
PDFTEX
users manual

Hàn Thê Thành Sebastian Rahtz Hans Hagen Hartmut Henkel

mailto:hanthethanh@myrealbox.com
mailto:sebastian.rahtz@computing-services.oxford.ac.uk
mailto:pragma@wxs.nl
mailto:hartmut_henkel@gmx.de

content The pdfTEX user manual exit

Contents
1 Introduction
2 About PDF
3 Getting started
4 Macro packages supporting PDFTEX
5 Setting up fonts
6 Formal syntax specification
7 PDFTEX primitives
8 Graphics and color

9 Character translation

Abbreviations
Examples of HZ and protruding
Additional PDF keys
Colophon
GNU Free Documentation License

1 Introduction
The main purpose of the pdfTEX project is to create and maintain an extension of TEX that can produce pdf directly
from TEX source files and improve/enhance the result of TEX typesetting with the help of pdf. When pdf output is not
selected, pdfTEX produces normal dvi output, otherwise it generates pdf output that looks identical to the dvi output.
An important aspect of this project is to investigate alternative justification algorithms (e. g. a font expansion algorithm
akin to the hz micro--typography algorithm by Prof. Hermann Zapf), optionally making use of Multiple Master fonts.

pdfTEX is based on the original TEX sources and Web2c, and has been successfully compiled on Unix, Win32 and MSDos
systems. It is under active development, with new features trickling in. Great care is taken to keep new pdfTEX versions
backward compatible with earlier ones.

For some years there has been a ‘moderate’ successor to TEX available, called ε-TEX. Because mainstream macro packages
such as LATEX have started supporting this welcome extension, the ε-TEX functionality has also been integrated into the
pdfTEX code. For a while (TEX Live 2004 and 2005) pdfTEX therefore came in two flavours: the ε-TEX enabled pdfeTEX
engine and the standard one, pdfTEX. The ability to produce both pdf and dvi output made pdfeTEX the primary TEX
engine in these distributions. Since pdfTEX version 1.40 now the ε-TEX extensions are part already of the pdfTEX engine,
so there is no need anymore to ship pdfeTEX. The ε-TEX functionality of pdfTEX can be disabled if not required. Other
extensions are MLTEX and encTEX; these are also included in the current pdfTEX code.

�
�

�
�

�
�

content The pdfTEX user manual exit

pdfTEX is maintained by Hàn Thế Thành, Martin Schröder, Hans Hagen, Taco Hoekwater, Hartmut Henkel, and others.
The pdfTEX homepage is http://www.pdftex.org. Please send pdfTEX comments and bug reports to the mailing list
pdftex@tug.org.

We thank all readers who send us corrections and suggestions. We also wish to express the hope that pdfTEX will be of
as much use to you as it is to us. Since pdfTEX is still being improved and extended, we suggest you to keep track of
updates.

1.1 About this manual
This manual revision (1.675) tries to keep track with the recent pdfTEX development up to version 1.40.0. Main text
updates were done regarding the new configuration scheme, font mapping, and new or updated primitives. The
primary repository for the manual and its sources is at http://sarovar.org/projects/pdftex/. Copies in pdf
format can also be found at the CTAN network in directory ctan:systems/pdftex.

Thanks to Karl Berry for proof reading and submitting a long changes list. New errors might have slipped in afterwards
by the editor. Please send questions or suggestions by email to pdftex@tug.org.

1.2 Legal Notice

Copyright C© 1996--2007 Hàn Thế Thành. Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

2 About PDF
The cover of this manual lists an almost minimal pdf file generated by pdfTEX, with the corresponding source file on
the next page. Unless compression is enabled, such a pdf file is rather verbose and readable. The first line specifies the

�
�

�
�

�
�

http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
mailto:pdftex@tug.org
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
ctan:systems/pdftex
ctan:systems/pdftex
ctan:systems/pdftex
mailto:pdftex@tug.org

content The pdfTEX user manual exit

version used; currently pdfTEX produces level 1.4 output by default. pdf viewers are supposed to silently skip over all
elements they cannot handle.

A pdf file consists of objects. These objects can be recognized by their number and keywords:

9 0 obj << /Type /Catalog /Pages 5 0 R >> endobj

Here 9 0 obj ... endobj is the object capsule. The first number is the object number. The sequence 5 0 R is an
object reference, a pointer to another object (no. 5). The second number (here a zero) is currently not used in pdfTEX; it is
the version number of the object. It is for instance used by pdf editors, when they replace objects by new ones.

When a viewer opens a pdf file, it goes right to the end of the file, looking for the keyword startxref. The number after
startxref gives the absolute position (byte offset from the file start) of the so called ‘object cross-reference table’ that
begins with the keyword xref. This table in turn tells the byte offsets of all objects that make up the pdf file, providing
fast random access to the individual objects (here the xref table shows 11 objects, numbered from 0 to 10; the object
no. 0 is always unused). The actual starting point of the file’s object structure is defined after the trailer: The /Root
entry points to the /Catalog object (no. 9). In this object the viewer can find the pointer /Pages to the page list object
(no. 5). In our example we have only one page. The trailer also holds an /Info entry, which points to an object (no. 10)
with a bit more about the document. Just follow the thread:

/Root −→ object 9 −→ /Pages −→ object 5 −→ /Kids −→ object 2 −→ /Contents −→ object 3

As soon as we add annotations, a fancy word for hyperlinks and the like, some more entries will be present in the
catalog. We invite users to take a look at the pdf code of this file to get an impression of that.

The page content is a stream of drawing operations. Such a stream can be compressed, where the level of compression
can be set with \pdfcompresslevel (compression is switched off for the title page). Let’s take a closer look at this
stream in object 3. Often (but not in our example) there is a transformation matrix, six numbers followed by cm. As in
PostScript, the operator comes after the operands. Between BT and ET comes the text. A font is selected by a Tf operator,
which is given a font resource name /F.. and the font size. The actual text goes into () bracket pairs so that it creates
a PostScript string. The numbers inbetween bracket pairs provide horizontal movements like spaces and fine glyph
positioning (kerning). When one analyzes a file produced by a less sophisticated typesetting engine, whole sequences of
words can be recognized. In pdf files generated by pdfTEX however, many words come out rather fragmented, mainly

�
�

�
�

�
�

content The pdfTEX user manual exit

because a lot of kerning takes place; in our example the 80 moves the text (elcome) left towards the letter (W) by
80/1000 of the font size. pdf viewers in search mode simply ignore the kerning information in these text streams. When
a document is searched, the search engine reconstructs the text from these (string) snippets.

Every /Page object points also to a /Resources object (no. 1) that gives all ingredients needed to assemble the page. In
our example only a /Font object (no. 4) is referenced, which in turn tells that the text is typeset in /Font /Times-Roman.
The /Font object points also to a /Widths array (object no. 7) that tells for each character by how much the viewer must
move forward horizontally after typesetting a glyph. More details about the font can be found in the /FontDescriptor
object (no. 8); if a font file is embedded, this object points to the font program stream. But as the Times-Roman font used
for our example is one of the 14 so--called standard fonts that should always be present in any pdf viewer and therefore
need not be embedded in the pdf file, it is left out here for brevity. However, when we use for instance a Computer
Modern Roman font, we have to make sure that this font is later available to the pdf viewer, and the best way to do this
is to embed the font.

It’s highly recommended nowadays to embed even the standard fonts, as modern viewers often don’t use the original
14 standard fonts anymore, but instead approximate them by instances of built--in Multiple Master fonts (e. g. the Adobe
Reader 7 approximates the Times-Roman variants by the Minion font). So you never really know how it looks exactly at
the viewer side unless you embed every font.

In this simple file we don’t specify in what way the file should be opened, for instance full screen or clipped. A closer look
at the page object no. 2 (/Type /Page) shows that a mediabox (/MediaBox) is part of the page description. A mediabox
acts like the (high-resolution) bounding box in a PostScript file. pdfTEX users can add dictionary stuff to page objects by
the \pdfpageattr primitive.

Although in most cases macro packages will shield users from these internals, pdfTEX provides access to many of the
entries described here, either automatically by translating the TEX data structures into pdf ones, or manually by pushing
entries to the catalog, page, info or self created objects. One can for instance create an object by using \pdfobj after
which \pdflastobj returns the number. So

\pdfobj{/Type /Catalog /Pages 5 0 R}

inserts an object into the pdf file, while \pdflastobj returns the number pdfTEX assigned to this object. Unless objects
are referenced by others, they will just end up as isolated entities, not doing any real harm but bloating the pdf file. In

�
�

�
�

�
�

content The pdfTEX user manual exit

general this rather direct way of pushing objects in the pdf files by primitives like \pdfobj is not very useful, and only
makes sense when implementing, say, fill--in field support or annotation content reuse. We will come to that later.

For those who want to learn more about the gory pdf details, the best bet is to read the PDF Reference. As of the time of
writing you can download this book as a big pdf file from Adobe’s PDF Technology Center, http://www.adobe.com
/devnet/pdf/pdf_reference.html — or get the heavy paper version.

Those who, after this introduction, feel unsure how to proceed, are advised to read on but skip section 7. Before we
come to that section, we will describe how to get started with pdfTEX.

3 Getting started
This section describes the steps needed to get pdfTEX running on a system where pdfTEX is not yet installed. Nowadays
virtually all TEX distributions have pdfTEX as a component, such as TEX Live, teTEX, XEmTEX, MikTeX, proTEXt, and
CMacTEX. The ready to run TEX Live distribution comes with pdfTEX versions for many Unix, Win32, and Mac OS X
systems; more information can be found at http://www.tug.org/tex-live/. teTEX by Thomas Esser is a source
distribution with an automated compilation process for Unix systems; see http://www.tug.org/teTeX/. For Win32
systems there are also three separate distributions that contain pdfTEX, all in ctan:systems/win32: XEmTEX by Fabrice
Popineau, MikTeX by Christian Schenk, and proTEXt (based on MikTeX) by Thomas Feuerstack. So when you use any
of these distributions, you don’t need to bother with the pdfTEX installation procedure in the next sections.

If there is no precompiled pdfTEX binary for your system, or the version coming with a distribution is not the current
one and you would like to try out a fresh pdfTEX immediately, you will need to build pdfTEX from sources; read on.
You should already have a working TEX system, e. g. TEX Live or teTEX, into which the freshly compiled pdfTEX will be
integrated. Note that the installation description in this manual is Web2c--specific.

3.1 Getting sources and binaries
The latest sources of pdfTEX are currently distributed for compilation on Unix systems (including Linux), and Win32
systems (Windows 95, 98, NT, 2000, XP). The primary location where one can fetch the latest released code is at the

�
�

�
�

�
�

http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
ctan:systems/win32
ctan:systems/win32
ctan:systems/win32

content The pdfTEX user manual exit

developers’ homepage http://sarovar.org/projects/pdftex/, where you also find bug tracking information, and
the manual sources. Download the pdfTEX archive from there.

The pdfTEX sources can also be found at their canonical place in the CTAN network, ctan:systems/pdftex. Separate
pdfTEX binaries for various systems might also be available, check out the subdirectories below ctan:systems.

3.2 Compiling
The compilation is expected to be easy on Unix--like systems and can be described best by example. Assuming that the
file pdftex.zip is downloaded to some working directory, e. g. $HOME/pdftex, on a Unix system the following steps
are needed to compile pdfTEX:

cd $HOME/pdftex
unzip pdftex-1.40.0.zip
cd pdftex-1.40.0
./build.sh

The binary pdftex is then built in the subdirectory build/texk/web2c. In the same directory also the corresponding
pool file pdftex.pool is generated; it’s needed for creating the format files.

The obsolescent binary pdfetex is still generated for backward compatibility, but since version 1.40 it is just a file copy
of the file pdftex.

Together with the pdftex binary also the pdftosrc and ttf2afm binaries are generated.

3.3 Placing files
The next step is to put the freshly compiled pdftex, pdftosrc, and ttf2afm binaries and the pool file pdftex.pool
into their proper places within the tds structure of the TEX system. Put the binary files into the binary directory (e. g.
for a typical TEX Live system) /usr/local/texlive/2006/bin/x86_64-linux, and the pool file into /usr/local
/texlive/2006/texmf/web2c.

�
�

�
�

�
�

http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
ctan:systems/pdftex
ctan:systems/pdftex
ctan:systems/pdftex
ctan:systems
ctan:systems

content The pdfTEX user manual exit

Don’t forget to do a texconfig-sys init afterwards, so that all formats are regenerated system-wide with the fresh
pdftex binary.

3.4 Setting search paths
Web2c--based programs, including pdfTEX, use the Web2c run--time configuration file called texmf.cnf. The location of
this file is the appropriate position within the tds tree relative to the place of the pdfTEX binary; on a TEX Live system, file
texmf.cnf typically is located either in directory texmf/web2c or texmf-local/web2c. The path to file texmf.cnf
can also be set up by the environment variable TEXMFCNF.

Next you might need to edit texmf.cnf so that pdfTEX can find all necessary files, but the texmf.cnf files coming
with the major TEX distributions should already be set up for normal use. You might check into the file texmf.cnf to
see where the various bits and pieces are going.

pdfTEX uses the search path variables shown in table 1.

used for texmf.cnf

output files TEXMFOUTPUT
input files, images TEXINPUTS
format files TEXFORMATS
text pool files TEXPOOL
encoding files ENCFONTS
font map files TEXFONTMAPS
tfm files TFMFONTS
virtual fonts VFFONTS
type1 fonts T1FONTS
TrueType fonts TTFONTS
OpenType fonts OPENTYPEFONTS
pixel fonts PKFONTS

Table 1 The Web2c variables.

�
�

�
�

�
�

content The pdfTEX user manual exit

TEXMFOUTPUT Normally, pdfTEX puts its output files in the current directory. If any output file cannot be opened
there, it tries to open it in the directory specified in the environment variable TEXMFOUTPUT. There is
no default value for that variable. For example, if you type pdftex paper and the current directory
is not writable, if TEXMFOUTPUT has the value /tmp, pdfTEX attempts to create /tmp/paper.log
(and /tmp/paper.pdf, if any output is produced.)

TEXINPUTS This variable specifies where pdfTEX finds its input files. Image files are considered input files and
searched for along this path.

TEXFORMATS Search path for format (.fmt) files.

TEXPOOL Search path for pool (.pool) files.

ENCFONTS Search path for encoding (.enc) files.

TEXFONTMAPS Search path for font map (.map) files.

TFMFONTS Search path for font metric (.tfm) files.

VFFONTS Search path for virtual font (.vf) files. Virtual fonts are fonts made up of other fonts. Because
pdfTEX produces the final output code, it must consult those files.

T1FONTS Search path for Type 1 font files (.pfa and .pfb). These outline (vector) fonts are to be preferred
over bitmap pk fonts. In most cases Type 1 fonts are used and this variable tells pdfTEX where to
find them.

TTFFONTS, OPEN-
TYPEFONTS

Search paths for TrueType (.ttf) and OpenType (.otf) font files. Like Type 1 fonts, TrueType and
OpenType fonts are also outlines.

PKFONTS Search path for packed (bitmap) font (.pk) files. Unfortunately bitmap fonts are still displayed
poorly by some pdf viewers, so when possible one should use outline fonts. When no outline is
available, pdfTEX tries to locate a suitable pk font (or invoke a process that generates it).

�
�

�
�

�
�

content The pdfTEX user manual exit

3.5 The PDFTEX configuration
One has to keep in mind that, as opposed to TEX with its dvi output, the pdfTEX program does not require a separate
postprocessing stage to transform the TEX input into a pdf file. As a consequence, all data needed for building a ready
pdf page must be available during the pdfTEX run, in particular information on media dimensions and offsets, graphics
files for embedding, and font information (font files, encodings).

When TEX builds a page, it places items relative to the top left page corner (the dvi reference point). Separate dvi
postprocessors allow specifying the paper size (e. g. ‘A4’ or ‘letter’), so that this reference point is moved to the correct
position on the paper, and the text ends up at the right place.

In pdf, the paper dimensions are part of the page definition, and pdfTEX therefore requires that they be defined at the
beginning of the pdfTEX run. As with pages described by PostScript, the pdf reference point is in the lower--left corner.

Formerly, these dimensions and other pdfTEX parameters were read in from a configuration file named pdftex.cfg,
which had a special (non-TEX) format, at the start of processing. Nowadays such a file is ignored by pdfTEX. Instead,
the page dimensions and offsets, as well as many other parameters, can be set by pdfTEX primitives during the pdfTEX
format building process, so that the settings are dumped into the fresh format and consequently will be used when
pdfTEX is later called with that format. All settings from the format can still be overridden during a pdfTEX run by using
the same primitives. This new configuration concept is a more unified approach, as it avoids the configuration file with
a special format.

