Macros to Change Text & Math fonts in $T_E X$

19 Beautiful Variants

Amit Raj Dhawan

amitrajdhawan@gmail.com August 19, 2009

This work has been released under Creative Commons Attribution-Share Alike 3.0 Unported License on August 19, 2009.

You are free to *Share* (to copy, distribute and transmit the work) and to *Remix* (to adapt the work) provided you follow the *Attribution* and *Share Alike* guidelines of the licence. For the full licence text, please visit: http://creativecommons.org/licenses/by-sa/3.0/legalcode.

Contents

Introduction 1
Usage 1
Example 3
Warning
Charter
Utopia 6
New Century Schoolbook 7
Palatino
Times
Bookman Font
Antykwa Torunska 11
Iwona 12
Kurier
Arev
Computer Modern Bright 15
Epigrafica with Euler
Epigrafica with Palatino
Antykwa Poltawskiego with Euler 18
Bera Serif with Concrete 19
Bera Serif with Euler 20
Bera Serif with Fouriernc

Concrete	22
Computer Modern	23
Typefaces and Sizes	24
Inter-Line and Inter-Word Spacing	27
Example	27
An Easy Solution	28
Acknowledgements	30
References	31

Introduction

TEX typesets documents in Computer Modern fonts by default.¹ Donald Knuth's Computer Modern fonts are very elegant but sometimes we all look for a change. Many of us want to typeset T_EX documents in fonts other than Computer Modern. Changing the font in *text mode*, i.e. the text font, in T_EX is simple and there are many free fonts available with various typefaces like roman, **bold**, *italic*, *slanted*, *italic bold*, *slanted bold*, CAPS, **BOLD CAPS**, etc. The difficulty lies in changing the math fonts in T_EX documents. This is mainly due to the lack of math fonts for T_EX. Another reason is that changing the font in *math mode* is not as simple as changing the font in *text mode*. For ET_EX there are various packages that can be used to change the font—text and math—with one statement. But for T_EX, I could not find an easy way to change the font in the document—text and math. Using one font in *text mode* and another in *math mode* can spoil the look of the document. It is always desired to have text and math in the same font; text in New Century and math in Computer Modern do not go well. Though there are some combinations, as we will see later, that go well.

Being able to choose from different fonts is quite advantageous. Computer Modern fonts look very good on paper, esp. on inkjet printouts, but they look relatively thin on new computer screens (LCDs) and on laser printouts. For slide shows, most people prefer sans-serif fonts of relatively heavier weight. The idea of changing the entire font family which includes various typefaces like boldface, italics, etc., and the math fonts, with one control statement has been the motivation behind my work. For this purpose I have written 19 T_EX macros that instruct T_EX to typeset documents in the fonts called by those macros. In this document, the use of the above mentioned 19 font macros has been displayed. Each of these macros changes the fonts in the document globally, and can be used locally too, i.e. within a group. Now a T_EX document, which is normally produced in Computer Modern, can be produced in 19 other font variants. These macro files can be easily understood, and changed if convenient. Each macro has various typefaces declared at 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, and 20pt sizes. Some of them even have the 11pt size. To save T_EX's memory we can delete some of the sizes and typefaces we do not use normally.

To display the action of our 19 font changing macros, a sample text has been typeset 19 times but in different fonts. The fonts/font families called by our macros have almost all the glyphs contained in the Computer Modern family. In general, these fonts have more glyphs than Computer Modern. To see all the glyphs in a font, please use Werner Lemberg's fontchart utility. In a very few cases, e.g. in Epigrafica normal font (epigrafican8r), some important glyphs like Γ and Θ are missing. Our macro takes care of this; the user need not bother unless something very unusual is demanded from T_EX. These minor issues arise with $\mathbb{ME}X$ packages too.

Usage

Suppose we would like to typeset our T_EX document in Charter font. To do this we have to copy the T_EX macro file "font_charter.tex" to the directory (folder) which contains our T_EX source file. In our T_EX source file, we have to type \input font_charter. This will change the font to

¹ Typographically, the correct expression is, "T_EX typesets documents in Computer Modern typefaces by default." But most people (including me) use the words *font* and *typeface* synonymously. In this manual such distinction has been avoided.

Charter from the point where the statement \input font_charter was declared. We can declare \input font_charter in a closed group ({\input font_charter ... }) to change the font to Charter in that group, provided no other font change is called in that group or its sub-group.

