whattype\2\whattype\3\whattype\4

cmr10 is rendered by TeX.
"Hoefler Text" is rendered by ATSUI.
"Charis SIL" is rendered by ICU.
"Charis SIL/AAT" is rendered by ATSUI.
```

2.1 OpenType fonts

\XeTeXOTcountscripts \(\int Font \)
Expands to the number of scripts in a font.

\XeTeX0Tscripttag $\langle Font \rangle \langle Integer, n \rangle$ Expands to the n-th script tag of a font.

\XeTeXOTcountlanguages \(\frac{Font}{Script \tag} \)
Expands to the number of languages in the script of a font.

\XeTeX0Tlanguagetag $\langle Font \rangle \langle Script \ tag \rangle \langle Integer, \ n \rangle$ Expands to the n-th language tag in the script of a font.

\XeTeX0Tcountfeatures \(\frac{Font}{\} \\ \Script \tag^{\} \\ Language \tag^{\} \)
Expands to the number of features in the language of a script of a font.

 $\ensuremath{\mathsf{VAFEXOTFeaturetag}}$ $\ensuremath{\mathsf{CScript}}$ $\ensuremath{\mathsf{tag}}$ $\ensuremath{\mathsf{CLanguage}}$ $\ensuremath{\mathsf{tag}}$ $\ensuremath{\mathsf{N-th}}$ feature tag in the language of a script of a font.

2.2 AAT fonts

2.2.1 Features

\XeTeXcountfeatures \(font \)

Expands to the number of features in the *font*.

 $\XeTeXfeaturecode {\it (font) (integer, n)}$

Expands to the feature code for the n-th feature in the font.

\XeTeXfeaturename \(\family \) \(\family \

Expands to the name corresponding to the *feature code* in the *font*.

\XeTeXisexclusivefeature \(\overline{font} \) \(\overline{feature code} \)

Expands to a number greater than zero if the feature of a font is exclusive (can only take a single selector).

2.2.2 Feature selectors

\XeTeXcountselectors \(\font \) \(\feature \)

Expands to the number of selectors in a *(feature)* of a *(font)*.

Expands to the selector code for the n-th selector in a *feature* of a *font*.

\XeTeXselectorname \(\frac{font}{\} \) \(\frac{feature code}{\} \) \(\section \)

Expands to the name corresponding to the *(selector code)* of a feature of a *(font)*.

Expands to a number greater than zero if the selector of a feature of a font is on by default.

2.2.3 Variation axes

\XeTeXcountvariations \(\font \)

Expands to the number of variation axes in the *font*.

\XeTeXvariation \(\font \\ \\ \integer, n \\ \)

Expands to the variation code for the n-th feature in the *font*.

\XeTeXvariationname \(\font \) \(\variation \code \)

Expands to the name corresponding to the *feature code* in the *font*.

\XeTeXvariationmin \(\font \) \(\variation \code \)

Expands to the minimum value of the variation corresponding to the *variation code* in the *font*.

\XeTeXvariationmax \(\font \) \(\variation \code \)

Expands to the maximum value of the variation corresponding to the *variation code* in the *font*.

\XeTeXvariationdefault \(font\) \(variation code \)

Expands to the default value of the variation corresponding to the *variation code* in the *font*.

2.3 Maths fonts

The primitives described following are extensions of TeX's 8-bit primitives.

In the following commands, *'fam.'* is a number (0–255) representing font to use in maths. *'math type'* is the 0–7 number corresponding to the type of math symbol; see a TeX reference for details.

\XeTeXmathcode \(\char \slot \) [=] \(\char \tau \) \(\tau \) \(\char \slot \)

Defines a maths glyph accessible via an input character. Note that the input takes *three* arguments unlike TpX's \mathcode.

\XeTeXmathcodenum \(\char \slot \) [=] \(\cmath \type / fam. / glyph \slot \)

Pure extension of \mathcode that uses a 'bit-packed' single number argument. Can also be used to extract the bit-packed mathcode number of the *\char slot* if no assignment is given.

\XeTeXmathchar \(\text{math type} \) \(\frac{fam.}{} \(\text{glyph slot} \)

Typesets the math character in the *'glyph slot'* in the family specified.

\XeTeXmathcharnum \(\tau type / fam. / glyph slot \)

Pure extension of \mathchar that uses a 'bit-packed' single number argument. Can also be used to extract the bit-packed mathcode number of the *\char slot* if no assignment is given.

\XeTeXmathchardef \(\control \) sequence \([=] \) \(\text{math type} \) \(\frac{fam.}{glyph slot} \) Defines a maths glyph accessible via a control sequence.

\XeTeXdelcode \(\circ\char\) slot\ [=] \(\frac{fam.}{\circ}\) \(\gamma\) glyph slot\)
Defines a delimiter glyph accessible via an input character.

\XeTeXdelcodenum \(\char \slot \) [=] \(fam. / glyph \slot \)

Pure extension of \delcode that uses a 'bit-packed' single number argument. Can also be used to extract the bit-packed delcode number of the *char slot* if no assignment is given.

\XeTeXdelimiter \(\text{math type} \) \(\frac{fam.}{glyph slot} \)

Typesets the delimiter in the *'glyph slot'* in the family specified of either *'math type'* 4 (opening) or 5 (closing).

\XeTeXmathaccent \(math \ type \) \(fam. \) \(glyph \ slot \)

Typesets the math accent character in the *'glyph slot'* in the family specified.

\XeTeXradical \(fam. \) \(glyph \ slot \)

Typesets the radical in the *'glyph slot'* in the family specified.

3 Character classes

The idea behind character classes is to define a boundary where tokens can be added to the input stream without explicit markup. It was originally intended to add glue around punctuation to effect correct Japanese typesetting. This feature can also be used to adjust space around punctuation for European traditions. The general nature of this feature, however, lends it to several other useful applications including automatic font switching when small amounts of another language (in another script) is present in the text.

\XeTeXinterchartokenstate

Counter. If positive, enables the character classes functionality.

\newXeTeXintercharclass \(\control \) sequence \(\control \)

Allocates a new interchar class and assigns it to the *(control sequence)* argument.

\XeTeXcharclass \(\char\) [=] \(\char\) interchar class

Assigns a class corresponding to *interchar class* (range 0–255) to a *char slot*. Most characters are class 0 by default. Class 1 is for CJK ideographs, classes 2 and 3 are CJK punctuation. The boundary of a text string is considered class 255, wherever there is a boundary between a 'run' of characters and something else — glue, kern, math, box, etc. Special case class 256 is ignored; useful for diacritics so I'm told.

\XeTeXinterchartoks \(\cinterchar\) class 1\(\cinterchar\) class 2\(\cinterchar\) [=] {\(\cinterchar\) list\}

Defines tokens to be inserted at the interface between \(\cinterchar\) class 1\(\cinterchar\) and \(\cinterchar\) class 2\(\cinterchar\) (in that order).