A list of pdfTEX primitives relevant for setting up the pdfTEX engine is given in table 2. All primitives are described in
detail within later sections. Figure 1 shows a recent configuration file (pdftexconfig.tex) in TEX format, using the
primitives from table 2, which typically is read in during the format building process. It enables pdf output, sets paper
dimensions and the default pixel density for pk font inclusion. The default values are chosen so that pdfTEX often can
be used (e. g. in -ini mode) even without setting any parameters.

Independent of whether such a configuration file is read or not, the first action in a pdfTEX run is that the program
reads the global Web2c configuration file (texmf.cnf), which is common to all programs in the web2C system. This file
mainly defines file search paths, the memory layout (e. g. pool and hash size), and other general parameters.

�
�

�
�

�
�

content The pdfTEX user manual exit

internal name type default comment

\pdfoutput integer 0 dvi
\pdfadjustspacing integer 0 off
\pdfcompresslevel integer 9 best
\pdfobjcompresslevel integer 0 no object streams
\pdfdecimaldigits integer 4 max.
\pdfimageresolution integer 72 dpi
\pdfpkresolution integer 0 72 dpi
\pdfpkmode token reg. empty mode set in mktex.cnf
\pdfuniqueresname integer 0
\pdfprotrudechars integer 0
\pdfminorversion integer 4 pdf 1.4
\pdfforcepagebox integer 0
\pdfinclusionerrorlevel integer 0
\pdfhorigin dimension 1 in
\pdfvorigin dimension 1 in
\pdfpagewidth dimension 0 pt
\pdfpageheight dimension 0 pt
\pdflinkmargin dimension 0 pt
\pdfdestmargin dimension 0 pt
\pdfthreadmargin dimension 0 pt
\pdfmapfile text pdftex.map not dumped

Table 2 The set of pdfTEX configuration parameters.

3.6 Creating format files
The pdfTEX engine allow building formats for dvi and pdf output in the same way as the classical TEX engine does
for dvi. Format generation is enabled by the -ini option. The default mode (dvi or pdf) can be chosen either on the
command line by setting the option -output-format to dvi or pdf, or by setting the \pdfoutput parameter. The

�
�

�
�

�
�

content The pdfTEX user manual exit

% Set pdfTeX parameters for pdf mode (replacing pdftex.cfg file).
% Thomas Esser, 2004. public domain.
\pdfoutput=1
\pdfpagewidth=210 true mm
\pdfpageheight=297 true mm
\pdfpkresolution=600
\endinput

Figure 1 A typical configuration file (pdftexconfig.tex).

% Thomas Esser, 1998, 2004. public domain.
\ifx\pdfoutput\undefined
\else

\ifx\pdfoutput\relax
\else

\input pdftexconfig
\pdfoutput=0

\fi
\fi
\input etex.src
\dump
\endinput

Figure 2 File etex.ini for ε-TEX format with dvi output.

format file then inherits this setting, so that a later call to pdfTEX with this format starts in the preselected mode (which
still can be overrun then). A format file can be read in only by the engine that has generated it; a format incompatible
with an engine leads to a fatal error.

It is customary to package the configuration and macro file input into a .ini file. E. g., the file etex.ini in figure 2 is
for generating an ε-TEX format with dvi output (it contains a few comparisons to be safe also for TEX engines). A similar
file pdflatex.ini can be used for generating a LATEX format with pdf output; refer to figure 3. One can see how the

�
�

�
�

�
�

content The pdfTEX user manual exit

\ifx\pdfoutput\undefined
\else

\ifx\pdfoutput\relax
\else

\input pdftexconfig
\pdfoutput=1

\fi
\fi
\scrollmode
\input latex.ltx
\endinput

Figure 3 File pdflatex.ini for LATEX format with pdf output.

primitive \pdfoutput is used to override the output mode set by file pdftexconfig.tex. The corresponding pdfTEX
calls for format generation are:

pdftex -ini *etex.ini
pdftex -ini pdflatex.ini

These calls produce format files etex.fmt and pdflatex.fmt, as the default format file name is taken from the input
file name. You can overrule this with the -jobname option. The asterisk * in the first example line below tells the pdfTEX
engine to go into extended -ini mode (ε-TEX enabled); otherwise it stays in non--extended -ini mode. The extended
-ini mode can also be forced by the -etex command line option, as shown in the 2nd line below.

pdftex -ini -jobname=pdfelatex *pdflatex.ini
pdftex -ini -jobname=pdfelatex -etex pdflatex.ini

In ConTEXt the generation depends on the interface used. A format using the English user interface is generated with

pdftex -ini cont-en

When properly set up, one can also use the ConTEXt command line interface TEXexec to generate one or more formats,
like:

�
�

�
�

�
�

content The pdfTEX user manual exit

texexec --make en

for an English format, or

texexec --make en de

for an English and German one. Most users will simply say:

texexec --make --all [--alone]

and so generate the TEX and METAPOST related formats that ConTEXt needs. Whatever macro package used, the formats
should be placed in the TEXFORMATS path.

3.7 Testing the installation
When everything is set up, you can test the installation. In the distribution there is a plain TEX test file samplepdf.tex
in the manual/samplepdf/ directory. Process this file by typing:

pdftex samplepdf

If the installation is ok, this run should produce a file called samplepdf.pdf. The file samplepdf.tex is also a good
place to look for how to use pdfTEX’s primitives.

3.8 Common problems
The most common problem with installations is that pdfTEX complains that something cannot be found. In such cases
make sure that TEXMFCNF is set correctly, so pdfTEX can find texmf.cnf. The next best place to look/edit is the file
texmf.cnf. When still in deep trouble, set KPATHSEA_DEBUG=255 before running pdfTEX or run pdfTEX with option -k
255. This will cause pdfTEX to write a lot of debugging information that can be useful to trace problems. More options
can be found in the Web2c documentation.

Variables in texmf.cnf can be overwritten by environment variables. Here are some of the most common problems
you can encounter when getting started:

�
�

�
�

�
�

content The pdfTEX user manual exit

• I can’t read pdftex.pool; bad path?

TEXMFCNF is not set correctly and so pdfTEX cannot find texmf.cnf, or TEXPOOL in texmf.cnf doesn’t contain
a path to the pool file pdftex.pool.

• You have to increase POOLSIZE.

pdfTEX cannot find texmf.cnf, or the value of pool_size specified in texmf.cnf is not large enough and must be
increased. If pool_size is not specified in texmf.cnf then you can add something like

pool_size=500000

• I can’t find the format file ‘pdftex.fmt’!
I can’t find the format file ‘pdflatex.fmt’!

The format file is not created (see above how to do that) or is not properly placed. Make sure that TEXFORMATS in
texmf.cnf contains the path to pdftex.fmt or pdflatex.fmt.

• ---! xx.fmt was written by tex
Fatal format file error; I’m stymied

This appears e. g. if you forgot to regenerate the .fmt files after installing a new version of the pdfTEX binary and
pdftex.pool. The first line tells by which engine the offending format was generated.

• TEX.POOL doesn’t match; TANGLE me again!
TEX.POOL doesn’t match; TANGLE me again (or fix the path).

This might appear if you forgot to install the proper pdftex.pool when installing a new version of the pdfTEX
binary. E. g. under TEX Live then run texconfig-sys init as root.

• pdfTEX cannot find one or more map files (*.map), encoding vectors (*.enc), virtual fonts, Type 1 fonts, TrueType or
OpenType fonts, or some image file.

Make sure that the required file exists and the corresponding variable in texmf.cnf contains a path to the file. See
above which variables pdfTEX needs apart from the ones TEX uses.

�
�

�
�

�
�

content The pdfTEX user manual exit

When you have installed new fonts, and your pdf viewer complains about missing fonts, you should take a look at
the log file produced by pdfTEX. Missing fonts, map files, encoding vectors as well as missing characters (glyphs) are
reported there.

Normally the page content takes one object. This means that one seldomly finds more than a few hundred objects in
a simple file. This pdfTEX manual for instance uses approx. 750 objects. In more complex applications this number can
grow quite rapidly, especially when one uses a lot of widget annotations, shared annotations or other shared things. In
any case pdfTEX’s internal object table size will automatically grow to the required size (the parameter obj_tab_size
for manual control of the object table size is now obsolete and ignored).

4 Macro packages supporting PDFTEX
As pdfTEX generates the final pdf output without help of a postprocessor, macro packages that take care of these pdf
features have to be set up properly. Typical tasks are handling color, graphics, hyperlink support, threading, font--
inclusion, as well as page imposition and manipulation. All these pdf--specific tasks can be commanded by pdfTEX’s
own primitives (a few also by a pdfTEX--specific \special{pdf: ...} primitive). Any other \special{} commands,
like the ones defined for various dvi postprocessors, are simply ignored by pdfTEX when in pdf output mode; a warning
is given only for non--empty \special{} commands.

When a macro package already written for classical TEX with dvi output is to be modified for use with pdfTEX, it is
very helpful to get some insight to what extent pdfTEX--specific support is needed. This info can be gathered e. g. by
outputting the various \special commands as \message. Simply type

\pdfoutput=1 \let\special\message

or, if this leads to confusion,

\pdfoutput=1 \def\special#1{\write16{special: #1}}

and see what happens. As soon as one ‘special’ message turns up, one knows for sure that some kind of pdfTEX specific
support is needed, and often the message itself gives a indication of what is needed.

�
�

�
�

�
�

content The pdfTEX user manual exit

Currently all mainstream macro packages offer pdfTEX support, with automatic detection of pdfTEX as engine. So there
is normally no need to turn on pdfTEX support explicitly.

• For LATEX users, Sebastian Rahtz’ and Heiko Oberdiek’s hyperref package has substantial support for pdfTEX
and provides access to most of its features. In the simplest and most common case, the user merely needs to load
hyperref, and all cross--references will be converted to pdf hypertext links. pdf output is automatically selected,
compression is turned on, and the page size is set up correctly. Bookmarks are created to match the table of contents.

• The standard LATEX graphics, graphicx, and color packages also have automatic pdfTEX support, which allow
use of color, text rotation, and graphics inclusion commands.

• The ConTEXt macro package by Hans Hagen has very full support for pdfTEX in its generalized hypertext features.
Support for pdfTEX is implemented as a special driver, and is invoked by typing \setupoutput[pdftex] or feeding
TEXexec with the --pdf option.

• pdf from Texinfo documents can be created by running pdfTEX on the Texinfo file, instead of TEX. Alternatively, run
the shell command texi2pdf instead of texi2dvi.

• A small modification of webmac.tex, called pdfwebmac.tex, allows production of hyperlinked pdf versions of the
program code written in web.

Some nice samples of pdfTEX output can be found at http://www.pdftex.org, http://www.pragma-ade.com, and
http://www.tug.org/texshowcase.

5 Setting up fonts
pdfTEX can work with Type 1 and TrueType fonts (and to some extent also with OpenType fonts). Font files should be
available and embedded for all fonts used in the document. It is possible to use METAFONT--generated fonts in pdfTEX
— but it is strongly recommended not to use these fonts if an equivalent is available in Type 1 or TrueType format, if
only because bitmap Type 3 fonts render very poorly in (older versions of) Adobe Reader. Given the free availability of
Type 1 versions of all the Computer Modern fonts, and the ability to use standard PostScript fonts, there is rarely a need
to use bitmap fonts in pdfTEX.

�
�

�
�

�
�

http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.tug.org/texshowcase
http://www.tug.org/texshowcase
http://www.tug.org/texshowcase
http://www.tug.org/texshowcase
http://www.tug.org/texshowcase
http://www.tug.org/texshowcase

content The pdfTEX user manual exit

5.1 Map files
Font map files provide the connection between TEX tfm font files and the outline font file names. They contain also
information about re--encoding arrays, partial font embedding (“subsetting”), and character transformation parameters
(like SlantFont and ExtendFont). Those map files were first created for dvi postprocessors. But, as pdfTEX in pdf output
mode includes all pdf processing steps, it also needs to know about font mapping, and therefore reads in one or more
map files. Map files are not read in when pdfTEX is in dvi mode. Pixel fonts can be used without being listed in the map
file.

By default, pdfTEX reads the map file pdftex.map. In Web2c, map files are searched for using the TEXFONTMAPS config
file value and environment variable. By default, the current directory and various system directories are searched.

Within the map file, each font is listed on an individual line. The syntax of each line is upward--compatible with dvips
map files and can contain the following fields (some are optional; explanations follow):

tfmname basename fontflags special encodingfile fontfile

It is mandatory that tfmname is the first field. If a basename is given, it must be the second field. Similarly if fontflags is
given it must be the third field (if basename is present) or the second field (if basename is left out). It is possible to mix
the positions of special, encodingfile, and fontfile, however the first three fields must be given in fixed order.

tfmname sets the name of the tfm file for a font — the name TEX sees. This name must always be given.

basename sets the (PostScript) base font name, which has two uses:

First, when a pdf file is embedded by \pdfximage, the /BaseFont names in the font dictionaries of Type 1 and Type 1C
(CFF) fonts from the embedded pdf file are checked against this basename field. If names match, the glyphs of that font
will not be copied from the embedded pdf file, but instead a local font is opened, and all needed glyphs will be taken
from the Type 1 font file that is mentioned in the map line (see fontfile below). By this collecting mechanism Type 1
glyphs can be shared between several embedded pdf files and with text that is typeset by pdfTEX, which helps keeping
the resulting pdf file size small, if many files with similar Type 1(C) fonts are embedded. Replacing Type1 fonts from
embedded pdf files requires that also a Type1 font file name is in the fontfile field (see below).

�
�

�
�

�
�

content The pdfTEX user manual exit

Second, if a font file is not to be embedded into the pdf output (fontfile field missing), then the basename field will
be copied to the /BaseFont and /FontName dictionary entries in the pdf file, so that the PostScript font name will be
known to the consumer application (e. g. viewer).

It is highly recommended to always use the basename field (but strictly speaking it’s optional).

fontflags specify some characteristics of the font. The following description of these flags is taken, with slight
modification, from the PDF Reference (the section on font descriptor flags). Viewers can adapt their rendering to these
flags, especially when they substitute a non-embedded font by some own approximation.

The value of the flags key in a font descriptor is a 32--bit integer that contains a collection of boolean attributes.
These attributes are true if the corresponding bit is set to 1. Table 3 specifies the meanings of the bits, with bit 1
being the least significant. Reserved bits must be set to zero.

bit position semantics

1 Fixed--width font
2 Serif font
3 Symbolic font
4 Script font
5 Reserved
6 Uses the Adobe Standard Roman Character Set
7 Italic

8–16 Reserved
17 All--cap font
18 Small--cap font
19 Force bold at small text sizes

20–32 Reserved

Table 3 The meaning of flags in the font descriptor.

All characters in a fixed--width font have the same width, while characters in a proportional font have different
widths. Characters in a serif font have short strokes drawn at an angle on the top and bottom of character

�
�

�
�

�
�

content The pdfTEX user manual exit

stems, while sans serif fonts do not have such strokes. A symbolic font contains symbols rather than letters and
numbers. Characters in a script font resemble cursive handwriting. An all--cap font, which is typically used for
display purposes such as titles or headlines, contains no lowercase letters. It differs from a small--cap font in that
characters in the latter, while also capital letters, have been sized and their proportions adjusted so that they have
the same size and stroke weight as lowercase characters in the same typeface family.

Bit 6 in the flags field indicates that the font’s character set conforms to the Adobe Standard Roman Character Set,
or a subset of that, and that it uses the standard names for those characters.

Finally, bit 19 is used to determine whether or not bold characters are drawn with extra pixels even at very small
text sizes. Typically, when characters are drawn at small sizes on very low resolution devices such as display
screens, features of bold characters may appear only one pixel wide. Because this is the minimum feature width
on a pixel--based device, ordinary non--bold characters also appear with one--pixel wide features, and thus cannot
be distinguished from bold characters. If bit 19 is set, features of bold characters may be thickened at small text
sizes.

If the fontflags field is not given, pdfTEX treats it as being 4, a symbolic font. If you do not know the correct value, it is
best not to specify it at all, as specifying a bad value of font flags may cause troubles in viewers. On the other hand
this option is not absolutely useless because it provides backward compatibility with older map files (see the fontfile
description below).

special instructions can be used to manipulate fonts similar to the way dvips does. Currently only the keywords
SlantFont and ExtendFont are interpreted, other instructions (as ReEncodeFont with parameters, see encoding
below) are just ignored. The permitted SlantFont range is −1..1; for ExtendFont it’s −2..2. The block of special
instruction must be enclosed by double quotes ".

encodingfile specifies the name of the file containing the external encoding vector to be used for the font. The encoding
file must have name extension .enc, and the full file name including this extension must be given with preceding <
character. The format of the encoding vector is identical to that used by dvips. If no encoding is specified, the font’s
built--in default encoding is used. The encodingfile field may be omitted if you are sure that the font resource has the
correct built--in encoding. In general this option is highly recommended, and it is required when subsetting a TrueType
font.

