
MetaUML: Tutorial, Reference and Test Suite

Copyright c©2005-2006 Ovidiu Gheorghieş. Permission is granted
to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invari-
ant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled ”GNU Free
Documentation License”.

1

This page is left intentionally blank.

2

MetaUML: Tutorial, Reference and Test Suite

Ovidiu Gheorghieş

March 21, 2006

Abstract

MetaUML is a GNU GPL MetaPost library for typesetting UML dia-
grams, using a human-friendly textual notation. MetaUML offers a highly
customizable, object-oriented API, designed with the ease of use in mind.
Apart from being a reference, this manual is also a tutorial but, more
importantly, a living example. You can look at its source code, getting
direct accounts on “how things are done”.

1 Introduction

Here are a few diagrams created with MetaUML, just to give you a glimpse of
its features:

A Class Diagram
Client «interface»

Component

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Leaf

Operation()

Composite

B Activity Diagram
Eat something good

from the kitchen

Read a book Listen to music
(and ignore it)

still hungry

had enough

C Notes
An important
UML note Another note

D Use Case Diagram

User

Authenticate user Query database

Database

Authenticate by
username, password

Authenticate by
smartcard

E State Machine Diagram
Working

Reading commands

Processing commands

error

Preparing error report

Writing result

F Package Diagram

A Bnet.foo

net.foo.bar

A B

3

Test
a1
a2
a3
aLongMethod():void

nw n ne

e

sessw

w c

top

bottom

left right

height

width

Figure 1: Positioning properties of any MetaUML object (here a class object is
depicted).

The code which generates these diagrams is quite straightforward, combining
a natural object-oriented parlance with the power of MetaPost equation solving;
for more information on MetaPost see [Hobby, 1992].

An UML class, for example, can be drawn as follows:

Class.A("MyClass")
("attr1: int", "attr2: int")
("method1(): void",
"method2(): void");

A.nw = (0, 0); % optional, implied
drawObject(A);

MyClass
attr1: int
attr2: int
method1(): void
method2(): void

This piece of code creates an instance of Class, which will be afterward iden-
tified as A. This object has the following content properties: a name (MyClass),
a list of attributes (attr1, attr2) and a list of methods (method1, method2).
The one thing remaining before actually drawing A is to set its location.

In A.nw we refer to the “north-west” of the class rectangle, that is to its
upper-left corner. In general, every MetaUML object has the positioning prop-
erties given in figure 1. These properties are used to set where to draw a given
object, whether by assigning them absolute values, or by setting them relatively
to other objects. Suppose that we have defined two classes A and B. Then the
following code would give a conceivable positioning:

A.nw = (0,0);
B.e = A.w + (-20, 0);

AB

After the objects are drawn, one may draw links between them, such as
inheritance or association relations between classes in class diagrams, or tran-

4

sitions between states in state machine diagrams. Whichever the purpose is,
MetaUML provides a generic way of drawing an edge in a diagram’s graph:

link(how-to-draw-information)(path-to-draw);

The “how to draw information” is actually an object which defines the style
of the line (e.g. solid, dashed) and the appearance of the heads (e.g. nothing,
arrow, diamond). One such object, called inheritance, defines a solid path
ending in a white triangle. The path-to-draw parameter is simply a MetaPost
path. For example, the following code can be used used to represent that class
B is derived from A:

link(inheritance)(B.e -- A.w);

Note that the direction of the path is important, and MetaUML uses it to
determine the type of adornment to attach at the link ends (if applicable). In
our example, a white triangle, denoting inheritance, points towards the end of
the path, that is towards class A.

To sum up, we present a short code and the resulting diagram, typical for
just about everything else in MetaUML. The positioning of A does not need
to be explicitly set because “floating” objects are automatically positioned at
(0,0) by their draw method.

input metauml;
beginfig(1);
Class.A("A")()();
Class.B("B")()();
B.e = A.w + (-20, 0);
drawObjects(A, B);
link(inheritance)(B.e -- A.w);

endfig;
end

AB

From a user’s perspective, this is all there is to MetaUML. With a reference
describing how other UML elements are created, one can set out to typeset
arbitrary complex diagrams.

2 Class Diagrams

A class is created as follows:

Class.name(class-name)
(list-of-attributes)
(list-of-methods);

5

The suffix name gives a name to the Class object (which, of course, rep-
resents an UML class). The name of the UML class is a string given by
class-name; the attributes are given as a comma separated list of strings,
list-of-attributes; the methods are given as a comma separated list of
strings, list-of-attributes. The list of attributes and the list of methods
may be void.

Each of the strings representing an attribute or a method may begin with
a visibility marker: “+” for public, “#” for protected and “−” for private.
MetaUML interprets this marker and renders a graphic stereotype in form of a
lock which may be opened, semi-closed and closed, respectively.