```
Example:
XeTeXinterchartokenstate = 1
\newXeTeXintercharclass \mycharclassa
\newXeTeXintercharclass \mycharclassA
\newXeTeXintercharclass \mycharclassB
\XeTeXcharclass `\a \mycharclassa
\XeTeXcharclass \\A \mycharclassA
\XeTeXcharclass \\B \mycharclassB
% between "a" and "A":
\XeTeXinterchartoks \mycharclassa \mycharclassA = {[\itshape}
\XeTeXinterchartoks \mycharclassA \mycharclassa = {\upshape]}
% between " " and "B":
\XeTeXinterchartoks 255 \mycharclassB = {\bgroup\color{blue}}
\XeTeXinterchartoks \mycharclassB 255 = {\egroup}
% between "B" and "B":
\XeTeXinterchartoks \mycharclassB \mycharclassB = {.}
aAa A a B aBa BB
a[A]a A a B aBa B.B
```

In the above example the input text is typeset as a[\itshape A\unshape]a A a \bgroup\color{blue}B\egroup aBa B.B

4 Encodings

\XeTeXinputencoding \(\text{Charset name} \)
Defines the input encoding of the following text.

\XeTeXdefaultencoding \(\text{Charset name} \)
Defines the input encoding of subsequent files to be read.

5 Line breaking

\XeTeXdashbreakstate \(\integer \) Specify whether line breaks after en- and em-dashes are allowed. Off, 0, by default.

\XeTeXlinebreaklocale \(\lambda Locale ID\)

Defines how to break lines for multilingual text.

\XeTeXlinebreakskip (Glue)
Inter-character linebreak stretch

\XeTeXlinebreakpenalty \(\text{Integer} \)
Inter-character linebreak penalty

\XeTeXupwardsmode <Integer>

If greater than zero, successive lines of text (and rules, boxes, etc.) will be stacked upwards instead of downwards.

6 Graphics

This description is incomplete.

\XeTeXpicfile \(\filename \) \(\text{optional options} \) Insert an image.

\XeTeXpdffile \(\filename \) \(\text{optional options} \) Insert (pages of) a PDF.

7 Parity with pdf T_FX

\pdfpageheight \(\dimension\)
The height of the PDF page.

\pdfpagewidth \(\dimension\)
The width of the PDF page.

\pdfsavepos

Saves the current location of the page in the typesetting stream.

\pdflastxpos

Retrieves the horizontal position saved by \pdfsavepos.

\pdflastypos

Retrieves the vertical position saved by \pdfsavepos.

\ifincsname...(\else...)\fi

 $T_E\!X$ conditional to branch true if the expansion occurs within \csname ... \endc-sname.

Example:

\def\x{\ifincsname y\else hello\fi}
\def\y{goodbye}
\x/\csname\x\endcsname

hello/goodbye

\ifprimitive \(\control \) sequence \(\. \. \(\else \) \) \fi

T_EX conditional to test if a control sequence is a primitive and that it has not been redefined.

\primitive \control sequence

If the control sequence is a primitive that's been redefined, this command causes it to expand with its original (i.e., primitive) definition.

\shellescape

Read-only status indicating the level of 'shell escape' allowed. That is, whether commands are allowed to be executed through \write18{...}. Expands to zero for off; one for on (allowed); two is 'restricted' (default in TeX Live 2009 and greater) in which a subset of commands only are allowed.

Example:

Shell escape \ifnum\shellescape>0 is \else is not \fi enabled.

Shell escape is enabled.

\strcmp \arg one \arg two

Compares the full expansion of the two token list arguments. Expands to zero if they are the same, less than one if the first argument sorts lower (lexicographically) than the second argument, and greater than one if vice versa.

```
Example:
'a' is less than 'z': \strcmp{a}{z}

\def\z{a}

The tokens expand before being compared: \strcmp{a}{\z}

\def\a{z}

Therefore, |\a| is greater than |\z|: \strcmp{\a}{\z}

\edef\b{\string b}

Also note that catcodes are ignored: \strcmp{b}{\b}

'a' is less than 'z': -1

The tokens expand before being compared: 0

Therefore, \a is greater than \z: 1

Also note that catcodes are ignored: 0
```

8 Misc.

\XeTeXversion

Expands to a number corresponding to the X_HT_EX version.

\XeTeXrevision

Expands to a string corresponding to the XATEX revision number.

Example:

The \XeTeX\ version used to typeset this document is: \the\XeTeXversion\XeTeXrevision

The XATEX version used to typeset this document is: 0.9995