�
�

�
�

�
�

content The pdfTEX user manual exit

fontfile sets the name of the font file to be embedded into the pdf output for a given TEX font (the tfmname ←→ fontfile
mapping is the most prominent use of the pdftex.map file). The font file name must belong to a Type 1 or TrueType font
file. If the fontfile field is missing, no font embedding can take place; in case the basename field does not contain one of
the 14 standard font names also a warning will be given. Not embedding a font into a pdf file might be troublesome, as
it requires that the font or some similar looking replacement font is available within the pdf viewer, so that it can render
the glyphs with its own font version.

The font file name should be preceded by one or two special characters, which tells how to handle the font file:

• If the font file name is preceded by a < character, the font file will be only partially embedded into the pdf file
(“subsetted”), meaning that only used glyphs are going into the pdf file. This is the most common use and is strongly
recommended for any font, as it ensures the portability and reduces the size of the pdf output. Subsetted fonts are
included in such a way that name and cache clashes are minimized.

• If the font file name is preceded by a double <<, the font file will be included entirely — all glyphs of the font are
embedded, including even the ones that are not used in the document. Apart from causing large size pdf output,
this option may cause troubles with TrueType fonts, so it is normally not recommended for Type1 or TrueType fonts.
But this is currently the only mode that allows the use of OpenType fonts. This mode might also be useful in case the
font is atypical and can not be subsetted well by pdfTEX. Beware: some font vendors forbid full font inclusion.

• The case that no special character precedes the font file name is deprecated since pdfTEX version 1.40.0. These font
files are now completely ignored, and a corresponding warning is given. You achieve exactly the same pdf result if
you just remove the font file name from the map entry. Then the glyph widths that go into the pdf file are extracted
from the tfm file, and a font descriptor object is created that contains approximations of the font metrics for the
selected font.

This option is useful only as fallback when you do not want to embed the font (e. g. due to font license restrictions),
but wish to use the font metrics and let the pdf viewer generate instances that look close to the used font in case the
font resource is not installed on the system where the pdf output will be viewed or printed. To use this feature, the
font flags must be specified, and it must have the bit 6 set on, which means that only fonts with the Adobe Standard
Roman Character Set can be simulated. The only exception is the case of a Symbolic font, which is not very useful.

�
�

�
�

�
�

content The pdfTEX user manual exit

When one suffers from invalid lookups, for instance when pdfTEX tries to open a .pfa file instead of a .pfb one, one
can add the suffix to the filename. In this respect, pdfTEX completely relies on the kpathsea libraries.

If a used font is not present in the map files, first pdfTEX will look for a source with suffix .pgc, which is a so--called pgc
source (pdf Glyph Container)1. If no pgc source is available, pdfTEX will try to use pk fonts as dvi drivers do, creating
pk fonts on--the--fly if needed.

Lines containing nothing apart from tfmname stand for scalable Type 3 fonts. For scalable fonts as Type 1, TrueType and
scalable Type 3 font, all the fonts loaded from a tfm at various sizes will be included only once in the pdf output. Thus if
a font, let’s say csr10, is described in one of the map files, then it will be treated as scalable. As a result the font source
for csr10 will be included only once for csr10, csr10 at 12pt etc. So pdfTEX tries to do its best to avoid multiple
embedding of identical font sources. Thus vector pgc fonts should be specified as scalable Type 3 in map files like:

csr10

It doesn’t hurt much if a scalable Type 3 font is not given in map files, except that the font source will be embedded into
the pdf file multiple times for various sizes, which causes a much larger pdf output. On the other hand if a font in the
map files is defined as scalable Type 3 font and its pgc source is not scalable or not available, pdfTEX will use pk fonts
instead; the pdf output is still valid but some fonts may look ugly because of the scaled bitmap.

To summarize this rather confusing story, we include some example lines. The most common way is to embed only
a glyph subset from a font like this, with re--encoding:

ptmri8r Times-Italic <8r.enc <ptmri8a.pfb

Without re--encoding it looks like this:

cmr10 CMR10 <cmr10.pfb

A SlantFont is specified similarly as for dvips. The SlantFont or ExtendFont entries work only with embedded
Type1 fonts:

1This is a text file containing a pdf Type 3 font, created by METAPOST using some utilities by Hans Hagen. In general pgc files can contain whatever
is allowed in a pdf page description, which may be used to support fonts that are not available in METAFONT. pgc fonts are not widely useful, as
vector Type 3 fonts are not displayed very well in older versions of Acrobat Reader, but may be more useful when better Type 3 font handling is
more common.

�
�

�
�

�
�

content The pdfTEX user manual exit

psyro StandardSymL ".167 SlantFont" <usyr.pfb
pcrr8rn Courier ".85 ExtendFont" <8r.enc <pcrr8a.pfb

Entirely embed a font into the pdf file without and with re--encoding:

fmvr8x MarVoSym <<marvosym.pfb
pgsr8r GillSans <8r.enc <<pgsr8a.pfb

A TrueType font can be used in the same way as a Type 1 font:

verdana8r Verdana <8r.enc <verdana.ttf

Now follow a few cases with non-embedded fonts. If the fontfile is missing, the viewer application will have to use its
own approximation of the missing font (with and without re--encoding):

ptmr8r Times-Roman <8r.enc
psyr Symbol

In the next example the numerical font flags give some rough hint what general characteristics the GillSans font has, so
e. g. the Adobe Reader might try an approximation, if it doesn’t have the font resource nor any clue how a font named
GillSans should look like:

pgsr8r GillSans 32 <8r.enc

Not embedding fonts is rather risky and should generally be avoided. If in doubt, always embed all fonts, even the 14
standard ones.

5.2 Helper tools for TrueType fonts
As mentioned above, pdfTEX can work with TrueType fonts. Defining TrueType fonts is similar to Type 1. The only extra
thing to do with TrueType is to create a tfm file. There is a program called ttf2afm in the pdfTEX distribution which
can be used to extract afm from TrueType fonts (another conversion program is ttf2pt1). Usage of ttf2afm is simple:

ttf2afm -e <encoding vector> -o <afm outputfile> <ttf input file>

�
�

�
�

�
�

content The pdfTEX user manual exit

A TrueType file can be recognized by its suffix ttf. The optional encoding specifies the encoding, which is the same
as the encoding vector used in map files for pdfTEX and dvips. If the encoding is not given, all the glyphs of the afm
output will be mapped to /.notdef. ttf2afm writes the output afm to standard output. If we need to know which
glyphs are available in the font, we can run ttf2afm without encoding to get all glyph names. The resulting afm file
can be used to generate a tfm one by applying afm2tfm.

To use a new TrueType font the minimal steps may look like below. We suppose that test.map is used.

ttf2afm -e 8r.enc -o times.afm times.ttf
afm2tfm times.afm -T 8r.enc
echo "times TimesNewRomanPSMT <8r.enc <times.ttf" >>test.map

There are a few limitations with TrueType fonts in comparison with Type 1 fonts:

a. The special effects SlantFont/ExtendFont cannot be used.
b. To subset a TrueType font, the font must be specified as re--encoded, therefore an encoding vector must be given.
c. TrueType fonts coming with embedded pdf files are kept untouched; they are not replaced by local ones.

6 Formal syntax specification
This section formally specifies the pdfTEX specific extensions to the TEX macro programming language. All primitives
are prefixed by pdf except for \efcode, \lpcode, \rpcode, \leftmarginkern, and \rightmarginkern. The general
definitions and syntax rules follow after the list of primitives.

Integer registers

\pdfoutput (integer)
\pdfminorversion (integer)
\pdfcompresslevel (integer)
\pdfobjcompresslevel (integer)
\pdfdecimaldigits (integer)

�
�

�
�

�
�

content The pdfTEX user manual exit

\pdfimageresolution (integer)
\pdfpkresolution (integer)
\pdftracingfonts (integer)
\pdfuniqueresname (integer)
\pdfadjustspacing (integer)
\pdfprotrudechars (integer)
\efcode 〈font〉 〈8-bit number〉 (integer)
\lpcode 〈font〉 〈8-bit number〉 (integer)
\rpcode 〈font〉 〈8-bit number〉 (integer)
\pdfforcepagebox (integer)
\pdfoptionalwaysusepdfpagebox (integer)
\pdfinclusionerrorlevel (integer)
\pdfoptionpdfinclusionerrorlevel (integer)
\pdfimagehicolor (integer)
\pdfimageapplygamma (integer)
\pdfgamma (integer)
\pdfimagegamma (integer)
\pdfdraftmode (integer)

Dimen registers

\pdfhorigin (dimen)
\pdfvorigin (dimen)
\pdfpagewidth (dimen)
\pdfpageheight (dimen)
\pdflinkmargin (dimen)
\pdfdestmargin (dimen)
\pdfthreadmargin (dimen)
\pdfpxdimen (dimen)

�
�

�
�

�
�

content The pdfTEX user manual exit

Token registers

\pdfpagesattr (tokens)
\pdfpageattr (tokens)
\pdfpageresources (tokens)
\pdfpkmode (tokens)

Expandable commands

\pdftexrevision (expandable)
\pdftexbanner (expandable)
\pdfcreationdate (expandable)
\pdfpageref 〈page number〉 (expandable)
\pdfxformname 〈object number〉 (expandable)
\pdffontname 〈font〉 (expandable)
\pdffontobjnum 〈font〉 (expandable)
\pdffontsize 〈font〉 (expandable)
\pdfincludechars 〈font〉 〈general text〉 (expandable)
\leftmarginkern 〈box number〉 (expandable)
\rightmarginkern 〈box number〉 (expandable)
\pdfescapestring 〈general text〉 (expandable)
\pdfescapename 〈general text〉 (expandable)
\pdfescapehex 〈general text〉 (expandable)
\pdfunescapehex 〈general text〉 (expandable)
\ifpdfprimitive 〈control sequence〉 (expandable)
\ifpdfabsnum 〈number〉 (expandable)
\ifpdfabsdim 〈dimen〉 (expandable)
\pdfuniformdeviate 〈number〉 (expandable)
\pdfnormaldeviate (expandable)

�
�

�
�

�
�

content The pdfTEX user manual exit

\pdfmdfivesum [file] 〈general text〉 (expandable)
\pdffilemoddate 〈general text〉 (expandable)
\pdffilesize 〈general text〉 (expandable)
\pdffiledump [offset 〈number〉] [length 〈number〉] 〈general text〉 (expandable)
\pdfcolorstackinit [page] [direct] 〈general text〉 (expandable)

Read--only integers

\pdftexversion (read--only integer)
\pdflastobj (read--only integer)
\pdflastxform (read--only integer)
\pdflastximage (read--only integer)
\pdflastximagepages (read--only integer)
\pdflastannot (read--only integer)
\pdflastlink (read--only integer)
\pdflastxpos (read--only integer)
\pdflastypos (read--only integer)
\pdflastdemerits (read--only integer)
\pdfelapsedtime (read--only integer)
\pdfrandomseed (read--only integer)
\pdfshellescape (read--only integer)

General commands

\pdfobj 〈object type spec〉 (h, v, m)
\pdfrefobj 〈object number〉 (h, v, m)
\pdfxform [〈xform attr spec〉] 〈box number〉 (h, v, m)
\pdfrefxform 〈object number〉 (h, v, m)
\pdfximage [〈image attr spec〉] 〈general text〉 (h, v, m)

�
�

�
�

�
�

content The pdfTEX user manual exit

\pdfrefximage 〈object number〉 (h, v, m)
\pdfannot 〈annot type spec〉 (h, v, m)
\pdfstartlink [〈rule spec〉] [〈attr spec〉] 〈action spec〉 (h, m)
\pdfendlink (h, m)
\pdfoutline 〈outline spec〉 (h, v, m)
\pdfdest 〈dest spec〉 (h, v, m)
\pdfthread 〈thread spec〉 (h, v, m)
\pdfstartthread 〈thread spec〉 (v, m)
\pdfendthread (v, m)
\pdfsavepos (h, v, m)
\pdfinfo 〈general text〉
\pdfcatalog 〈general text〉 [〈open-action spec〉]
\pdfnames 〈general text〉
\pdfmapfile 〈map spec〉
\pdfmapline 〈map spec〉
\pdffontattr 〈font〉 〈general text〉
\pdftrailer 〈general text〉
\pdffontexpand 〈font〉 〈expand spec〉
\vadjust [〈pre spec〉] 〈filler〉 { 〈vertical mode material〉 } (h, m)
\quitvmode
\pdfliteral [〈pdfliteral spec〉] 〈general text〉 (h, v, m)
\special 〈pdfspecial spec〉
\pdfresettimer
\pdfsetrandomseed 〈number〉
\pdfnoligatures 〈font〉
\pdfprimitive 〈control sequence〉
\pdfcolorstack 〈stack number〉 〈stack action〉 〈general text〉
\pdfsetmatrix
\pdfsave

�
�

�
�

�
�

content The pdfTEX user manual exit

\pdfrestore

General definitions and syntax rules

〈general text〉 → { 〈balanced text〉 }
〈attr spec〉 → attr 〈general text〉
〈resources spec〉 → resources 〈general text〉
〈rule spec〉 → (width | height | depth) 〈dimension〉 [〈rule spec〉]
〈object type spec〉 → reserveobjnum |

[useobjnum 〈number〉]
[stream [〈attr spec〉]] 〈object contents〉

〈annot type spec〉 → reserveobjnum |
[useobjnum 〈number〉] [〈rule spec〉] 〈general text〉

〈object contents〉 → 〈file spec〉 | 〈general text〉
〈xform attr spec〉 → [〈attr spec〉] [〈resources spec〉]
〈image attr spec〉 → [〈rule spec〉] [〈attr spec〉] [〈page spec〉] [〈colorspace spec〉] [〈pdf box spec〉]
〈outline spec〉 → [〈attr spec〉] 〈action spec〉 [count 〈number〉] 〈general text〉
〈action spec〉 → user 〈user-action spec〉 | goto 〈goto-action spec〉 |

thread 〈thread-action spec〉
〈user-action spec〉 → 〈general text〉
〈goto-action spec〉 → 〈numid〉 |

[〈file spec〉] 〈nameid〉 |
[〈file spec〉] [〈page spec〉] 〈general text〉 |
〈file spec〉 〈nameid〉 〈newwindow spec〉 |
〈file spec〉 [〈page spec〉] 〈general text〉 〈newwindow spec〉

〈thread-action spec〉 → [〈file spec〉] 〈numid〉 | [〈file spec〉] 〈nameid〉
〈open-action spec〉 → openaction 〈action spec〉
〈colorspace spec〉 → colorspace 〈number〉
〈pdf box spec〉 → mediabox | cropbox | bleedbox | trimbox | artbox

�
�

�
�

�
�

content The pdfTEX user manual exit

〈map spec〉 → { [〈map modifier〉] 〈balanced text〉 }
〈map modifier〉 → + | = | -
〈numid〉 → num 〈number〉
〈nameid〉 → name 〈general text〉
〈newwindow spec〉 → newwindow | nonewwindow
〈dest spec〉 → 〈numid〉 〈dest type〉 | 〈nameid〉 〈dest type〉
〈dest type〉 → xyz [zoom 〈number〉] | fitr 〈rule spec〉 |

fitbh | fitbv | fitb | fith | fitv | fit
〈thread spec〉 → [〈rule spec〉] [〈attr spec〉] 〈id spec〉
〈id spec〉 → 〈numid〉 | 〈nameid〉
〈file spec〉 → file 〈general text〉
〈page spec〉 → page 〈number〉
〈expand spec〉 → 〈stretch〉 〈shrink〉 〈step〉 [autoexpand]
〈stretch〉 → 〈number〉
〈shrink〉 → 〈number〉
〈step〉 → 〈number〉
〈pre spec〉 → pre
〈pdfliteral spec〉 → direct | page
〈pdfspecial spec〉 → { [〈pdfspecial id〉 [〈pdfspecial modifier〉]] 〈balanced text〉 }
〈pdfspecial id〉 → pdf: | PDF:
〈pdfspecial modifier〉 → direct:
〈stack action〉 → set | push | pop | current

A 〈general text〉 is expanded immediately, like \special in traditional TEX, unless explicitly mentioned otherwise.

Some of the object and image related primitives can be prefixed by \immediate. More about that in the next sections.