Another way to use the font changing macro files is to put them in a folder (say "fonts") in some drive (say "C") and then call these files in our T_EX source file. If we want to use the Charter font, we should type \input C:/fonts/font_charter to get the desired change. If we have put the font changing macro files in a folder that has space(s) in its name (say "font change"), then we should type \input "C:/font change/font_charter" to use the Charter font.

The complete change of font will be at the default size in T_EX (10pt), though a little manipulation with the macro file will enable us to get complete (text and math) smaller and larger point changes.

The basic typeface changing T_EX control statements

\rm ... roman
\it ... italic
\bf ... boldface
\sl ... slanted
\tt ... typewriter

hold their usual meaning. All the macro files that this PDF mentions have the above mentioned five options. In addition, most macro files have other useful options too. These are:

\itbf ... italic boldface
\slbf ... slanted boldface
\caps ... CAPS
\capsbf ... CAPS IN BOLDFACE

In the *text mode*, the above mentioned typefaces can be used at 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, and 20pt sizes. This is done by typing the size in words between the backslash (\rangle) and the words that declare the typeface. For example, if we want to typeset some text in bold at 14pt then we have to use the control statement \fourteenbf.

Example

A sample T_EX source file as shown below:

```
\parindent=0pt
\input font_cm
This is the {\bf Computer Modern font}. The {\twelveslbf Gamma function\/}
is defined as:
$$\Gamma(z) \equiv \int_0^\infty t^{z-1} e^{-t} dt.$$
\input font_charter
This is the {\bf Charter font}. The {\twelveslbf Gamma function\/}
is defined as:
\delta(z-1) = (-t) dt.
{ % begin group
\input font_century
This is the {\bf New Century Schoolbook font}. The {\twelveslbf Gamma
function\backslash is defined as:
\ (gamma(z) \equiv \int_0^\infty t^{z-1} e^{-t} dt.$$
} % end group
Now we are back to Charter.
```

after compilation will produce:

This is the **Computer Modern font**. The **Gamma function** is defined as:

$$\Gamma(z) \equiv \int_0^\infty t^{z-1} e^{-t} dt.$$

This is the **Charter font**. The **Gamma function** is defined as:

$$\Gamma(z) \equiv \int_0^\infty t^{z-1} e^{-t} dt.$$

This is the **New Century font**. The **Gamma function** is defined as:

$$\Gamma(z) \equiv \int_0^\infty t^{z-1} e^{-t} dt$$

Now we are back to Charter.

Warning

The fonts used in these 19 macros are included in MikTeX and T_EX Live distributions. All these macros should work smoothly with a full installation of MikTeX (Version 2.7 originally tested). Most of the macros should work smoothly with T_EX Live but even after installing a full version of T_EX Live on Ubuntu 9.04 it was found that some of the fonts had to be manually configured.

Three macros that include fonts from the cc-pl package did not work with pdfT_EX, though a PDF file could be generated from the DVI file using dvipdfm. These 19 font changing macros have worked successfully with plain T_EX, and a combination of plain T_EX and other macros designed for plain T_EX, e.g. A_{MS} -T_EX and eplain.

If we are typesetting our document in English with any mathematics, then using these macros would be trouble free. They might demur when we try to type letters like *i*, esp. when using typefaces like *slanted boldface* and CAPS. This is due to font encoding. In the present font (Charter, normal roman, mdbchr7t), \1 produces *i*, {\slbf \1} produces *i*, but {\caps\1} produces _L.

Sans-serif fonts do not have *italics*—they only have *slanted* ligatures. To make the font changing macro files more consistent, both italics and slanted commands, e.g. \it and \sl, produce *slanted* ligatures in case of sans-serif fonts and in those fonts that do not have distinct italic and slanted ligatures. Names of the fonts used in a macro and the available typefaces are listed in this document.

Charter

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x)$.

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region *R*, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in *R*.

The Charter font is declared by typing \input font_charter. The font family uses fonts from the mdbch family, which corresponds to Bitstream Charter text fonts. This family is a part of Paul Pichaureau's MathDesign project. The Charter font was originally designed by Matthew Carter for Bitstream Inc. in 1987. Details of this T_FX macro are given in the table below.

Typeface	Font name	Typeface	Font name
Roman text	mdbchr7t	Boldface text	mdbchb7t
Math italic	mdbchri7m	Typewriter text	qx-lmtt10
Math symbols	md-chr7y	Italic boldface text	mdbchbi7t
Math extension	mdbchr7v	Slanted boldface text	mdbchbo7t
Italic text	mdbchri7t	Caps	mdbchrfc8t
Slanted text	mdbchro7t	CAPS IN BOLDFACE	mdbchbfc8t

Font assignment in **font_charter** macro

Utopia

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region *R*, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in *R*.