Here is an example:

Class.A("Point")
("#x:int", "#y:int")
("+set(x:int, y:int)",
"+getX():int",
"+getY():int",
"-debug():void");

drawObject(A);

Point
x:int
y:int
set(x:int, y:int)
getX():int
getY():int
debug():void

2.1 Stereotypes

After a class is created, its stereotypes may be specified by using the macro
classStereotypes:

classStereotypes.name(list-of-stereotypes);

Here, name is the object name of a previously created class and list-of-stereotypes
is a comma separated list of strings. Here is an example:

Class.A("User")()();
classStereotypes.A("<<interface>>",

"<<home>>");

drawObject(A);

«interface»
«home»
User

2.2 Interfaces and Abstract Classes

At times it is prefered to typeset the name of an interface in an oblique font,
rather than using the “interface” stereotype. This can be easily achieved by
using the macro:

Interface.name(class-name)
(list-of-methods);

Here is an example:

6

Interface.A("Observer")
("+update(src:Object)");

drawObject(A);

Observer

update(src:Object)

Note that Interface is a special kind of Class, the declaration code above
being equivalent to:

EClass.A(iInterface)("Observer")()
("+update(src:Object)");

Along the same line, here’s how abstract classes can be drawn:

EClass.A(iAbstractClass)("Observable")
("observers: Observer[0..*]")
("+addObserver(o: Observer)",
"+notify()");

drawObject(A);

Observable
observers: Observer[0..*]
addObserver(o: Observer)
notify()

If you prefer, you can use the syntactic sugar:

AbstractClass.A("Observable")
("observers: Observer[0..*]")
("+addObserver(o: Observer)",
"+notify()");

2.3 Objects (or Class Instances)

An UML object (or class instance) is created as follows:

Instance.name(object-name)
(list-of-attributes);

The suffix name gives a name to the Instance object. The name of the
object (given by object-name) is typeset underlined. The attributes are given
as a comma separated list of strings, list-of-attributes.

Instance.order("o: Order")
("name=’book’", "{placed}", "{payed}");

drawObject(order);

o: Order
name=’book’
{placed}
{payed}

7

2.4 Parametrized Classes (Templates)

The most convenient way of typesetting a class template in MetaUML is to
use the macro ClassTemplate. This macro creates a visual object which is
appropriately positioned near the class object it adorns.

ClassTemplate.name(list-of-templates)
(class-object);

The name is the name of the template object, list-of-templates is a
comma separated list of strings and the class-object is the name of a class
object.

Here is an example:

Class.A("Vector")()();
ClassTemplate.T("T", "size: int")(A);

drawObjects(A, T);

Vector
T
size: int

The macro Template can also be used to create a template object, but this
time the resulting object can be positioned freely.

Template.name(list-of-templates);

Of course, one can specify both stereotypes and template parameters for a
given class.

2.5 Types of Links

In this section we enumerate the relations that can be drawn between classes
by means of MetaUML macros. Suppose that we have the declared two points,
A (on the left) and B (on the right):

pair A, B;
A = (0,0);
B = (50,0);

8

link(association)(X.e -- Y.w)

X Y

link(associationUni)(X.e -- Y.w)

X Y

link(inheritance)(X.e -- Y.w)

X Y

link(aggregation)(X.e -- Y.w)

X Y

link(associationUni)(X.e -- Y.w)

X Y

link(composition)(X.e -- Y.w)

X Y

link(compositionUni)(X.e -- Y.w)

X Y

link(dependency)(X.e -- Y.w)

X Y

2.6 Associations

In UML an association typically has two of association ends and may have a
name specified for it. In turn, each association end may specify a multiplicity, a
role, a visibility, an ordering. These entities are treated in MetaUML as pictures
having specific drawing information (spacings, font).

The first method of creating association “items” is by giving them explicit
names. Having a name for an association item comes in handy when referring
to its properties is later needed (see the non UML-compliant diagram below).
Note that the last parameter of the macro item is an equation which uses the
item name to perform positioning.

Class.P("Person")()();
Class.C("Company")()();
% drawing code ommited

item.aName(iAssoc)("works for")
(aName.s = .5[P.w, C.w]);

draw aName.n -- (aName.n + (20,20));
label.urt("association name" infont "tyxtt",

aName.n + (20,20));

Person Bankworks for

association name

However, giving names to every association item may become an annoying
burden (especially when there are many of them). Because of this, MetaUML
also allows for “anonymous items”. In this case, the positioning is set by an
equation which refers to the anonymous item as obj.

9

% P and C defined as in the previous example

item(iAssoc)("employee")(obj.nw = P.s);
item(iAssoc)("1..*")(obj.ne = P.s);

% other items are drawn similarly

Person

Company

employee1..*

employer0..*

works for

2.7 Dependencies and Stereotypes

Stereotypes are frequently used with dependencies. Below is an example.