�
�

�
�

�
�

content The pdfTEX user manual exit

7 PDFTEX primitives
Here follows a short description of the primitives added by pdfTEX to the original TEX engine (other extensions by
MLTEX and encTEX are not listed). One way to learn more about how to use these new primitives is to have a look at the
file samplepdf.tex in the pdfTEX distribution.

Note that if the output is dvi then the pdfTEX specific dimension parameters are not used at all. However some pdfTEX
integer parameters can affect the dvi as well as pdf output (currently \pdfoutput and \pdfadjustspacing).

General warning: many of these new primitives, for example \pdfdest and \pdfoutline, write their arguments
directly to the pdf output file (when producing pdf), as pdf string constants. This means that you (or, more likely, the
macros you write) must escape characters as necessary (namely \, (, and). Otherwise, an invalid pdf file may result.
The hyperref and Texinfo packages have code which may serve as a starting point for implementing this, although it
will certainly need to be adapted to any particular situation.

7.1 Document setup

I \pdfoutput (integer)

This parameter specifies whether the output format should be dvi or pdf. A positive value means pdf output, otherwise
(default 0) one gets dvi output. This primitive is the only one that must be set to produce pdf output (unless the
commandline option -output-format=pdf is used); all other primitives are optional. This parameter cannot be
specified after shipping out the first page. In other words, if we want pdf output, we have to set \pdfoutput before
pdfTEX ships out the first page.

When pdfTEX starts complaining about specials, one can be rather sure that a macro package is not aware of the pdf
mode. A simple way of making macros aware of pdfTEX in pdf or dvi mode is:

\ifx\pdfoutput\undefined \csname newcount\endcsname\pdfoutput \fi
\ifcase\pdfoutput DVI CODE \else PDF CODE \fi

�
�

�
�

�
�

content The pdfTEX user manual exit

Using the ifpdf.sty file, which works with both LATEX and plain TEX, is a cleaner way of doing this. Historically, the
simple test \ifx\pdfoutput\undefined was defined; but nowadays, the pdfTEX engine is used in distributions also
for non-pdf formats (e. g. LATEX), so \pdfoutput may be defined even when the output format is dvi.

I \pdfminorversion (integer)

This primitive sets the pdf version of the generated file and the latest allowed pdf version of included pdfs. E. g.,
\pdfminorversion=3 tells pdfTEX to set the pdf version to 1.3 and allows only included pdf files with versions numbers
up to 1.3. The default for \pdfminorversion is 4, producing files with pdf version 1.4. If specified, this primitive must
appear before any data is to be written to the generated pdf file, so you should put it at the very start of your files. The
command has been introduced in pdfTEX 1.30.0 as a shortened synonym of \pdfoptionpdfminorversion command,
that is obsolete by now.

I \pdfcompresslevel (integer)

This integer parameter specifies the level of stream compression (text, in--line graphics, and embedded png images
(only if they are un- and re--compressed during the embedding process); all done by the zlib library). Zero means no
compression, 1 means fastest, 9 means best, 2..8 means something in between. A value outside this range will be adjusted
to the nearest meaningful value. This parameter is read each time pdfTEX starts a stream. Setting \pdfcompresslevel=0
is great for pdf stream debugging.

I \pdfobjcompresslevel (integer)

This integer parameter controls the compression of non-stream objects. In the pdf-1.4 specification these objects still had
to go into the pdf file as clear text, uncompressed. The pdf-1.5 specification now allows to collect non-stream objects as
“compressed objects” into “object stream” objects (/Type /ObjStm, see pdf Ref. 5th ed., sect. 3.4.6). At the pdf file end
instead of the object table then an /XRef cross-reference stream is written out. This results in considerably smaller pdf
files, particularly if lots of annotations and links are used. The primitive has been introduced in pdfTEX 1.40.0.

The writing of compressed objects is enabled by setting \pdfobjcompresslevel to a value between 1 and 3; it’s
disabled by value 0 (default). Enabling requires that also \pdfminorversion > 4. If \pdfobjcompresslevel > 0, but
\pdfminorversion < 5, a warning is given and object stream writing is disabled. The \pdfobjcompresslevel value
is clipped to the range 0..3. Using values outside this range is not recommended (for future extension).

�
�

�
�

�
�

content The pdfTEX user manual exit

The \pdfobjcompresslevel settings have the following effects: When set to 0, no object streams are generated at all.
When set to 1, all non-stream objects are compressed with the exception of any objects coming with embedded pdf files
(“paranoid” mode, to avoid yet unknown problems), and also the /Info dictionary is not compressed for clear-text
legibility. When set to 2, also all non-stream objects coming with embedded pdf files are compressed, but the /Info
dictionary is still not compressed. Finally, when set to 3, all non-stream objects are compressed, including the /Info
dictionary (this means that the /Info can’t be read as clear text any more). If object streams are to be used, currently
\pdfobjcompresslevel=2 is recommended,

Caveat: pdf files generated with object streams enabled can’t be read with (old) pdf viewers that don’t understand
pdf-1.5 files. For widest distribution and unknown audience, don’t activate object stream writing. The pdf-1.5 standard
describes also a hybrid object compression mode that gives some backward compatibility, but this is currently not
implemented, as pdf-1.5 seems to be rather quickly adopted by modern pdf viewers. Also not implemented is the
optional /Extends key.

I \pdfdecimaldigits (integer)

This integer parameter specifies the numeric accuracy of real coordinates as written to the pdf file. It gives the maximal
number of decimal digits after the decimal point. Valid values are in range 0..4. A higher value means more precise
output, but also results in a larger file size and more time to display or print. In most cases the optimal value is 2.
This parameter does not influence the precision of numbers used in raw pdf code, like that used in \pdfliteral and
annotation action specifications; also multiplication items (e. g. scaling factors) are not affected and are always output
with best precision. This parameter is read when pdfTEX writes a real number to the pdf output.

When including huge METAPOST images using supp-pdf.tex, one can limit the accuracy to two digits by typing:
\twodigitMPoutput.

I \pdfhorigin (dimension)

This parameter can be used to set the horizontal offset the output box from the top left corner of the page. A value of
1 inch corresponds to the normal TEX offset. This parameter is read when pdfTEX starts shipping out a page to the pdf
output.

For standard purposes, this parameter should always be kept at 1 true inch. If you want to shift text on the page, use
TEX’s own \hoffset primitive. To avoid surprises, after global magnification has been changed by the \mag primitive,

�
�

�
�

�
�

content The pdfTEX user manual exit

the \pdfhorigin parameter should still be 1 true inch, e. g. by typing \pdfhorigin=1 true in after issuing the \mag
command. Or, you can preadjust the \pdfhorigin value before typing \mag, so that its value after the \mag command
ends up at 1 true inch again.

I \pdfvorigin (dimension)

This parameter is the vertical companion of \pdfhorigin, and the notes above regarding \mag and true dimensions
apply. Also keep in mind that the TEX coordinate system starts in the top left corner (downward), while pdf coordinates
start at the bottom left corner (upward).

I \pdfpagewidth (dimension)

This dimension parameter specifies the page width of the pdf output (the screen, the paper, etc.). pdfTEX reads this
parameter when it starts shipping out a page. After magnification has been changed by the \mag primitive, check that
this parameter reflects the wished true page width.

If the value is set to zero, the page width is calculated as wbox being shipped out + 2 × (horigin + \hoffset). When part of the
page falls off the paper or screen, you can be rather sure that this parameter is set wrong.

I \pdfpageheight (dimension)

Similar to the previous item, this dimension parameter specifies the page height of the pdf output. If set to zero, the
page height will be calculated analogously to the above. After magnification has been changed by the \mag primitive,
check that this parameter reflects the wished true page height.

7.2 The document info and catalog

I \pdfinfo 〈general text〉

This primitive allows the user to add information to the document info section; if this information is provided, it
can be extracted, e. g. by the pdfinfo program, or by the Adobe Reader (version 7.0: menu option File −→ Document
Properties). The 〈general text〉 is a collection of key--value--pairs. The key names are preceded by a /, and the values,
being strings, are given between parentheses. All keys are optional. Possible keys are /Author, /CreationDate

�
�

�
�

�
�

content The pdfTEX user manual exit

(defaults to current date including time zone info), /ModDate, /Creator (defaults to TeX), /Producer (defaults to
pdfTeX-1.40.0), /Title, /Subject, and /Keywords.

/CreationDate and /ModDate are expressed in the form D:YYYYMMDDhhmmssTZ.., where YYYY is the year, MM is the
month, DD is the day, hh is the hour, mm is the minutes, ss is the seconds, and TZ.. is an optional string denoting the
time zone. An example of this format is shown below. For details please refer to the PDF Reference.

Multiple appearances of \pdfinfo will be concatenated. In general, if a key is given more than once, one may expect
that the first appearance will be used. Be aware however, that this behaviour is viewer dependent. Except expansion,
pdfTEX does not perform any further operations on 〈general text〉 provided by the user.

An example of the use of \pdfinfo is:

\pdfinfo {
/Title (example.pdf)
/Creator (TeX)
/Producer (pdfTeX 1.40.0)
/Author (Tom and Jerry)
/CreationDate (D:20061226154343+01’00’)
/ModDate (D:20061226155343+01’00’)
/Subject (Example)
/Keywords (mouse, cat) }

I \pdfcatalog 〈general text〉 [〈open-action spec〉]

Similar to the document info section is the document catalog, where keys are /URI, which provides the base url of the
document, and /PageMode, which determines how the pdf viewer displays the document on startup. The possibilities
for the latter are explained in Table 4:

In full--screen mode, there is no menu bar, window controls, nor any other window present. The default setting is
/UseNone.

The 〈openaction〉 is the action provided when opening the document and is specified in the same way as internal links,
see section 7.9. Instead of using this method, one can also write the open action directly into the catalog.

�
�

�
�

�
�

content The pdfTEX user manual exit

value meaning

/UseNone neither outline nor thumbnails visible
/UseOutlines outline visible
/UseThumbs thumbnails visible
/FullScreen full--screen mode

Table 4 Supported /PageMode values.

I \pdfnames 〈general text〉

This primitive inserts the 〈general text〉 to the /Names array. The text must conform to the specifications as laid down in
the PDF Reference, otherwise the document can be invalid.

I \pdftrailer 〈general text〉

This command puts its argument text verbatim into the file trailer dictionary. The primitive has been introduced in
pdfTEX 1.11a.

7.3 Fonts

I \pdfpkresolution (integer)

This integer parameter specifies the default resolution of embedded pk fonts and is read when pdfTEX embeds a pk font
during finishing the pdf output. As bitmap fonts are still rendered poorly by some pdf viewers, it is best to use Type 1
fonts when available.

I \pdffontexpand 〈font〉 〈stretch〉 〈shrink〉 〈step〉 [autoexpand]

This extension to TEX’s font definitions controls a pdfTEX automatism called font expansion. We describe this by an
example:

\font\somefont=sometfm at 10pt
\pdffontexpand\somefont 30 20 10 autoexpand
\pdfadjustspacing=2

�
�

�
�

�
�

content The pdfTEX user manual exit

The 30 20 10 means this: “hey TEX, when line breaking is going badly, you may stretch the glyphs from this font as
much as 3 % or shrink them as much as 2 %”. For practical reasons pdfTEX uses discrete expansion steps, in this example,
1 %. Roughly spoken, the trick is as follows. Consider a text typeset in triple column mode. When TEX cannot break
a line in the appropriate way, the unbreakable parts of the word will stick into the margin. When pdfTEX notes this, it
will try to scale (shrink) the glyphs in that line using fixed steps, until the line fits. When lines are too spacy, the opposite
happens: pdfTEX starts scaling (stretching) the glyphs until the white space gaps is acceptable. This glyph stretching
and shrinking is called font expansion. To enable font expansion, don’t forget to set \pdfadjustspacing to a value
greater than zero.

There are two different modes for font expansion:

First, if the autoexpand option is there — which is the recommended mode — only a single map entry is needed for
all expanded font versions, using the name of the unexpanded tfm file (tfmname). No expanded tfmname versions
need to mentioned (they are ignored), as pdfTEX generates expanded copies of the unexpanded tfm data structures and
keeps them in its memory. Since pdfTEX 1.40.0 the autoexpand mode happens within the page stream by modification
of the text matrix (pdf operator “Tm”), and not anymore on font file level, giving the advantage that it now works not
only with Type1 but also with TrueType and OpenType fonts (and even without embedding a font file; but that’s not
recommended). In this mode pdfTEX requires only unexpanded font files.

Second, if the autoexpand option is missing, setting up font expansion gets more tedious, as there must be map entries
for tfm files in all required expansion values. The expanded tfmname variants are constructed by adding the font
expansion value to the tfmname of the base font, e. g. there must be a map entry with tfmname sometfm+10 for 1 %
stretch or sometfm-15 for 1.5 % shrink. This also means, that for each expanded font variant a tfm file with properly
expanded metrics must exist. Having several map entries for the various expansion values of a font requires to provide
for each expansion value an individually crafted font file with expanded glyphs. Depending on how these glyphs are
generated, this might give slightly better glyph forms than the rather simple glyph stretching used in autoexpand
mode. The drawback is that several font files will be embedded in the pdf output for each expanded font, leading to
significantly larger pdf files than in autoexpand mode. For moderate expansion values going without autoexpand
mode is not worth the trouble.

The font expansion mechanism is inspired by an optimization first introduced by Prof. Hermann Zapf, which in itself
goes back to optimizations used in the early days of typesetting: use different glyphs to optimize the grayness of a page.

�
�

�
�

�
�

content The pdfTEX user manual exit

So, there are many, slightly different a’s, e’s, etc. For practical reasons pdfTEX does not use such huge glyph collections;
it uses horizontal scaling instead. This is sub--optimal, and for many fonts, possibly offensive to the design. But, when
using pdf, it’s not illogical: pdf viewers use so--called Multiple Master fonts when no fonts are embedded and/or can be
found on the target system. Such fonts are designed to adapt their design to the different scaling parameters. It is up to
the user to determine to what extent mixing slightly remastered fonts can be used without violating the design. Think
of an O: when geometrically stretched, the vertical part of the glyph becomes thicker, and looks incompatible with an
unscaled original. With a Multiple Master situation, one can stretch while keeping this thickness compatible.

I \pdfadjustspacing (integer)

This primitive provides a switch for enabling font expansion. By default, \pdfadjustspacing is set to 0; then font
expansion is disabled, so that the pdfTEX output is identical to that from the original TEX engine.

Font expansion can be activated in two modes. When \pdfadjustspacing is set to 1, font expansion is applied after
TEX’s normal paragraph breaking routines have broken the paragraph into lines. In this case, line breaks are identical to
standard TEX behaviour.

When set to 2, the width changes that are the result of stretching and shrinking are taken into account while the
paragraph is broken into lines. In this case, line breaks are likely to be different from those of standard TEX. In fact,
paragraphs may even become longer or shorter.

Both alternatives require a collection of tfm files that are related to the 〈stretch〉 and 〈shrink〉 settings for the
\pdffontexpand primitive, unless this is given with the autoexpand option.

I \efcode 〈font〉 (integer)

We didn’t yet tell the whole story. One can imagine that some glyphs are visually more sensitive to stretching or
shrinking than others. Then the \efcode primitive can be used to influence the expandability of individual glyphs
within a given font, as a factor to the expansion setting from the \pdffontexpand primitive. The syntax is similar to
\sfcode (but with the 〈font〉 required), and it defaults to 1000, meaning 100 % expandability. The given integer value is
clipped to the range 0..1000, corresponding to a usable expandability range of 0..100 %. Example:

\efcode\somefont‘A=800
\efcode\somefont‘O=0

�
�

�
�

�
�

content The pdfTEX user manual exit

Here an A may stretch or shrink only by 80 % of the current expansion value for that font, and expansion for the O
is disabled. The actual expansion is still bound to the steps as defined by \pdffontexpand primitive, otherwise one
would end up with more possible font inclusions than would be comfortable.

I \pdfprotrudechars (integer)

Yet another way of optimizing paragraph breaking is to let certain characters move into the margin (‘character pro-
trusion’). When \pdfprotrudechars=1, the glyphs qualified as such will make this move when applicable, without
changing the line-breaking. When \pdfprotrudechars=2 (or greater), character protrusion will be taken into account
while considering breakpoints, so line-breaking might be changed. This qualification and the amount of shift are set by
the primitives \rpcode and \lpcode. Character protrusion is disabled when \pdfprotrudechars=0 (or negative).

If you want to protrude some item other than a character (e. g. a \hbox), you can do so by padding the item with an
invisible zero--width character, for which protrusion is activated.