The Utopia font is declared by typing \input font_utopia. The font family uses most of its fonts from the mdput family, which corresponds to Adobe Utopia text fonts. This family is a part of Paul Pichaureau's MathDesign project. The font family is very complete and includes the math fonts too. For inter-letter spacing reasons, macro font_utopia.tex uses math italic font and math symbols font from Michel Bovani's fourier package. The Utopia font was originally designed by Robert Slimbach for Adobe in 1989.

Math italic (mdputri7m) and math symbols (md-utr7y) from the mdput family can also be used. Details of this T_EX macro are given in the table below.

Typeface	Font name	Typeface	Font name	
Roman text	mdputr7t	Boldface text	mdputb7t	
Math italic	futmii	Typewriter text	qx-lmtt10	
Math symbols	futsy	Italic boldface text	mdputbi7t	
Math extension	mdputr7v	Slanted boldface text	mdputbo7t	
Italic text	mdputri7t	CAPS	mdputrfc8t	
Slanted text	mdputro7t	CAPS IN BOLDFACE	mdputbfc8t	

Font assignment in font_utopia macro

New Century Schoolbook

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in *R*.

The New Century Schoolbook font is declared by typing \input font_century. The font family uses fonts from the TeX Gyre Schola family, which corresponds to Adobe New Century Schoolbook text fonts. The Century Schoolbook font was created by Morris Fuller Benton between 1918 and 1921.

The macro uses math italic (fncmii) and math symbols (fncsy) from Michael Zedler's fouriernc package. Details of this T_EX macro are given in the table below.

Typeface	Font name	Typeface	Font name		
Roman text	cs-qcsr	Boldface text	cs-qcsb		
Math italic	fncmii	Typewriter text	qx-lmtt10		
Math symbols	fncsy	Italic boldface text	cs-qsbi		
Math extension	cmex10	Slanted boldface text	pncbo7t		
Italic text	cs-qcsri	Caps	cs-qcsr-sc		
Slanted text	pncro7t	CAPS IN BOLDFACE	cs-qcsb-sc		

Palatino

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in *R*.

The Palatino font is declared by typing \input font_palatino. The font family uses fonts from Young Ryu's pxfonts package, which corresponds to Adobe Palatino text fonts. The Palatino font was originally designed by Hermann Zapf for the Stempel foundry in 1950. Details of this TEX macro are given in the table below.

Typeface	Font name	Typeface	Font name
Roman text	pxr	Boldface text	pxb
Math italic	pxmi	Typewriter text	qx-lmtt10
Math symbols	pxsy	Italic boldface text	pxbi
Math extension	pxex	Slanted boldface text	pxbsl
Italic text	pxi	Caps	pxsc
Slanted text	pxsl	CAPS IN BOLDFACE	pxbsc

Font assignment in font_palatino macro

Times

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in *R*.

The Times font is declared by typing \input font_times. The font family uses fonts from Young Ryu's txfonts package, which corresponds to Adobe Times text fonts. The Times font was designed in 1931 by Stanley Morison at Monotype Corp. Details of this T_FX macro are given in the table below.

Typeface	Font name	Typeface	Font name	
Roman text	txr	Boldface text	txb	
Math italic	txmi	Typewriter text	qx-lmtt10	
Math symbols	txsy	Italic boldface text	txbi	
Math extension	txex	Slanted boldface text	txbsl	
Italic text	txi	Caps	txsc	
Slanted text	txsl	CAPS IN BOLDFACE	txbsc	

T		• •		
Font assi	ionment i	n tont	times	macro
i one abor	Sumone i	II IOIII	_uiiico	macro

Bookman Font

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + i \sin(x)$.

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region *R*, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in *R*.

The Bookman font is declared by typing \input font_bookman. The font family uses fonts from Jackowski and Nowacki's (T_EX Gyre) bonum family, Antonis Tsolomitis' kerkis package, and Young Ryu's txfonts package—all of them correspond to Adobe Bookman text fonts. The Bookman font was originally designed by Alexander Phemister in 1860 for the Miller & Richard foundry in Scotland. Details of this T_EX macro are given in the table below.