I \rpcode 〈font〉 (integer)

The amount that a character from a given font may shift into the right margin (‘character protrusion’) is set by the
primitive \rpcode. The protrusion distance is the integer value given to \rpcode, multiplied with 0.001 em from the
current font. The given integer value is clipped to the range −1000..1000, corresponding to a usable protrusion range of
−1 em..1 em. Example:

\rpcode\somefont‘,=200
\rpcode\somefont‘-=150

Here the comma may shift by 0.2 em into the margin and the hyphen by 0.15 em. All these small bits and pieces will
help pdfTEX to give you better paragraphs (use \rpcode judiciously; don’t overdo it).

Remark: old versions of pdfTEX use the character width as measure. This was changed to a proportion of the em-width
after Hàn Thế Thành finished his master’s thesis.

I \lpcode 〈font〉 (integer)

This is similar to \rpcode, but affects the amount by which characters may protrude into the left margin. Also here the
given integer value is clipped to the range −1000..1000.

�
�

�
�

�
�

content The pdfTEX user manual exit

I \leftmarginkern 〈box number〉 (expandable)

The \leftmarginkern 〈box number〉 primitive expands to the width of the margin kern at the left side of the horizontal
list stored in \box 〈box number〉 . The expansion string includes the unit pt. E. g., when the left margin kern of \box0
amounts to −10 pt, \leftmarginkern0 will expand to -10pt. A similar primitive \rightmarginkern exists for the
right margin. The primitive has been introduced in pdfTEX 1.30.0.

These are auxiliary primitives to make character protrusion more versatile. When using the TEX primitive \unhbox or
\unhcopy, the margin kerns at either end of the unpackaged hbox will be removed (e. g. to avoid weird effects if several
hboxes are unpackaged behind each other into the same horizontal list). These \unhbox or \unhcopy are often used
together with \vsplit for dis- and re--assembling of paragraphs, e. g. to add line numbers. Paragraphs treated like this
do not show character protrusion by default, as the margin kerns have been removed during the unpackaging process.

The \leftmarginkern and \rightmarginkern primitives allow to access the margin kerns and store them away
before unpackaging the hbox. E. g. the following code snipplet restores margin kerning of a horizontal list stored in
\box\testline, resulting in a hbox with proper margin kerning (which is then done by ordinary kerns).

\dimen0=\leftmarginkern\testline
\dimen1=\rightmarginkern\testline
\hbox to\hsize{\kern\dimen0\unhcopy\testline\kern\dimen1}

I \rightmarginkern 〈box number〉 (expandable)

The \rightmarginkern 〈box number〉 primitive expands to the width of the margin kern at the right side of the
horizontal list stored in \box 〈box number〉 . See \leftmarginkern for more details. The primitive has been introduced
in pdfTEX 1.30.0.

I \pdffontattr 〈font〉 〈general text〉

This primitive inserts the 〈general text〉 to the /Font dictionary. The text must conform to the specifications as laid
down in the PDF Reference, otherwise the document can be invalid.

�
�

�
�

�
�

content The pdfTEX user manual exit

I \pdffontname 〈font〉 (expandable)

In pdf files produced by pdfTEX one can recognize a font resource by the prefix /F followed by a number, for instance
/F12 or /F54. For a given TEX 〈font〉 , this primitive expands to the number from the corresponding font resource name.
E. g., if /F12 corresponds to some TEX font \foo, the \pdffontname\foo expands to the number 12.

In the current implementation, when \pdfuniqueresname (see below) is set to a positive value, the \pdffontname
still returns only the number from the font resource name, but not the appended random string.

I \pdffontobjnum 〈font〉 (expandable)

This command is similar to \pdffontname, but it returns the pdf object number of the font dictionary instead of the
number from the font resource name. E. g., if the font dictionary (/Type /Font) in pdf object 3 corresponds to some
TEX font \foo, the \pdffontobjnum\foo gives the number 3.

Use of \pdffontname and \pdffontobjnum allows users full access to all the font resources used in the document.

I \pdffontsize 〈font〉 (expandable)

This primitive expands to the font size of the given font, with unit pt. E. g., when using the plain TEX macro package,
the call \pdffontsize\tenrm expands to 10.0pt.

I \pdfincludechars 〈font〉 〈general text〉

This command causes pdfTEX to treat the characters in 〈general text〉 as if they were used with 〈font〉, which means that
the corresponding glyphs will be embedded into the font resources in the pdf output. Nothing is appended to the list
being built.

I \pdfuniqueresname (integer)

When this primitive is assigned a positive number, pdf resource names will be made reasonably unique by appending
a random string consisting of six ascii characters.

I \pdfmapfile 〈map spec〉

This primitive is used for reading a font map file consisting of one or more font map lines. The name of the map file is
given in the 〈map spec〉 together with an optional leading modifier character. If no \pdfmapfile primitive is given, the

�
�

�
�

�
�

content The pdfTEX user manual exit

default map file pdftex.map will be read by pdfTEX. There is a companion primitive \pdfmapline that allows to scan
single map lines; its map line argument has the same syntax as the map lines from a map file. Both primitives can be
used concurrently. The \pdfmapfile primitive is fast for reading external bulk font map information (many map lines
collected in a map file), whereas the \pdfmapline allows to put the font map information for individual TEX fonts right
into the TEX source or a style file. In any case the map line information is scanned by pdfTEX, and in the most common
case the data are put into a fresh internal map entry data structure, which is then consulted once a font is called.

Normally there is no need for the pdfTEX user to bother about the \pdfmapfile or \pdfmapline primitives, as the
main TEX distributions provide nice helper tools that automatically assemble the default font map file. Prominent tool
examples are the scripts updmap and updmap-sys coming with TEX Live and teTEX. If your map file isn’t in the current
directory (or a standard system directory), you will need to set the TEXFONTMAPS variable (in Web2c) or give an explicit
path so that it will be found.

When the \pdfmapfile or \pdfmapline primitive is read by pdfTEX, the argument (map file or map line) will be
processed immediately, and the internal map entry database is updated. The operation mode of the \pdfmapfile
and \pdfmapline primitives is selected by an optional modifier character (+, =, -) in front of the tfmname field. This
modifier defines how the individual map lines are going to be handled, and how a collision between an already
registered map entry and a newer one is resolved; either ignoring a later entry, or replacing or deleting an existing entry.
But in any case, map entries of fonts already in use are kept untouched. Here are two examples:

\pdfmapfile{+myfont.map}
\pdfmapline{+ptmri8r Times-Italic <8r.enc <ptmri8a.pfb}

When no modifier character is given (e. g. \pdfmapfile{foo.map} or \pdfmapline{phvr8r Helvetica}) and there
hasn’t already been any call of one of these primitives before, then the default map file pdftex.map will not be read in.
Apart from this the given map file will be processed similarly as with a + modifier: duplicate later map entries within
the file are ignored and a warning is issued. This means, that you can block reading of the default map file also by an
empty \pdfmapfile{} or \pdfmapline{} early in the TEX file. When the default map file is large but you don’t need
it anyway, these command variants might considerably speed up the pdfTEX startup process.

If a modifier is given, the mechanism is so that before reading the items given as arguments to \pdfmapfile or
\pdfmapline the default map file will be read first — if this hasn’t already been done or been prevented by the above

�
�

�
�

�
�

content The pdfTEX user manual exit

blocking cases. This should be mostly compatible with the traditional behaviour. If you want to add support for a new
font through an additional font map file while keeping all the existing mappings, don’t use the primitive versions
without modifier, but instead type either \pdfmapfile{+myfont.map} or \pdfmapfile{=myfont.map}, as described
below.

\pdfmapfile {+foo.map} reads the file foo.map; duplicate later map entries within the file are ignored and a warning
is issued.

\pdfmapfile {=foo.map} reads the file foo.map; matching map entries in the database are replaced by new entries
from foo.map (if they aren’t already in use).

\pdfmapfile {-foo.map} reads the file foo.map; matching map entries are deleted from the database (if not yet in
use).

If you want to use a base map file name other than pdftex.map, or change its processing options through a pdfTEX
format, you can do this by appending the \pdfmapfile command to the \everyjob{} token list for the -ini run, e. g.:

\everyjob\expandafter{\the\everyjob\pdfmapfile{+myspecial.map}}
\dump

This would always read the file myspecial.map after the default pdftex.map file.

I \pdfmapline 〈map spec〉

Similar to \pdfmapfile, but here you can give a single map line (like the ones in map files) as an argument. The
optional modifiers (+-=) have the same effect as with \pdfmapfile; see also the description above. Example:

\pdfmapline{+ptmri8r Times-Italic <8r.enc <ptmri8a.pfb}

This primitive (especially the \pdfmapline{=...} variant) is useful for temporary quick checks of a new font map
entry during development, before finally putting it into a map file.

\pdfmapline {} like \pdfmapfile {} blocks reading of the default map file, if it comes early enough in the TEX input.
The primitive has been introduced in pdfTEX 1.20a.

�
�

�
�

�
�

content The pdfTEX user manual exit

I \pdftracingfonts (integer)

This integer parameter specifies the level of verbosity for info about expanded fonts given in the log, e. g. when
\tracingoutput=1. If \pdftracingfonts=0, which is the default, the log shows the actual non-zero signed expansion
value for each expanded letter within brackets, e. g.:

...\xivtt (+20) t

If \pdftracingfonts=1, also the name of the tfm file is listed, together with the font size, e. g.:

...\xivtt (cmtt10+20@14.0pt) t

Setting \pdftracingfonts to a value other than 0 or 1 is not recommended, to allow future extensions. The primitive
has been introduced in pdfTEX 1.30.0.

I \pdfmovechars (integer)

Since pdfTEX version 1.30.0 the primitive \pdfmovechars is obsolete, and its use merely leads to a warning. (This
primitive specified whether pdfTEX should try to move characters in range 0..31 to higher slots; its sole purpose was to
remedy certain bugs of early pdf viewers.)

I \pdfpkmode (tokens)

The \pdfpkmode is a token register that sets the METAFONT mode for pixel font generation. The contents of this
register is dumped into the format, so one can (optionally) preset it e. g. in pdftexconfig.tex. The primitive has been
introduced in pdfTEX 1.30.0.

I \pdfnoligatures 〈font〉

This diables all ligatures in the loaded font 〈font〉 . The primitive has been introduced in pdfTEX 1.30.0.

7.4 PDF objects
I \pdfobj 〈object type spec〉

This command creates a raw pdf object that is written to the pdf file as 1 0 obj . . . endobj. The object is written to
pdf output as provided by the user. When 〈object type spec〉 is not given, pdfTEX does not any longer create a dictionary
object with contents 〈general text〉 , as it was in the past.

�
�

�
�

�
�

content The pdfTEX user manual exit

When however 〈object type spec〉 is given as 〈attr spec〉 stream , the object will be created as a stream with contents 〈gen-
eral text〉 and additional attributes in 〈attr spec〉.

When 〈object type spec〉 is given as 〈attr spec〉 file , then the 〈general text〉will be treated as a file name and its
contents will be copied into the stream contents.

When 〈object type spec〉 is given as reserveobjnum, just a new object number is reserved. The number of the reserved
object is accessible via \pdflastobj. The object can later be filled with contents by \pdfobj useobjnum 〈num-
ber〉 { 〈balanced text〉 }. But the reserved object number can already be be used before by other objects, which provides
a forward--referencing mechanism.

The object is kept in memory and will be written to the pdf output only when its number is referred to by \pdfrefobj
or when \pdfobj is preceded by \immediate. Nothing is appended to the list being built. The number of the most
recently created object is accessible via \pdflastobj.

I \pdflastobj (read--only integer)

This command returns the object number of the last object created by \pdfobj.

I \pdfrefobj 〈object number〉

This command appends a whatsit node to the list being built. When the whatsit node is searched at shipout time, pdfTEX
will write the object 〈object number〉 to the pdf output if it has not been written yet.

7.5 Page and pages objects

I \pdfpagesattr (tokens)

pdfTEX expands this token list when it finishes the pdf output and adds the resulting character stream to the root Pages
object. When defined, these are applied to all pages in the document. Some examples of attributes are /MediaBox,
the rectangle specifying the natural size of the page, /CropBox, the rectangle specifying the region of the page being
displayed and printed, and /Rotate, the number of degrees (in multiples of 90) the page should be rotated clockwise
when it is displayed or printed.

�
�

�
�

�
�

content The pdfTEX user manual exit

\pdfpagesattr
{ /Rotate 90 % rotate all pages by 90 degrees

/CropBox [0 0 612 792] } % the crop size of all pages (in bp)

I \pdfpageattr (tokens)

This is similar to \pdfpagesattr, but has priority over it. It can be used to override any attribute given by
\pdfpagesattr for individual pages. The token list is expanded when pdfTEX ships out a page. The contents
are added to the attributes of the current page.

I \pdfpageref 〈page number〉 (expandable)

This primitive expands to the number of the page object that contains the dictionary for page 〈page number〉 . If
the page 〈page number〉 does not exist, a warning will be issued, a fresh unused pdf object will be generated, and
\pdfpageref will expand to that object number.

E. g., if the dictionary for page 5 of the TEX document is contained in pdf object no. 18, \pdfpageref5 expands to the
number 18.

7.6 Form XObjects

The next three primitives support a pdf feature called ‘object reuse’ in pdfTEX. The idea is first to create a ‘form XObject’
in pdf. The content of this object corresponds to the content of a TEX box; it can contain pictures and references to other
form XObjects as well. After creation, the form XObject can be used multiple times by simply referring to its object
number. This feature can be useful for large documents with many similar elements, as it can reduce the duplication of
identical objects.

These commands behave similarly to \pdfobj, \pdfrefobj and \pdflastobj, but instead of taking raw pdf code,
they handle text typeset by TEX.

I \pdfxform [〈attr spec〉] [〈resources spec〉] 〈box number〉

This command creates a form XObject corresponding to the contents of the box 〈box number〉 . The box can contain
other raw objects, form XObjects, or images as well. It can however not contain annotations because they are laid out on

�
�

�
�

�
�

content The pdfTEX user manual exit

a separate layer, are positioned absolutely, and have dedicated housekeeping. \pdfxform makes the box void, as \box
does.

When 〈attr spec〉 is given, the text will be written as additional attribute into the form XObject dictionary. The 〈resources
spec〉 is similar, but the text will be added to the resources dictionary of the form XObject. The text given by 〈attr
spec〉 or 〈resources spec〉 is written before other entries of the form dictionary and/or the resources dictionary and takes
priority over later ones.

I \pdfrefxform 〈object number〉

The form XObject is kept in memory and will be written to the pdf output only when its object number is referred to
by \pdfrefxform or when \pdfxform is preceded by \immediate. Nothing is appended to the list being built. The
number of the most recently created form XObject is accessible via \pdflastxform.

When issued, \pdfrefxform appends a whatsit node to the list being built. When the whatsit node is searched at
shipout time, pdfTEX will write the form 〈object number〉 to the pdf output if it is not written yet.

I \pdflastxform (read--only integer)

The object number of the most recently created form XObject is accessible via \pdflastxform.

As said, this feature can be used for reusing information. This mechanism also plays a role in typesetting fill--in forms.
Such widgets sometimes depends on visuals that show up on user request, but are hidden otherwise.

I \pdfxformname 〈object number〉 (expandable)

In pdf files produced by pdfTEX one can recognize a form Xobject by the prefix /Fm followed by a number, for instance
/Fm2. For a given form XObject number, this primitive expands to the number in the corresponding form XObject name.
E. g., if /Fm2 corresponds to some form XObject with object number 7, the \pdfxformname7 expands to the number 2.
The primitive has been introduced in pdfTEX 1.30.0.

7.7 Graphics inclusion
pdf provides a mechanism for embedding graphic and textual objects: form XObjects. In pdfTEX this mechanism is
accessed by means of \pdfxform, \pdflastxform and \pdfrefxform. A special kind of XObjects are bitmap graphics
and for manipulating them similar commands are provided.

�
�

�
�

�
�

content The pdfTEX user manual exit

I \pdfximage [〈rule spec〉] [〈attr spec〉] [〈page spec〉] [〈colorspace spec〉] [〈pdf box spec〉] 〈general text〉

This command creates an image object. The dimensions of the image can be controlled via 〈rule spec〉. The default
values are zero for depth and ‘running’ for height and width. If all of them are given, the image will be scaled to fit the
specified values. If some (but not all) are given, the rest will be set to a value corresponding to the remaining ones so as
to make the image size to yield the same proportion of width : (height + depth) as the original image size, where depth is
treated as zero. If none are given then the image will take its natural size.

An image inserted at its natural size often has a resolution of \pdfimageresolution (see below) given in dots per inch
in the output file, but some images may contain data specifying the image resolution, and in such a case the image
will be scaled to the correct resolution. The dimensions of an image can be accessed by enclosing the \pdfrefximage
command to a box and checking the dimensions of the box:

\setbox0=\hbox{\pdfximage{somefile.png}\pdfrefximage\pdflastximage}

Now we can use \wd0 and \ht0 to question the natural size of the image as determined by pdfTEX. When dimensions
are specified before the {somefile.png}, the graphic is scaled to fit these. Note that, unlike the e. g. \input primitive,
the filename is supplied between braces.

The image type is specified by the extension of the given file name: .png stands for png image, .jpg (or .jpeg) for jpeg,
.jbig2 (preferred, but .jb2 works also) for jbig2, and .pdf for pdf file. But once pdfTEX has opened the file, it checks
the file type first by looking to the magic number at the file start, which gets precedence over the file name extension.
This gives a certain degree of fault tolerance, if the file name extension is stated wrongly.

Similarly to \pdfxform, the optional text given by 〈attr spec〉 will be written as additional attributes of the image before
other keys of the image dictionary. One should be aware, that slightly different type of pdf object is created while
including png, jpeg, or jbig2 bitmaps and pdf images.

While working with pdf or jbig2 images, 〈page spec〉 allows to decide which page of the document is to be included;
the 〈page spec〉 is irrelevant for the other two image formats. Starting from pdfTEX 1.11 one may also decide in the pdf
image case, which page box of the image is to be treated as a final bounding box. If 〈pdf box spec〉 is present, it overrides
the default behaviour specified by the \pdfforcepagebox parameter. This option is irrelevant for non--pdf inclusions.

�
�

�
�

�
�

content The pdfTEX user manual exit

Starting from pdfTEX 1.21, \pdfximage command supports colorspace keyword followed by an object number (user--
defined colorspace for the image being included). This feature works for jpeg images only. pngs are rgb palettes, jbig2 s
are bitonal, and pdf images have always self--contained color space information.

I \pdfrefximage 〈integer〉

The image is kept in memory and will be written to the pdf output only when its number is referred to by
\pdfrefximage or \pdfximage is preceded by \immediate. Nothing is appended to the list being built.

\pdfrefximage appends a whatsit node to the list being built. When the whatsit node is searched at shipout time,
pdfTEX will write the image with number 〈integer〉 to the pdf output if it has not been written yet.

I \pdflastximage (read--only integer)

The number of the most recently created XObject image is accessible via \pdflastximage.

I \pdflastximagepages (read--only integer)

This read--only register returns the highest page number from a file previously accessed via the \pdfximage command.
This is useful only for pdf files; it always returns 1 for png, jpeg, or jbig2 files.

I \pdfimageresolution (integer)

The integer \pdfimageresolution parameter (unit: dots per inch, dpi) is a last resort value, used only for bitmap
(jpeg, png, jbig2) images, but not for pdfs. The priorities are as follows: Often one image dimension (width or height)
is stated explicitely in the TEX file. Then the image is properly scaled so that the aspect ratio is kept. If both image
dimensions are given, the image will be stretched accordingly, whereby the aspect ratio might get distorted. Only if no
image dimension is given in the TEX file, the image size will be calculated from its width and height in pixels, using the
x and y resolution values normally contained in the image file. If one of these resolution values is missing or weird
(either < 0 or > 65535), the \pdfimageresolution value will be used for both x and y resolution, when calculating
the image size. And if the \pdfimageresolution is zero, finally a default resolution of 72 dpi would be taken. The
\pdfimageresolution is read when pdfTEX creates an image via \pdfximage. The given value is clipped to the range
0..65535 [dpi].

Currently this parameter is used particularly for calculating the dimensions of jpeg images in exif format (unless at least
one dimension is stated explicitely); the resolution values coming with exif files are currently ignored.

�
�

�
�

�
�

content The pdfTEX user manual exit

I \pdfforcepagebox (integer)

When pdf files are included, the command \pdfximage allows the selection of which pdf page box to use in the optional
field 〈image attr spec〉. The integer primitive \pdfforcepagebox allows to globally override this choice by giving them
one of the following values: (1) media box, (2) crop box, (3) bleed box, (4) trim box, and (5) artbox. The command
is available starting from pdfTEX 1.30.0, as a shortened synonym of obsolete \pdfoptionalwaysusepdfpagebox
instruction.

I \pdfinclusionerrorlevel (integer)

This controls the behaviour of pdfTEX when a pdf file is included that has a newer version than the one specified by
this primitive: If it is set to 0, pdfTEX gives only a warning; if it’s 1, pdfTEX raises an error. The command has been
introduced in pdfTEX 1.30.0 as a shortened synonym of \pdfoptionpdfinclusionerrorlevel, that is now obsolete.

I \pdfimagehicolor (integer)

This primitive, when set to 1, enables embedding of png images with 16 bit wide color channels at their full color
resolution. As such an embedding mode is defined only from pdf version 1.5 onwards, the \pdfimagehicolor
functionality is automatically disabled in pdfTEX if \pdfminorversion < 5; then each 16 bit color channel is reduced to
a width of 8 bit by stripping the lower 8 bits before embedding. The same stripping happens when \pdfimagehicolor
is set to 0. For \pdfminorversion ≥ 5 the default value of \pdfimagehicolor is 1. If specified, the parameter must
appear before any data is written to the pdf output. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfimageapplygamma (integer)

This primitive, when set to 1, enables gamma correction while embedding png images, taking the values of the primitives
\pdfgamma as well as the gamma value embedded in the png image into account. When \pdfimageapplygamma is set
to 0, no gamma correction is performed. If specified, the parameter must appear before any data is written to the pdf
output. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfgamma (integer)

This primitive defines the ‘device gamma’ for pdfTEX. Values are in promilles (same as for \mag). The default value of
this primitive is 1000, defining a device gamma value of 1.0.

�
�

�
�

�
�

content The pdfTEX user manual exit

When \pdfimageapplygamma is set to 1, then whenever a png image is included, pdfTEX applies a gamma correction.
This correction is based on the value of the \pdfgamma primitive and the ‘assumed device gamma’ that is derived
from the value embedded in the actual image. If no embedded value can be found in the png image, then the value of
\pdfimagegamma is used instead. If specified, the parameter must appear before any data is written to the pdf output.
The primitive has been introduced in pdfTEX 1.30.0.

I \pdfimagegamma (integer)

This primitive gives a default ‘assumed gamma’ value for png images. Values are in promilles (same as for \pdfamma).
The default value of this primitive is 2200, implying an assumed gamma value of 2.2.

When pdfTEX is applying gamma corrections, images that do not have an embedded ‘assumed gamma’ value are
assumed to have been created for a device with a gamma of 2.2. Experiments show that this default setting is correct
for a large number of images; however, if your images come out too dark, you probably want to set \pdfimagegamma
to a lower value, like 1000. If specified, the parameter must appear before any data is written to the pdf output. The
primitive has been introduced in pdfTEX 1.30.0.

I \pdfpxdimen (dimen)

While working with bitmap graphics or typesetting electronic documents, it might be convenient to base dimensions
on pixels rather than TEX’s standard units like pt or em. For this purpose, pdfTEX provides an extra unit called px that
takes the dimension given to the \pdfpxdimen primitive. In example, to make the unit px corresponding to 96 dpi pixel
density (then 1 px = 72/96 bp), one can do the following calculation:

\pdfpxdimen=1in % 1 dpi
\divide\pdfpxdimen by 96 % 96 dpi
\hsize=1200px

Then \hsize amounts to 1200 pixels in 96 dpi, which is exactly 903.375 pt (but TEX rounds it to 903.36914 pt). The default
value of \pdfpxdimen is 1 bp, corresponding to a pixel density of 72 dpi. This primitive is completely independent from
the \pdfimageresolution and \pdfpkresolution parameters. The primitive has been introduced in pdfTEX 1.30.0.
It used to be an integer register that gave the dimension 1 px as number of scaled points, defaulting to 65536 (1 px equal
to 65536 sp = 1 pt). Starting from pdfTEX 1.40.0, \pdfpxdimen is now a real dimension parameter.

�
�

�
�

�
�

content The pdfTEX user manual exit

7.8 Annotations
pdf 1.4 provides four basic kinds of annotations:

• hyperlinks, general navigation
• text clips (notes)
• movies
• sound fragments

The first type differs from the other three in that there is a designated area involved on which one can click, or when
moved over some action occurs. pdfTEX is able to calculate this area, as we will see later. All annotations can be
supported using the next two general annotation primitives.

I \pdfannot 〈annot type spec〉

This command appends a whatsit node corresponding to an annotation to the list being built. The dimensions of the
annotation can be controlled via the 〈rule spec〉 . The default values are running for all width, height and depth. When
an annotation is written out, running dimensions will take the corresponding values from the box containing the whatsit
node representing the annotation. The 〈general text〉 is inserted as raw pdf code to the contents of annotation. The
annotation is written out only if the corresponding whatsit node is searched at shipout time.

I \pdflastannot (read--only integer)

This primitive returns the object number of the last annotation created by \pdfannot. These two primitives allow users
to create any annotation that cannot be created by \pdfstartlink (see below).

7.9 Destinations and links
The first type of annotation, mentioned above, is implemented by three primitives. The first one is used to define
a specific location as being referred to. This location is tied to the page, not the exact location on the page. The main
reason for this is that pdf maintains a dedicated list of these annotations —and some more when optimized— for the
sole purpose of speed.

�
�

�
�

�
�

content The pdfTEX user manual exit

I \pdfdest 〈dest spec〉

This primitive appends a whatsit node which establishes a destination for links and bookmark outlines; the link is
identified by either a number or a symbolic name, and the way the viewer is to display the page must be specified
in 〈dest type〉, which must be one of those mentioned in table 5.

keyword meaning

fit fit the page in the window
fith fit the width of the page
fitv fit the height of the page
fitb fit the ‘Bounding Box’ of the page
fitbh fit the width of ‘Bounding Box’ of the page
fitbv fit the height of ‘Bounding Box’ of the page
xyz goto the current position (see below)

Table 5 Options for display
of outline and destinations.

The specification xyz can optionally be followed by zoom 〈integer〉 to provide a fixed zoom--in. The 〈integer〉 is
processed like TEX magnification, i. e. 1000 is the normal page view. When zoom 〈integer〉 is given, the zoom fac-
tor changes to 0.001 of the 〈integer〉 value, otherwise the current zoom factor is kept unchanged.

The destination is written out only if the corresponding whatsit node is searched at shipout time.

I \pdfstartlink [〈rule spec〉] [〈attr spec〉] 〈action spec〉

This primitive is used along with \pdfendlink and appends a whatsit node corresponding to the start of a hyperlink.
The whatsit node representing the end of the hyperlink is created by \pdfendlink. The dimensions of the link are
handled in the similar way as in \pdfannot. Both \pdfstartlink and \pdfendlink must be in the same level of box
nesting. A hyperlink with running width can be multi--line or even multi--page, in which case all horizontal boxes
with the same nesting level as the boxes containing \pdfstartlink and \pdfendlink will be treated as part of the
hyperlink. The hyperlink is written out only if the corresponding whatsit node is searched at shipout time.

�
�

�
�

�
�

content The pdfTEX user manual exit

Additional attributes, which are explained in great detail in the PDF Reference, can be given via 〈attr spec〉. Typically,
the attributes specify the color and thickness of any border around the link. Thus /C [0.9 0 0] /Border [0 0 2]
specifies a color (in rgb) of dark red, and a border thickness of 2 points.

While all graphics and text in a pdf document have relative positions, annotations have internally hard--coded absolute
positions. Again this is for the sake of speed optimization. The main disadvantage is that these annotations do not obey
transformations issued by \pdfliteral’s.

The 〈action spec〉 specifies the action that should be performed when the hyperlink is activated while the 〈user-
action spec〉 performs a user--defined action. A typical use of the latter is to specify a url, like /S /URI /URI
(http://www.tug.org/), or a named action like /S /Named /N /NextPage.

A 〈goto-action spec〉 performs a GoTo action. Here 〈numid〉 and 〈nameid〉 specify the destination identifier (see below).
The 〈page spec〉 specifies the page number of the destination, in this case the zoom factor is given by 〈general text〉.
A destination can be performed in another pdf file by specifying 〈file spec〉, in which case 〈newwindow spec〉 specifies
whether the file should be opened in a new window. A 〈file spec〉 can be either a (string) or a dictionary. The
default behaviour of the 〈newwindow spec〉 depends on the browser setting.

A 〈thread-action spec〉 performs an article thread reading. The thread identifier is similar to the destination identifier.
A thread can be performed in another pdf file by specifying a 〈file spec〉.

I \pdfendlink

This primitive ends a link started with \pdfstartlink. All text between \pdfstartlink and \pdfendlink will be
treated as part of this link. pdfTEX may break the result across lines (or pages), in which case it will make several links
with the same content.

I \pdflastlink (read--only integer)

This primitive returns the object number of the last link created by \pdfstartlink (analogous to \pdflastannot).
The primitive has been introduced in pdfTEX 1.40.0.

I \pdflinkmargin (dimension)

This dimension parameter specifies the margin of the box representing a hyperlink and is read when a page containing
hyperlinks is shipped out.

�
�

�
�

�
�

content The pdfTEX user manual exit

I \pdfdestmargin (dimension)

Margin added to the dimensions of the rectangle around the destinations.

7.10 Bookmarks

I \pdfoutline [〈attr spec〉] 〈action spec〉 [count 〈integer〉] 〈general text〉

This primitive creates an outline (or bookmark) entry. The first parameter specifies the action to be taken, and is the same
as that allowed for \pdfstartlink. The 〈count〉 specifies the number of direct subentries under this entry; specify 0 or
omit it if this entry has no subentries. If the number is negative, then all subentries will be closed and the absolute value
of this number specifies the number of subentries. The 〈text〉 is what will be shown in the outline window. Note that
this is limited to characters in the pdf Document Encoding vector. The outline is written to the pdf output immediately.

7.11 Article threads

I \pdfthread [〈rule spec〉] [〈attr spec〉] 〈id spec〉

Defines a bead within an article thread. Thread beads with same identifiers (spread across the document) will be joined
together.

I \pdftstarthread [〈rule spec〉] [〈attr spec〉] 〈id spec〉

This uses the same syntax as \pdfthread, apart that it must be followed by a \pdfendthread. \pdfstartthread
and the corresponding \pdfendthread must end up in vboxes with the same nesting level; all vboxes between them
will be added into the thread. Note that during output runtime if there are other newly created boxes which have the
same nesting level as the vbox/vboxes containing \pdfstartthread and \pdfendthread, they will be also added
into the thread, which is probably not what you want. To avoid such unconsidered behaviour, it’s often enough to wrap
boxes that shouldn’t belong to the thread by a box to change their box nesting level.

I \pdfendthread

This ends an article thread started before by \pdfstartthread.

�
�

�
�

�
�

content The pdfTEX user manual exit

I \pdfthreadmargin (dimension)

Specifies a margin to be added to the dimensions of a bead within an article thread.

7.12 Literals and specials

I \pdfliteral [〈pdfliteral spec〉] 〈general text〉

Like \special in normal TEX, this command inserts raw pdf code into the output. This allows support of color and text
transformation. This primitive is heavily used in the METAPOST inclusion macros. Normally pdfTEX ends a text section
in the pdf output and sets the transformation matrix to the current location on the page before inserting 〈general text〉,
however this can be turned off by giving the optional keyword direct . This command appends a whatsit node to the
list being built. 〈general text〉 is expanded when the whatsit node is created and not when it is shipped out, as with
\special.

Starting from version 1.30.0, pdfTEX allows to use a new keyword page instead of direct. Both modify the default
behaviour of \pdfliteral, avoiding translation of the coordinates space before inserting the literal code. The difference
is that the page keyword instructs pdfTEX to close a BT ET text block before inserting anything. It means that the literal
code inserted refers to the origin (lower--left corner of the page) and can be safely enclosed with q Q. Note, that in most
cases using q Q operators inside \pdfliteral with direct keyword will produce corrupted pdf output, as the pdf
standard doesn’t allow to do anything like this within a BT ET block.

I \special {pdf: 〈text〉 }

This is equivalent to \pdfliteral { 〈text〉 }.

I \special {pdf:direct: 〈text〉 }

This is equivalent to \pdfliteral direct { 〈text〉 }.

I \special {pdf:page: 〈text〉 }

This is equivalent to \pdfliteral page { 〈text〉 }.