	0		
Typeface	Font name	Typeface	Font name
Roman text	cs-qbkr	Boldface text	cs-qbkb
Math italic	kmath8r	Typewriter text	qx-lmtt10
Math symbols	txsy	Italic boldface text	cs-qbkbi
Math extension	txex	Slanted boldface text	pbkdo7t
Italic text	cs-qbkri	Caps	cs-qbkr-sc
Slanted text	pbklo7t	CAPS IN BOLDFACE	cs-qbkb-sc

Font assignment	in	font_bookman macro
rom assignment	111	IUIIL_DUUKIIIaII IIIaCIU

Antykwa Toruńska

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x)$.

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in *R*.

The Antykwa Toruńska font is declared by typing \input font_antt. The font family uses fonts from J. M. Nowacki's antt package, which corresponds to Zygfryd Gardzielewski's Antykwa Toruńska text fonts. Zygfryd Gardzielewski designed Antykwa Toruńska in 1960 for Grafmasz typefoundry in Warsaw. Details of this T_FX macro are given in the table below.

	0		
Typeface	Font name	Typeface	Font name
Roman text	cs-anttr	Boldface text	cs-anttb
Math italic	mi-anttri	Typewriter text	qx-lmtt10
Math symbols	sy-anttrz	Italic boldface text	cs-anttbi
Math extension	ex-anttr	Slanted boldface text	cs-anttbi
Italic text	cs-anttri	Caps	cs-anttrcap
Slanted text	cs-anttri	CAPS IN BOLDFACE	cs-anttbcap

Font assignment in font_antt macro

lwona

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in R.

The Iwona font is declared by typing \input font_iwona. The font family uses fonts from J. M. Nowacki's iwona package, which corresponds to Malgorzata Budyta's text fonts. Details of this T_EX macro are given in the table below.

	J		
Typeface	Font name	Typeface	Font name
Roman text	cs-iwonar	Boldface text	cs-iwonab
Math italic	mi-iwonari	Typewriter text	qx-lmtt10
Math symbols	sy-iwonarz	Italic boldface text	cs-iwonabi
Math extension	ex-iwonar	Slanted boldface text	cs-iwonabi
Italic text	cs-iwonari	Caps	cs-iwonarcap
Slanted text	cs-iwonari	CAPS IN BOLDFACE	cs-iwonabcap

Kurier

Euler Formula: The Euler formula, also known as **Euler identity**, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x)$.

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in R.

The Kurier font is declared by typing \input font_kurier. The font family uses fonts from J. M. Nowacki's kurier package, which corresponds to Malgorzata Budyta's text fonts. The Kurier font is very similar to Iwona font; Kurier is a bit extended. Details of this T_EX macro are given in the table below.

Typeface	Font name	Typeface	Font name
Roman text	cs-kurierr	Boldface text	cs-kurierb
Math italic	mi-kurierri	Typewriter text	qx-lmtt10
Math symbols	sy-kurierrz	Italic boldface text	cs-kurierbi
Math extension	ex-kurierr	Slanted boldface text	cs-kurierbi
Italic text	cs-kurierri	Caps	cs-kurierrcap
Slanted text	cs-kurierri	CAPS IN BOLDFACE	cs-kurierbcap

Font assignment in **font_kurier** macro

Arev

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in *R*.

The Arev font is declared by typing \input font_arev. The font family uses fonts from S. G. Hartke's arev package, which corresponds to Bitstream Vera Sans text fonts. Bitstream Vera font was designed by Jim Lyles. Details of this T_EX macro are given in the table below.

	J		
Typeface	Font name	Typeface	Font name
Roman text	zavmr7t	Boldface text	zavmb7t
Math italic	zavmri7m	Typewriter text	qx-lmtt10
Math symbols	zavmr7y	Italic boldface text	favbi8t
Math extension	ex-kurierr	Slanted boldface text	favbi8t
Italic text	favri8t	No caps	
Slanted text	favri8t	No caps in bold	

Font	assignment	in	font arev	macro
I UIIC	ussignment			macro

Computer Modern Bright

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in R.

The Computer Modern Bright font is declared by typing \input font_cmbright. The font family uses fonts from Walter Schmidt's cmbright package, which corresponds to Donald Knuth's Computer Modern Sans Serif text fonts. Computer Modern Bright fonts are lighter than Knuth's Computer Modern Sans Serif fonts. Details of this T_EX macro are given in the table below.