�
�

�
�

�
�

content The pdfTEX user manual exit

7.13 Strings

I \pdfescapestring 〈general text〉

Starting from version 1.30.0, pdfTEX provides a mechanism for converting a general text into pdf string. Many characters
that may be needed inside such a text (especially parenthesis), have a special meaning inside a pdf string object and
thus, can’t be used literally. The primitive replaces each special pdf character by its literal representation by inserting
a backslash before that character. Some characters (e. g. space) are also converted into 3--digit octal number. In example,
\pdfescapestring{Text (1)} will be expanded to Text\040\(1\). This ensures a literal interpretation of the text
by the pdf viewer. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfescapename 〈general text〉

In analogy to \pdfescapestring, \pdfescapename replaces each special pdf character inside the general text by its
hexadecimal representation preceded by # character. This ensures the proper interpretation of the text if used as a pdf
name object. In example, Text (1) will be replaced by Text#20#281#29. The primitive has been introduced in pdfTEX
1.30.0.

I \pdfescapehex 〈general text〉

This command converts each character of 〈general text〉 into its hexadecimal representation. Each character of the
argument becomes a pair of hexadecimal digits. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfunescapehex 〈general text〉

This command treats each character pair of 〈general text〉 as a hexadecimal number and returns an ascii character of this
code. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfmdfivesum 〈general text〉 (expandable)

This command expands to the md5 of 〈general text〉 in uppercase hexadecimal format (same as \pdfescapehex). The
primitive has been introduced in pdfTEX 1.30.0.

�
�

�
�

�
�

content The pdfTEX user manual exit

7.14 Numbers

I \ifpdfabsnum 〈number〉

The primitive works as normal \ifnum condition check, except that it compares absolute values of numbers. Although
it seems to be a trivial shortcut for a couple of \ifnum x<0 tests, as a primitive it is more friendly in usage and works
a bit faster. The primitive has been introduced in pdfTEX 1.40.0.

I \ifpdfabsdim 〈dimen〉

Like \ifpdfabsnum, the primitive works as normal \ifdim condition check, except that it compares absolute values of
dimensions. The primitive has been introduced in pdfTEX 1.40.0.

I \pdfuniformdeviate 〈number〉 (expandable)

The commands generates a uniformly distributed random integer value between 0 (inclusive) and 〈number〉 (exclusive).
This primitive expands to a list of tokens. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfnormaldeviate (expandable)

The commands generates a random integer value with a mean of 0 and a unit of 65 536, e. g. −1378. This primitive
expands to a list of tokens. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfrandomseed (read--only integer)

You can use \the\pdfrandomseed to query the current seed value, so you can e. g. write the value to the log file. The
initial value of the seed is derived from the system time, and is not more than 1 000 999 999 (this ensures that the value
can be used with commands like \count). The primitive has been introduced in pdfTEX 1.30.0.

I \pdfsetrandomseed 〈number〉

This sets the random seed (\pdfrandomseed) to a specific value, allowing you to re-play sequences of semi-randoms at
a later moment. The primitive has been introduced in pdfTEX 1.30.0.

�
�

�
�

�
�

content The pdfTEX user manual exit

7.15 Timekeeping

I \pdfelapsedtime (read--only integer)

The command expands to a number that represents the time elapsed from the moment of run start. The elapsed time is
returned in ‘scaled seconds’, that means seconds divided by 65536, e. g. pdfTEX has run for 1393353 ‘scaled seconds’
when this paragraph was typeset. Obviously, the command will never return a value greater than the highest number
available in TEX: if the time exceeds 32767 seconds, the constant value 231

− 1 will be returned. The primitive has been
introduced in pdfTEX 1.30.0.

I \pdfresettimer

The command resets the internal timer so that \pdfelapsedtime starts returning micro--time from 0 again. The
primitive has been introduced in pdfTEX 1.30.0.

7.16 Files

I \pdffilemoddate 〈general text〉 (expandable)

Expands to the modification date of file 〈general text〉 in the same format as for \pdfcreationdate, e. g. it’s
D:20070125120108+01’00’ for the source of this manual. The primitive has been introduced in pdfTEX 1.30.0.

I \pdffilesize 〈general text〉 (expandable)

Expands to the size of file 〈general text〉 , e. g. it’s 205136 for the source of this manual. The primitive has been
introduced in pdfTEX 1.30.0.

I \pdfmdfivesum file 〈general text〉 (expandable)

Expands to the md5 of file 〈general text〉 in uppercase hexadecimal format (same as \pdfescapehex), e. g. it’s
E5CA464564CB4F25A04464B858B8A623 for the source of this manual. The primitive has been introduced in pdfTEX
1.30.0.

�
�

�
�

�
�

content The pdfTEX user manual exit

I \pdffiledump [offset 〈number〉] [length 〈number〉] 〈general text〉 (expandable)

Expands to the dump of the file 〈general text〉 in uppercase hexadecimal format (same as \pdfescapehex), start-
ing at offset 〈number〉 or 0 with length 〈number〉 , if given. The first ten bytes of the source of this manual are
2520696E746572666163. The primitive has been introduced in pdfTEX 1.30.0.

7.17 Colourstack
pdfTEX 1.40.0 comes with a colour stack support (actually any graphic state stack).

I \pdfcolorstackinit [page] [direct] 〈general text〉 (expandable)

The primitive initializes new graphic stack and returns its number. Optional page keyword instructs pdfTEX to restore
the graphic at the beginning of every new page. Also optional direct has the same effect as for \pdfliteral primitive.
The primitive has been introduced in pdfTEX 1.40.0.

I \pdfcolorstack 〈stack number〉 〈stack action〉 〈general text〉

The command operates on the stack of a given number. If 〈stack action〉 is push keyword, the new value provided
as 〈general text〉 is inserted into the top of the graphic stack and becomes the current stack value. If followed by pop ,
the top value is removed from the stack and the new top value becomes the current. set keyword replaces the current
value with 〈general text〉 without changing the stack size. current keyword instructs just to use the current stack value
without modifying the stack at all. The primitive has been introduced in pdfTEX 1.40.0.

7.18 Transformations

Since the content of \pdfliteral is not interpreted anyhow, any transformation inserted directly into the content
stream, as well as saving and restoring the current transformation matrix, remains unnoticed by pdfTEX positioning
mechanism. As a consequence, links and other annotations (that are formed in pdf as different layer then the page
content) are not affected by such user-defined transformations. pdfTEX 1.40.0 solves this problem with three new
primitives.

�
�

�
�

�
�

content The pdfTEX user manual exit

I \pdfsetmatrix

Afine transformations are normally expressed with six numbers. First four (no unit) values defining scaling, rotating and
skewing, plus two extra dimensions for shifting. Since the translation is handled by TEX itself, \pdfsetmatrix primitive
expects as an argument a string containing just first four numbers of the transformation separated by a space and assumes
two position coordinates to be 0. In example, \pdfsetmatrix{0.87 -0.5 0.5 0.87} rotates the current space by
30 degrees, inserting 0.87 -0.5 0.5 0.87 0 0 cm into the content stream. The primitive has been introduced in
pdfTEX 1.40.0.

I \pdfsave

The command saves the current transformation by inserting q operator into the content stream. The primitive has been
introduced in pdfTEX 1.40.0.

I \pdfrestore

The command restores previously saved transformation by inserting Q operator into the content stream. One should
keep in mind that \pdfsave and \pdfrestore pairs should always be properly nested and should start and end at the
same group level. The primitive has been introduced in pdfTEX 1.40.0.

7.19 Miscellaneous

I \vadjust [〈pre spec〉] 〈filler〉 { 〈vertical mode material〉 }

The \vadjust implementation of pdfTEX adds an optional qualifier 〈pre spec〉 (which is the string pre) to the original
TEX primitive with the same name. As long as there is no pre given, \vadjust behaves exactly as the original (see
the TEXbook, p. 281); it appends an adjustment item created from 〈vertical mode material〉 to the current list after the
line in which \vadjust appears. However with the qualifier pre, the adjustment item is put before the line in which
\vadjust pre appears.

I \quitvmode

The primitive instructs pdfTEX to quit the vertical mode and start typesetting a paragraph. \quitvmode has the same
effect as \leavevmode definition from plain macro package. Note however, that \leavevmode may conflict with

�
�

�
�

�
�

content The pdfTEX user manual exit

\everypar tokens list. No such risk while using \quitvmode instead. The primitive has been introduced in pdfTEX
1.21a.

I \pdfsavepos

This primitive marks the current absolute (x, y) position on the media, with the reference point in the lower left corner.
It is active only during page shipout, when the page is finally assembled. The position coordinates can then be retrieved
by the \pdflastxpos and \pdflastypos primitives, and e. g. written out to some auxiliary file. The coordinates can
be used only after the current \shipout has been finalized, therefore normally two pdfTEX runs are required to utilize
these primitives. Starting with pdfTEX 1.40.0, this mechanism can be used also while running in dvi mode.

I \pdflastxpos (read--only integer)

This primitive returns an integer number representing the absolute x coordinate of the last point marked by
\pdfsavepos. The unit is ‘scaled points’ (sp).

I \pdflastypos (read--only integer)

This primitive works similar to \pdflastxpos, only it returns the y coordinate.

I \pdftexversion (read--only integer)

Returns the version of pdfTEX multiplied by 100, e. g. for pdfTEX version 1.40.1 used to produce this document, it returns
140.

I \pdftexrevision (expandable)

Returns the revision letter of pdfTEX, e. g. for pdfTEX version 1.40.1 used to produce this document, it returns the letter 1.

I \pdftexbanner (expandable)

Returns the pdfTEX banner message, e. g. for the version used here: This is pdfTeX, Version 3.141592-1.40.1-
2.2 (Web2C 7.5.6) kpathsea version 3.5.6. The primitive has been introduced in pdfTEX 1.20a.

I \pdfcreationdate (expandable)

Expands to the date string pdfTEX uses in the info dictionary of the document, e. g. for this file
D:20070125120541+01’00’. The primitive has been introduced in pdfTEX 1.30.0.

�
�

�
�

�
�

content The pdfTEX user manual exit

I \pdfshellescape (read--only integer)

This primitive is 1 if \write18 is enabled, 0 otherwise. \write18 was not enabled when this manual was typeset. The
primitive has been introduced in pdfTEX 1.30.0.

I \ifpdfprimitive 〈control sequence〉 (expandable)

This condition checks if the following control sequence has its primitive meaning. If it has, \ifpdfprimitive returns
true. In any other case (redefined, made \undefined, has never been primitive) false is returned. The primitive has
been introduced in pdfTEX 1.40.0.

I \pdfprimitive 〈control sequence〉

This command executes the primitive meaning of the following control sequence, if it has been redefined or made
undefined. If the following control sequence is undefined and never was a primitive, nothing happens and no error is
raised. If the control sequence was initially expandable, \pdfprimitive expands either. Otherwise \pdfprimitive
doesn’t expand. The primitive has been introduced in pdfTEX 1.40.0.

I \pdfdraftmode (integer)

When set to 1 (or switched on by the commandline switch -draftmode) pdfTEX doesn’t write the output pdf and doesn’t
actually read any images but does everything else (including writing auxiliary files), thus speeding up compilations
when you know you need an extra run but don’t care about the output, e.g. just to get the bibTEX references right. The
primitive has been introduced in pdfTEX 1.40.0.

8 Graphics and color
pdfTEX supports inclusion of pictures in png, jpeg, jbig2, and pdf format; a few differences between these are discussed
below. The most common technique with TEX —the inclusion of eps figures— is replaced by pdf inclusion. eps files can
be converted to pdf by Ghostscript, Adobe Distiller or other PostScript--to--pdf converters.

The pdf format is currently the most versatile source format for graphics embedding. pdfTEX allows to insert arbitrary
pages from pdf files with their own fonts, graphics, and pixel images into a document. The cover page of this manual is
an example of such an insert, being a one page document generated by pdfTEX.

�
�

�
�

�
�

content The pdfTEX user manual exit

By default pdfTEX takes the BoundingBox of a pdf file from its CropBox if available, otherwise from its MediaBox. This
can be influenced by the 〈pdf box spec〉 option to the \pdfximage primitive, or by setting the \pdfforcepagebox
primitive to a value corresponding to the wanted box type.

To get the right BoundingBox from a eps file, before converting to pdf, it is necessary to transform the eps file so that
the start point is at the (0,0) coordinate and the page size is set exactly corresponding to the BoundingBox. A Perl
script (epstopdf) for this purpose has been written. The TEXutil utility script and the PStoPDF program that comes
with Ghostscript can so a similar job. (Concerning this conversion, they can handle complete directories, remove some
garbage from files, takes precautions against duplicate conversion, etc.)

The lossless compressing png format is great for embedding crisp pixel graphics (e. g. line scans, screen shots). Since
pdfTEX 1.30.0 also the alpha-channel of png images is processed if available; this allows embedding of images with
simple transparency. The png format does not support the CMYK color model, which is sometimes required for print
media (this often can be replaced by four component jpeg in high quality or lossless compression mode). Photos in png
format have a rather weak compression; here the jpeg format is preferable.

Embedding png images in the general case requires pdfTEX to uncompress the pixel array and to re--compress it to
the pdf requirements; this process often takes a noticeable amount of time. Since pdfTEX 1.30.0 there is now a fast png
embedding mode that goes without uncompressing; the image data are directly copied into the pdf stream, resulting in
a much higher embedding speed. However this mode is only activated, if the image array structure of the png file is
compatible with the pdf image structure (e. g. an interlaced png image requires uncompressing to re--arrange the image
lines). Luckily it seems that the most common png files also allow fast copying. The use of gamma correction disables
fast copying, as it requires calculations with individual pixels. Whether the fast copy mode is used for a png image can
be seen from the log file, which then shows the string ‘(PNG copy)’ after the png file name.

The jpeg format is normally used in lossy mode; then it’s ideal for embedding photos; it’s not recommended for crisp
images from synthetic sources with a limited amount of colors.

The jbig2 format works only for bitonal (black and white) pixel images like scanned line and text documents, but
for these it has typically a much higher compression ratio than the other two pixel image formats. The jbig2 format
is part of the pdf standard since version 1.5; native jbig2 image inclusion is available in pdfTEX since version 1.40.0.
A jbig2 file might contain many images, which gives an even better compression ratio than with a single image

�
�

�
�

�
�

content The pdfTEX user manual exit

per file, as jbig2 encoders can exploit similarities between bit patterns over several images. Encoders for jbig2 can
operate in lossy as well as lossless modes. Only recently a free jbig2 encoder has been written and made available, see
http://www.imperialviolet.org/jbig2.html.

Other options for graphics in pdfTEX are:

LATEX picture mode Since this is implemented simply in terms of font characters, it works in exactly the same way as
usual.

Xy--pic If the PostScript back--end is not requested, Xy--pic uses its own Type 1 fonts, and needs no special attention.

tpic The ‘tpic’ \special commands (used in some macro packages) can be redefined to produce literal pdf, using
some macros written by Hans Hagen.

METAPOST Although the output of METAPOST is PostScript, it is in a highly simplified form, and a METAPOST to
pdf conversion (mptopdf, written by Hans Hagen and Tanmoy Bhattacharya) is implemented as a set of macros which
reads METAPOST output and supports all of its features.

For new work, the METAPOST route is highly recommended. For the future, Adobe has announced that they will define
a specification for ‘encapsulated pdf’.

The inclusion of raw PostScript commands —a technique utilized by for instance the pstricks package— cannot
directly be supported. Although pdf is direct a descendant of PostScript, it lacks any programming language commands,
and cannot deal with arbitrary PostScript.

9 Character translation
Characters that are input to pdfTEX are subject to optional TEX character translation (tcx) under control of a tcx file. The
tcx maps the input character codes (e. g. from \input or \read) to the character codes as seen by pdfTEX. This mapping
takes place before the characters enter pdfTEX’s ‘mouth’. If no tcx file is read, the input characters enter pdfTEX directly;
no mapping is done.

tcx files consist of lines each containing one or two integer numbers in the range 0..255, either in decimal or hex notation.
A comment sign % in a tcx line starts a comment until the end of line. The first number in each line is for matching the

�
�

�
�

�
�

content The pdfTEX user manual exit

input character code, the second, optional number is the corresponding TEX character code. If a line contains only one
number, characters with this code enter pdfTEX unchanged; no mapping is done.

tcx mapping also influences pdfTEX output streams for \message and \write. Without tcx mapping, only characters
that are within the range 32..126 are flagged as ‘printable’, meaning that these characters are output directly by
\message and \write primitives. Characters outside the range 32..126 are instead output in escaped form, e. g. as ^^A
for a character with code 0x01. When a character code is mentioned in the 2nd column of the tcx file, or as the only value
in a line, it is flagged as ‘printable’. During \message and \write, output characters are mapped in reverse direction:
they are looked up in the 2nd column of the tcx file and the corresponding values from the 1st column are output. Again,
if a pdfTEX character code is found as the only number in a line, no mapping is done. Mentioning a character code as
the only number on a line has the sole purpose to flag this code ‘printable’; remember that character within the range
32..126 are ‘printable’ anyway.

The characters output into the pdf file, e. g. by \pdfliteral or \special primitives, are not subject to tcx output
remapping.

Beware: Character translation interferes with the encTEX primitives; to avoid surprises, don’t use encTEX and tcx
mapping at the same time. Further details about tcx file loading can be found in the teTEX manual.

Abbreviations
In this document we used a few abbreviations. For convenience we mention their meaning here.

afm Adobe Font Metrics
ascii American Standard Code for Information Interchange
bibTEX Handles bibliographies
CMacTEX Macintosh Web2c distribution
ConTEXt general purpose macro package
dvi native TEX Device Independent file format
encTEX encTEX extension to TEX
eps Encapsulated PostScript

�
�

�
�

�
�

content The pdfTEX user manual exit

epstopdf eps to pdf conversion tool
ε-TEX an extension to TEX
TEXexec ConTEXt command line interface
exif Exchangeable Image File format (JPEG file variant)
Ghostscript ps and pdf language interpreter
hz Hermann Zapf optimization
jbig Joint Bi-level Image Experts Group
jbig2 Joint Bi-level Image Experts Group
jpeg Joint Photographic Experts Group
LATEX general purpose macro package
TEX Live TEX-Live distribution (multiple platform)
Mac OS X Macintosh operating system version 10
md5 MD5 message-digest algorithm
METAFONT graphic programming environment, bitmap output
METAPOST graphic programming environment, vector output
MikTeX Win32 distribution
MLTEX MLTEX extension to TEX
mptopdf METAPOST to pdf conversion tool
MSDos Microsoft DOS platform (Intel)
pdf Portable Document Format
pdfTEX TEX extension producing pdf output
pdfeTEX ε-TEX extension producing pdf output
Perl Perl programming environment
pgc pdf Glyph Container
pk Packed bitmap font
png Portable Network Graphics
PostScript PostScript
proTEXt Win32 Web2c distribution based on MikTeX
PStoPDF PostScript to pdf converter (on top of GhostScript)

�
�

�
�

�
�

content The pdfTEX user manual exit

rgb Red Green Blue color specification
tcx TEX Character Translation
tds TEX Directory Standard
teTEX TEX distribution for Unix (based on Web2c)
TEX typographic language and program
Texinfo generate typeset documentation from info pages
tfm TEX Font Metrics
Unix Unix platform
url Uniform Resource Locator
TEXutil ConTEXt utility tool
web literate programming environment
Web2c official multi--platform web environment
Win32 Microsoft Windows platform
XEmTEX Win32 Web2c distribution

Examples of HZ and protruding
In the following sections we will demonstrate pdfTEX’s protruding and hz features, using a text from E. Tufte. This
sample text has a lot of punctuation and often needs hyphenation. Former pdfTEX versions had sometimes problems
with combining these features, but from version 1.21a on it should be ok. If you still encounter problems, please try to
prepare a small test file that demonstrates the problem and send it to one of the maintainers.

Normal
We thrive in information--thick worlds because of our marvelous and everyday capacity to select, edit, single out,
structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pigeonhole,
pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate,

�
�

�
�

�
�

content The pdfTEX user manual exit

outline, summarize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from the chaff and separate the sheep from the goats.

�
�

�
�

�
�

content The pdfTEX user manual exit

We thrive in information--thick worlds because of our
marvelous and everyday capacity to select, edit, sin-
gle out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil
down, choose, categorize, catalog, classify, list, abstract,
scan, look into, idealize, isolate, discriminate, distinguish,
screen, pigeonhole, pick over, sort, integrate, blend, in-

spect, filter, lump, skip, smooth, chunk, average, approx-
imate, cluster, aggregate, outline, summarize, itemize,
review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, win-
now the wheat from the chaff and separate the sheep from
the goats.

HZ
We thrive in information--thick worlds because of our marvelous and everyday capacity to select, edit, single out,
structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pigeonhole,
pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate,
outline, summarize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our
marvelous and everyday capacity to select, edit, single
out, structure, highlight, group, pair, merge, harmonize,
synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look
into, idealize, isolate, discriminate, distinguish, screen, pi-

geonhole, pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into,
flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the goats.

Protruding
We thrive in information--thick worlds because of our marvelous and everyday capacity to select, edit, single out,
structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pigeonhole,
pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate,

�
�

�
�

�
�

content The pdfTEX user manual exit

outline, summarize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our
marvelous and everyday capacity to select, edit, sin-
gle out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil
down, choose, categorize, catalog, classify, list, abstract,
scan, look into, idealize, isolate, discriminate, distinguish,
screen, pigeonhole, pick over, sort, integrate, blend, in-

spect, filter, lump, skip, smooth, chunk, average, approxi-
mate, cluster, aggregate, outline, summarize, itemize, re-
view, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, win-
now the wheat from the chaff and separate the sheep from
the goats.

Both
We thrive in information--thick worlds because of our marvelous and everyday capacity to select, edit, single out,
structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pigeonhole,
pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate,
outline, summarize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our mar-
velous and everyday capacity to select, edit, single out,
structure, highlight, group, pair, merge, harmonize, synthe-
size, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeon-

hole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggre-
gate, outline, summarize, itemize, review, dip into, flip
through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the
chaff and separate the sheep from the goats.

Additional PDF keys
This section is based on the manual on keys written by Martin Schröder, one of the maintainers of pdfTEX.

�
�

�
�

�
�

content The pdfTEX user manual exit

A pdf document should contain only the structures and attributes defined in the pdf specification. However, the
specification allows applications to insert additional keys, provided they follow certain rules.

The most important rule is that developers have to register with Adobe prefixes for the keys they want to insert. Hans
Hagen has registered the prefix PTEX for pdfTEX.

pdfTEX generates an XObject for every included pdf. The dictionary of this object contains these additional keys:

key type meaning

PTEX.FileName string The name of the included file as seen by pdfTEX.
PTEX.InfoDict dictionary The document information dictionary of the included pdf (an indirect object).
PTEX.PageNumber integer The page number of the included file.

The PDF Reference says: “Although viewer applications can store custom metadata in the document information
dictionary, it is inappropriate to store private content or structural information there; such information should be stored
in the document catalog instead.”

Although it would seem more natural to put this infomation in the document information dictionary, we have to obey
the rules laid down in the PDF Reference. The following key ends up in the document catalog.

key type meaning

PTEX.Fullbanner string The full version of the binary that produced the file as displayed by pdftex --version
, e. g. This is pdfTeX, Version 3.141592-1.40.1-2.2 (Web2C 7.5.6) kpath-
sea version 3.5.6. This is necessary because the string in the Producer key in the
info dictionary is rather short, e. g. pdfTeX-1.40.0.

Colophon
This manual is typeset in ConTEXt. One can generate an A4 version from the source code by typing:

texexec --result=pdftex-a.pdf pdftex-t

Or in letter size:

�
�

�
�

�
�

content The pdfTEX user manual exit

texexec --mode=letter --result=pdftex-l.pdf pdftex-t

Given that the A4 version is typeset, one can generate an A5 booklet by typing:

texexec --pdfarrange --paper=a5a4 --print=up --addempty=1,2
--result=pdftex-b.pdf pdftex-a

Odd and even page sets for non-duplex printers can be generated using --pages=odd and --pages=even options
(which might require some disciplined shuffling of sheet).

This also demonstrates that pdfTEX can be used for page imposition purposes (given that pdfTEX and the fonts are set
up properly).

�
�

�
�

�
�

content The pdfTEX user manual exit

GNU Free Documentation License
Version 1.2, November 2002
Copyright C© 2000, 2001, 2002
Free Software Foundation, Inc.
59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not al-
lowed.

Preamble

The purpose of this License is to make a manual, textbook,
or other functional and useful document “free” in the sense
of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, ei-
ther commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get
credit for their work, while not being considered responsi-
ble for modifications made by others.

This License is a kind of “copyleft”, which means that de-
rivative works of the document must themselves be free
in the same sense. It complements the GNU General Pub-
lic License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for man-
uals for free software, because free software needs free
documentation: a free program should come with manu-
als providing the same freedoms that the software does.
But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recom-
mend this License principally for works whose purpose is
instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any
medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the
conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public
is a licensee, and is addressed as “you”. You accept the
license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work
containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into
another language.

�
�

�
�

�
�

content The pdfTEX user manual exit

A “Secondary Section” is a named appendix or a front-
matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Docu-
ment to the Document’s overall subject (or to related mat-
ters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a text-
book of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of his-
torical connection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary Sections
whose titles are designated, as being those of Invariant Sec-
tions, in the notice that says that the Document is released
under this License. If a section does not fit the above defini-
tion of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that
are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and
a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-
readable copy, represented in a format whose specification

is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and
that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification
by pdf viewers is not Transparent. An image format is
not Transparent if used for any substantial amount of text.
A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies in-
clude plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly avail-
able DTD, and standard-conforming simple HTML, Post-
Script or pdf designed for human modification. Exam-
ples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can
be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated
HTML, PostScript or pdf produced by some word proces-
sors for output purposes only.

The ”Title Page” means, for a printed book, the title page
itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the

�
�

�
�

�
�

content The pdfTEX user manual exit

title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the
Document whose title either is precisely XYZ or contains
XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section
name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Pre-
serve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next
to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect
on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium,
either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all

copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute
a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated
above, and you may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that com-
monly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must
present the full title with all words of the title equally promi-
nent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in
other respects.

�
�

�
�

�
�

content The pdfTEX user manual exit

If the required texts for either cover are too voluminous to
fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Doc-
ument numbering more than 100, you must either in-
clude a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general
network-using public has access to download using public-
standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the lat-
ter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to en-
sure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the au-
thors of the Document well before redistributing any large
number of copies, to give them a chance to provide you
with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the
Document under the conditions of sections 2 and 3 above,

provided that you release the Modified Version under pre-
cisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modifica-
tion of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of
previous versions (which should, if there were any, be
listed in the History section of the Document). You may
use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifica-

tions adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a li-

cense notice giving the public permission to use the
Modified Version under the terms of this License, in the
form shown in the Addendum below.

�
�

�
�

�
�

content The pdfTEX user manual exit

G. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Docu-
ment’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Ti-

tle, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Enti-
tled “History” in the Document, create one stating the
title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Doc-
ument for public access to a Transparent copy of the
Document, and likewise the network locations given
in the Document for previous versions it was based
on. These may be placed in the “History” section. You
may omit a network location for a work that was pub-
lished at least four years before the Document itself, or
if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Ded-
ications”, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Document, un-
altered in their text and in their titles. Section numbers

or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a sec-
tion may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “En-
dorsements” or to conflict in title with any Invariant
Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections
or appendices that qualify as Secondary Sections and con-
tain no material copied from the Document, you may at
your option designate some or all of these sections as in-
variant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided
it contains nothing but endorsements of your Modified
Version by various parties–for example, statements of peer
review or that the text has been approved by an organiza-
tion as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-
Cover Text, and a passage of up to 25 words as a Back-
Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document

�
�

�
�

�
�

content The pdfTEX user manual exit

already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by
this License give permission to use their names for public-
ity for or to assert or imply endorsement of any Modified
Version.

COMBINING DOCUMENTS

You may combine the Document with other documents
released under this License, under the terms defined in
section 4 above for modified versions, provided that you in-
clude in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license no-
tice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this
License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make
the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list

of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Enti-
tled “History” in the various original documents, forming
one section Entitled “History”; likewise combine any sec-
tions Entitled “Acknowledgements”, and any sections En-
titled “Dedications”. You must delete all sections Entitled
“Endorsements”.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document
and other documents released under this License, and re-
place the individual copies of this License in the various
documents with a single copy that is included in the col-
lection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection,
and distribute it individually under this License, provided
you insert a copy of this License into the extracted docu-
ment, and follow this License in all other respects regarding
verbatim copying of that document.

�
�

�
�

�
�

content The pdfTEX user manual exit

AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on
a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the
Document is included in an aggregate, this License does
not apply to the other works in the aggregate which are
not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to
these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers
if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you
may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright
holders, but you may include translations of some or all

Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of
this License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you also in-
clude the original English version of this License and the
original versions of those notices and disclaimers. In case
of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled “Acknowledge-
ments”, “Dedications”, or “History”, the requirement (sec-
tion 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Doc-
ument except as expressly provided for under this License.
Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate
your rights under this License. However, parties who have
received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties
remain in full compliance.

�
�

�
�

�
�

content The pdfTEX user manual exit

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised
versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing ver-
sion number. If the Document specifies that a particular

numbered version of this License “or any later version”
applies to it, you have the option of following the terms
and conditions either of that specified version or of any
later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not spec-
ify a version number of this License, you may choose any
version ever published (not as a draft) by the Free Software
Foundation.

�
�

�
�

�
�

	Introduction
	About this manual
	Legal Notice

	About PDF
	Getting started
	Getting sources and binaries
	Compiling
	Placing files
	Setting search paths
	The PDFTEX configuration
	Creating format files
	Testing the installation
	Common problems

	Macro packages supporting PDFTEX
	Setting up fonts
	Map files
	Helper tools for TrueType fonts

	Formal syntax specification
	PDFTEX primitives
	Document setup
	\pdfoutput
	\pdfminorversion
	\pdfcompresslevel
	\pdfobjcompresslevel
	\pdfdecimaldigits
	\pdfhorigin
	\pdfvorigin
	\pdfpagewidth
	\pdfpageheight

	The document info and catalog
	\pdfinfo
	\pdfcatalog
	\pdfnames
	\pdftrailer

	Fonts
	\pdfpkresolution
	\pdffontexpand
	\pdfadjustspacing
	\efcode
	\pdfprotrudechars
	\rpcode
	\lpcode
	\leftmarginkern
	\rightmarginkern
	\pdffontattr
	\pdffontname
	\pdffontobjnum
	\pdffontsize
	\pdfincludechars
	\pdfuniqueresname
	\pdfmapfile
	\pdfmapline
	\pdftracingfonts
	\pdfmovechars
	\pdfpkmode
	\pdfnoligatures

	PDF objects
	\pdfobj
	\pdflastobj
	\pdfrefobj

	Page and pages objects
	\pdfpagesattr
	\pdfpageattr
	\pdfpageref

	Form XObjects
	\pdfxform
	\pdfrefxform
	\pdflastxform
	\pdfxformname

	Graphics inclusion
	\pdfximage
	\pdfrefximage
	\pdflastximage
	\pdflastximagepages
	\pdfimageresolution
	\pdfforcepagebox
	\pdfinclusionerrorlevel
	\pdfimagehicolor
	\pdfimageapplygamma
	\pdfgamma
	\pdfimagegamma
	\pdfpxdimen

	Annotations
	\pdfannot
	\pdflastannot

	Destinations and links
	\pdfdest
	\pdfstartlink
	\pdfendlink
	\pdflastlink
	\pdflinkmargin
	\pdfdestmargin

	Bookmarks
	\pdfoutline

	Article threads
	\pdfthread
	\pdfstartthread
	\pdfendthread
	\pdfthreadmargin

	Literals and specials
	\pdfliteral
	\special
	\special direct
	\special page

	Strings
	\pdfescapestring
	\pdfescapename
	\pdfescapehex
	\pdfunescapehex
	\pdfmdfivesum

	Numbers
	\ifpdfabsnum
	\ifpdfabsdim
	\pdfuniformdeviate
	\pdfnormaldeviate
	\pdfrandomseed
	\pdfsetrandomseed

	Timekeeping
	\pdfelapsedtime
	\pdfresettimer

	Files
	\pdffilemoddate
	\pdffilesize
	\pdfmdfivesum file
	\pdffiledump

	Colourstack
	\pdfcolorstackinit
	\pdfcolorstack

	Transformations
	\pdfsetmatrix
	\pdfsave
	\pdfrestore

	Miscellaneous
	\vadjust
	\quitvmode
	\pdfsavepos
	\pdflastxpos
	\pdflastypos
	\pdftexversion
	\pdftexrevision
	\pdftexbanner
	\pdfcreationdate
	\pdfshellescape
	\ifpdfprimitive
	\pdfprimitive
	\pdfdraftmode

	Graphics and color
	Character translation
	Abbreviations
	Examples of HZ and protruding
	Normal
	HZ
	Protruding
	Both

	Additional PDF keys
	Colophon
	GNU Free Documentation License