	5	_	
Typeface	Font name	Typeface	Font name
Roman text	cmbr10	Boldface text	cmbrbx10
Math italic	cmbrmi10	Typewriter text	qx-lmtt10
Math symbols	cmbrsy10	Italic boldface text	cs-Imssbo10
Math extension	ex-iwonar	Slanted boldface text	cs-Imssbo10
Italic text	cmbrsl10	No caps	—
Slanted text	cmbrsl10	No caps in bold	—

Font assignment in **font_cmbright** macro

Epigrafica with Euler

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, \mathrm{d} z = 0$$

for any closed contour γ completely contained in R.

This macro enables us to type text in Epigrafica font and math in Euler font. The macro is declared by typing \input font_epigrafica_euler. The macro typesets text in fonts from Antonis Tsolomitis's epigrafica package (based on Hermann Zapf's Optima text font) and math in Walter Schmidt's Euler-VM fonts (based on Hermann Zapf's Euler and Knuth's CM fonts). Details of this T_FX macro are given in the table below.

Typeface	Font name	Typeface	Font name
Roman text	epigrafican8r	Boldface text	epigraficab8r
Math italic	eurm10	Typewriter text	qx-lmtt10
Math symbols	cmsy10	Italic boldface text	epigraficabi8r
Math extension	euex10	Slanted boldface text	epigraficabi8r
Italic text	epigraficai8r	Caps	epigraficac8r
Slanted text	epigraficai8r	No caps in bold	_

Font assignment in font_epigrafica_euler macro

Epigrafica with Palatino

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in *R*.

This macro enables us to type text in Epigrafica font and math in PX Fonts. The macro is declared by typing <u>\input font_epigrafica_palatino</u>. The macro typesets text in fonts from Antonis Tsolomitis's epigrafica package (based on Hermann Zapf's Optima text font) and math in Young Ryu's pxfonts package (which corresponds to Adobe Palatino text fonts). Details of this T_EX macro are given in the table below.

Typeface	Font name	Typeface	Font name
Roman text	epigrafican8r	Boldface text	epigraficab8r
Math italic	pxmi	Typewriter text	qx-lmtt10
Math symbols	pxsy	Italic boldface text	epigraficabi8r
Math extension	pxex	Slanted boldface text	epigraficabi8r
Italic text	epigraficai8r	Caps	epigraficac8r
Slanted text	epigraficai8r	No caps in bold	_

Font assignment in font_epigrafica_palatino macro

Antykwa Półtawskiego with Euler

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, \mathrm{d} z = 0$$

for any closed contour γ completely contained in R.

This macro enables us to type text in Antykwa Półtawskiego font and math in Euler font. The macro is declared by typing \input font_antp_euler. The macro typesets text in fonts from J. M. Nowacki's antp package (based on Polish typographer, Adam Półtawski's Antykwa Półtawskiego text fonts) and math in Walter Schmidt's Euler-VM fonts (based on Hermann Zapf's Euler and Knuth's CM fonts). Details of this T_FX macro are given in the table below.

	~		
Typeface	Font name	Typeface	Font name
Roman text	antpr	Boldface text	antpb
Math italic	eurm10	Typewriter text	qx-lmtt10
Math symbols	cmsy10	Italic boldface text	antpbi
Math extension	euex10	Slanted boldface text	antpbi
Italic text	antpri	No caps	_
Slanted text	antpri	No caps in bold	—

Font assignment in **font_antp_euler** macro

Bera Serif with Concrete

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in *R*.

This macro enables us to type text in Bera serif and math in Concrete. The macro is declared by typing <code>\input font_bera_concrete</code>. The macro typesets text in Bera serif fonts from Walter Schmidt's bera package (based on Bitstream Vera serif font designed by Jim Lyles of Bitstream Inc.) and math is typeset using in Jackowski, Ryćko and Bzyl's cc-pl package (based on Knuth's Concrete Roman fonts). Details of this $T_{\rm F}X$ macro are given in the table below.

rom abolyminist in rom bora-construct in as is			
Typeface	Font name	Typeface	Font name
Roman text	fver8t	Boldface text	fveb8t
Math italic	pcmi10	Typewriter text	qx-lmtt10
Math symbols	cmsy10	Italic boldface text	fvebo8t
Math extension	cmex10	Slanted boldface text	fvebo8t
Italic text	fvero8t	No caps	—
Slanted text	fvero8t	No caps in bold	—

Font assignment in **font_bera_concrete** macro

Bera Serif with Euler

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x)$.

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, \mathrm{d}z = 0$$

for any closed contour γ completely contained in R.

This macro enables us to type text in Bera serif and math in Euler. The macro is declared by typing <code>\input font_bera_euler</code>. The macro typesets text in Bera serif fonts from Walter Schmidt's bera package (based on Bitstream Vera serif font designed by Jim Lyles of Bitstream Inc.) and math in Walter Schmidt's Euler-VM fonts (based on Hermann Zapf's Euler and Knuth's CM fonts). Details of this T_EX macro are given in the table below.

Four assignment in four bera euter macro			
Typeface	Font name	Typeface	Font name
Roman text	fver8t	Boldface text	fveb8t
Math italic	eurm10	Typewriter text	qx-lmtt10
Math symbols	cmsy10	Italic boldface text	fvebo8t
Math extension	euex10	Slanted boldface text	fvebo8t
Italic text	fvero8t	No caps	—
Slanted text	fvero8t	No caps in bold	—

Font assignment in **font_bera_euler** macro

Bera Serif with Fouriernc

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in *R*.

This macro enables us to type text in Bera serif and math in Fouriernc (originally used with New Century). The macro is declared by typing <code>\input font_bera_fnc</code>. The macro typesets text in Bera serif fonts from Walter Schmidt's bera package (based on Bitstream Vera serif font designed by Jim Lyles of Bitstream Inc.) and math using in Michael Zedler's fouriernc package. Details of this T_EX macro are given in the table below.

Typeface	Font name	Typeface	Font name	
Roman text	fver8t	Boldface text	fveb8t	
Math italic	fncmii	Typewriter text	qx-lmtt10	
Math symbols	fncsy	Italic boldface text	fvebo8t	
Math extension	cmex10	Slanted boldface text	fvebo8t	
Italic text	fvero8t	No caps	—	
Slanted text	fvero8t	No caps in bold	—	

Font assignment in **font_bera_fnc** macro

Concrete

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$egin{aligned} e^{\iota x} &= \sum_{n=0}^\infty rac{(\iota x)^n}{n!} \ &= \sum_{n=0}^\infty rac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_1^\infty rac{(-1)^{n-1} x^{2n-1}}{(2n-1)!} \ &= \cos(x) + \iota \sin(x). \end{aligned}$$

<u>Cauchy Integral Theorem</u>: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_\gamma f(z)\,dz=0$$

for any closed contour γ completely contained in R.

This macro enables us to type text and math in Donald Knuth's Concrete fonts. The macro is declared by typing $\input font_concrete$. The macro uses Jackowski, Ryćko and Bzyl's cc-pl package which is based on Knuth's Concrete Roman fonts. Details of this T_EX macro are given in the table below.

Typeface	Font name	Typeface Font name	
Roman text	pcr10	No boldface text	—
Math italic	pcmi10	Typewriter text	qx-lmtt10
Math symbols	cmsy10	No italic boldface text	—
Math extension	cmex10	No slanted boldface text	—
Italic text	pcti10	Caps	pccsc10
Slanted text	pcsl10	No caps in bold	—

Font assignment in font_concrete macro

Computer Modern

Euler Formula: The Euler formula, also known as Euler identity, states

 $e^{\iota x} = \cos(x) + \iota \sin(x),$

where ι is the *imaginary unit*.

The Euler formula can be expanded as a series:

$$e^{\iota x} = \sum_{n=0}^{\infty} \frac{(\iota x)^n}{n!}$$

= $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \iota \sum_{1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$
= $\cos(x) + \iota \sin(x).$

Cauchy Integral Theorem: If f(z) is analytic and its partial derivatives are continuous throughout some simply connected region R, then

$$\oint_{\gamma} f(z) \, dz = 0$$

for any closed contour γ completely contained in R.

This macro enables us to type text in Computer Modern font (serif). Though T_EX typesets documents in Donald Knuth's Computer Modern fonts by default, this macro is being supplied so that the user can use the different sizes as discussed in this document and in case the main font of any T_EX document is other than Computer Modern then by using this macro we can set the font to Computer Modern in some group. The macro is declared by typing \input font_cm. Details of this T_EX macro are given in the table below.

	0		
Typeface	Font name	Typeface	Font name
Roman text	cmr10	Boldface text	cmbx10
Math italic	cmmi10	Typewriter text	cmtt10
Math symbols	cmsy10	Italic boldface text	cmbxti10
Math extension	cmex10	Slanted boldface text	cmbxsl10
Italic text	cmti10	Caps	cmcsc10
Slanted text	cmsl10	No caps in Boldface	

Font	assignment	in	font cm	macro
T OIL0	assignment	111	iono_cm	macro

Typefaces and Sizes

Given below are various typefaces and sizes that our macros offer.

This text is in 20pt size. This text is in 18pt size. This text is in 16pt size. This text is in 14pt size. This text is in 12pt size. This text is in 10pt size. This text is in 9pt size. This text is in 9pt size. This text is in 7pt size. This text is in 5pt size.

This text is in 20pt size. This text is in 18pt size. This text is in 16pt size. This text is in 14pt size. This text is in 12pt size. This text is in 9pt size. This text is in 9pt size. This text is in 7pt size. This text is in 5pt size.

This text is in 20pt size. This text is in 18pt size. This text is in 16pt size. This text is in 14pt size. This text is in 12pt size. This text is in 10pt size. This text is in 9pt size. This text is in 9pt size. This text is in 7pt size. This text is in 5pt size. Roman

Italic

Slanted

Boldface

This text is in 20pt size. This text is in 18pt size. This text is in 16pt size. This text is in 14pt size. This text is in 12pt size. This text is in 10pt size. This text is in 9pt size. This text is in 8pt size. This text is in 6pt size. This text is in 6pt size.

Italic boldface

This text is in 20pt size. This text is in 18pt size. This text is in 16pt size. This text is in 14pt size. This text is in 12pt size. This text is in 10pt size. This text is in 9pt size. This text is in 8pt size. This text is in 7pt size. This text is in 5pt size.

This text is in 20pt size. This text is in 18pt size. This text is in 16pt size. This text is in 14pt size. This text is in 12pt size. This is 10 pt slanted boldface. This text is in 9pt size. This text is in 8pt size. This text is in 7pt size. This text is in 5pt size.

THIS TEXT IS IN 20PT SIZE. THIS TEXT IS IN 18PT SIZE. THIS TEXT IS IN 16PT SIZE. THIS TEXT IS IN 14PT SIZE. THIS TEXT IS IN 12PT SIZE. Slanted boldface

Caps

THIS TEXT IS IN 10PT SIZE. THIS TEXT IS IN 9PT SIZE. THIS TEXT IS IN 8PT SIZE. THIS TEXT IS IN 7PT SIZE. THIS TEXT IS IN 6PT SIZE. THIS TEXT IS IN 5PT SIZE.

Caps in boldface

This text is in 16pt size. This text is in 14pt size. This text is in 14pt size. This text is in 12pt size. This text is in 10pt size. This text is in 9pt size. This text is in 8pt size. This text is in 8pt size. This text is in 6pt size.

Inter-Line and Inter-Word Spacing

If we change the text font in T_EX , the inter-line and inter-word spacing is not changed accordingly. This is not such a problem if we declare the new font at the same size as the preceding one. But if the new font is declared at a considerably larger or smaller size, the typesetting might not be aesthetically elegant.

Example

A sample T_EX source file as shown below:

```
\parindent=0pt
\input font_epigrafica_euler % the font size is 10pt
Inter-line and inter-word spacing are very important parameters of
typesetting. A text typeset in a beautiful typeface but 'bad'
inter-line and inter-word spacing does not look beautiful. Check
the spacing between lines of the paragraph, and words of a line.
\medskip
\sixrm % changes the font size to 6pt
Inter-line and inter-word spacing are very important parameters of
typesetting. A text typeset in a beautiful typeface but 'bad'
inter-line and inter-word spacing does not look beautiful. Check
the spacing between lines of the paragraph, and words of a line.
\medskip
\eighteenrm % changes the font size to 18pt
Inter-line and inter-word spacing are very important parameters of
typesetting. A text typeset in a beautiful typeface but 'bad'
inter-line and inter-word spacing does not look beautiful. Check
the spacing between lines of the paragraph, and words of a line.
```

after compilation should produce something like this:

Inter-line and inter-word spacing are very important parameters of typesetting. A text typeset in a beautiful typeface but 'bad' inter-line and inter-word spacing does not look beautiful. Check the spacing between lines of the paragraph, and words of a line.

Inter-line and inter-word spacing are very important parameters of typesetting. A text typeset in a beautiful typeface but 'bad' inter-line and inter-word spacing does not look beautiful. Check the spacing between lines of the paragraph, and words of a line.

Inter-line and inter-word spacing are very important parameters of typesetting. A text typeset in a beautiful typeface but 'bad' inter-line and inter-word spacing does not look beautiful. Check the spacing between lines of the paragraph, and words of a line. In the output we can notice that the inter-line and inter-word spacing is quite fine when the font size is 10pt. The inter-line space is too much in the 6pt text (the lines are far apart) and the inter-word space is less in the 18pt text (the words are too close). This is because T_EX is still working according to the default space values, which are declared for 10pt font size. To tackle this, T_EX offers two very useful primitive control statements ([1], pp. 76, 78). These are:

\spaceskip to control the inter-word space, \baselineskip to control the inter-line space.

An Easy Solution

Here I am stating a technique I use to counter spacing problems when using different fonts and at different sizes. Let us make a new definition called \fontss.

The units, *ex* and *em* are relative ([1], pp. 60). This makes our definition more general.

em is the width of a "quad" in the current font,

ex is the "x-height" of the current font.

Declaring \fontss would set our inter-line space to 2.8ex (= 12.05553pt in case of font cmr10 at 10pt) with no *stretchability* (given after *plus*) or *shrinkability* (given after *minus*). Also \fontss would set our inter-word space to 0.333333em, with 0.144444em of stretchability and 0.0999999em of shrinkability allowed. In case of font cmr10, these values (default) are 3.33333pt, 1.66666pt, and 1.11111pt, respectively.

Let us try to use fontss in the example given at the beginning of this chapter. A sample T_EX source file as shown below:

\parindent=0pt
\input font_epigrafica_euler % the font size is 10pt
\fontss % \baselineskip and \spaceskip are set accordingly
Inter-line and inter-word spacing are very important parameters of
typesetting. A text typeset in a beautiful typeface but 'bad'
inter-line and inter-word spacing does not look beautiful. Check
the spacing between lines of the paragraph, and words of a line.
\medskip
\sixrm % changes the font size to 6pt
\fontss % \baselineskip and \spaceskip are set accordingly
Inter-line and inter-word spacing are very important parameters of
typesetting. A text typeset in a beautiful typeface but 'bad'
inter-line and inter-word spacing does not look beautiful. Check
the spacing between lines of the paragraph, and words of a line.
\medskip
\eighteenrm % changes the font size to 18pt
\fontss % \baselineskip and \spaceskip are set accordingly
Inter-line and inter-word spacing are very important parameters of
typesetting. A text typeset in a beautiful typeface but 'bad'
inter-line and inter-word spacing does not look beautiful. Check
the spacing between lines of the paragraph, and words of a line.

after compilation should produce something like this:

Inter-line and inter-word spacing are very important parameters of typesetting. A text typeset in a beautiful typeface but 'bad' inter-line and inter-word spacing does not look beautiful. Check the spacing between lines of the paragraph, and words of a line.

Inter-line and inter-word spacing are very important parameters of typesetting. A text typeset in a beautiful typeface but 'bad' inter-line and inter-word spacing does not look beautiful. Check the spacing between lines of the paragraph, and words of a line.

Inter-line and inter-word spacing are very important parameters of typesetting. A text typeset in a beautiful typeface but 'bad' inter-line and interword spacing does not look beautiful. Check the spacing between lines of the paragraph, and words of a line.

By using the control primitives \spaceskip and \baselineskip we get the desired spacing and these can be declared almost anywhere. For more details on spacing, please refer to [1].

Acknowledgements

I wholeheartedly thank Donald E. Knuth for giving us T_EX —the best typesetting program till date, which has succeeded the test of time. Also, I am grateful to dear T_EX users who have contributed to make T_EX better by giving more freedom to its free feature. The designers of fonts and packages that I have used are a few of those dear T_EX users. I am grateful to Petr Habala for introducing me to T_EX . I thank Daphne Parramon for her comments on my work. I am beholden to my family for their indispensable love and support. There are so many factors that I am not able to take into account that in the end but above all, I say, "Thank you \Im ."

References²

- [1] D. E. Knuth, The TEXbook. Reading, Mass.: Addison-Wesley Pub. Co., 1986.
- [2] P. Habala, *How to Use* $A_{M}S$ - $T_{E}X$, [Online]. Available: http://math.feld.cvut.cz/habala/manuals/manams.pdf [Accessed: August 16, 2009].
- [3] S. G. Hartke, "A survey of free math fonts for T_EX and M_EX," 2006. [Online]. Available: http: //ftp.cvut.cz/tex-archive/info/Free_Math_Font_Survey/en/survey.pdf [Accessed: August 16, 2009].

² The reader has been referred to most of the references (they have not been listed on this page) via hyperlinks provided in this PDF document.