10

Class.F("Factory")()();
Class.O("Object")()();

O.n = F.s - (0, 50);
drawObjects(F, O);

clink(dependency)(F, O);
item(iStereo)("<<creates>>")(obj.w = .5[F.s,O.n])

Factory

Object

«creates»

3 Notes

A note is created as follows:

Note.name(list-of-lines);

The suffix name is the name of the Note object. The comma separated list of
strings, list-of-lines, gives the text contents of the note object, each string
being drawn on its own line. Here is an example:

Note.A("This note", "has two lines.");
drawObject(A);

This note
has two lines.

3.1 Attaching notes to diagram elements

Notes can be attached to diagram elements by using a link of type dashedLink.

Note.A("This is a class");
Class.C("Object")()();

A.sw = C.ne + (20, 20);

drawObject(A, C);

clink(dashedLink)(A, C);

This is a class

Object

Now let us see a more complex example, which demontrates the ability of
accessing sub-elements in a MetaUML diagram.

11

Note.nA("This is the class name");
Note.nB("This is a key attribute");
Note.nC("This is a nice method");

Class.C("Object")("+id:int")
("+clone()", "+serialize()");

topToBottom.left(10)(nA, nB, nC);
leftToRight(10)(C, nB);

drawObjects(C, nA, nB, nC);

clink(dashedLink)(C.namePict, nA);
clink(dashedLink)(C.attributeStack.pict[0], nB);
clink(dashedLink)(C.methodStack.pict[1], nC);

Object
id:int
clone()
serialize()

This is the class name

This is a key attribute

This is a nice method

Macros like leftToRight and topToBottom are presented in section 9.

4 Packages

MetaUML allows for the creation of packages in various forms. Firstly, we have
the option of writing the package name in the middle of the main box. Secondly,
we can write the name on the tiny box above the main box, leaving the main
box empty. Lastly, we can write the package name as in the second case, but
the main box can have an arbitrary contents: classes, other packages, or even
other UML items.

The macro that creates a package has the following synopsis:

Package.name(package-name)(subitems-list);

The parameter package-name is a string or a list of comma separated strings
representing the package’s name. The subitems-list parameter is used to
specify the subitems (tipically classes or packages) of this package; its form is
as a comma separated list of objects, which can be void.

Package.P("java.lang")();
drawObject(P); java.lang

Below is another example:

Package.P("An important", "package")();
drawObject(P); An important

package

12

If you wish to leave the main box empty, you can use the following code:

Package.P("java.lang")();
P.info.forceEmptyContent := 1;
drawObject(P);

java.lang

The same effect as above can be achieved globally by doing:

iPackage.forceEmptyContent := 1;

More information on MetaUML’s way of managing global and per-object
configuration data can be found in section 10 and section 12.

Here is an example involving items contained in a package.

Class.A("A")()();
Class.B("B")()();
Package.P("net.metauml")(A, B);

leftToRight(10)(A, B);

drawObject(P);

net.metauml

A B

4.1 Types of Links

The nesting relation between packages is created by using the nest link infor-
mation.

link(nest)(X.e -- Y.w)
X Y

5 Use Case Diagrams

5.1 Use Cases

An use case is created by the macro Usecase:

Usecase.name(list-of-lines);

The list-of-lines is a comma separated list of strings. These strings are
placed on top of each other, centered and surrounded by the appropriate visual
UML notation.

Here is an use case example:

Usecase.U("Authenticate user",
"by name, password");

drawObject(U);
Authenticate user

by name, password

13

5.2 Actors

An actor is created by the macro Actor:

Actor.name(list-of-lines);

Here, list-of-lines represents the actor’s name. For convenience, the
name may be given as a list of strings which are placed on top of each other, to
provide support for the situations when the role is quite long. Otherwise, giving
a single string as an argument to the Actor constructor is perfectly fine.

Here is an actor example:

Actor.A("User");
drawObject(A);

User

Note that one may prefer to draw diagram relations positioned relatively to
the visual representation of an actor (the “human”) rather than relatively to the
whole actor object (which also includes the text). Because of that, MetaUML
provides access to the “human” of every actor object actor by means of the
sub-object actor.human.

Actor.A("Administrator");
drawObject(A);
draw objectBox(A);
draw objectBox(A.human); Administrator

Note that in MetaUML objectBox(X) is equivalent to X.nw -- X.ne --
X.se -- X.sw -- cycle for every object X. A.human is considered a MetaUML
object, so you can use expressions like A.human.n or A.human.midx.

5.3 Types of Links

Some of the types of links defined for class diagrams (such as inheritance, asso-
ciation etc.) can be used with similar semantics within use case diagrams.

6 Activity Diagrams

6.1 Begin, End and Flow End

The begin and the end of an activity diagram can be marked by using the
macros Begin and End or FlowFinal, respectively. The constructors of these
visual objects take no parameters:

Begin.beginName;
End.endName;

Below is an example:

14

Begin.b;
End.e;
FlowFinal.f;

leftToRight(20)(b, e, f);

drawObjects(b, e, f);

6.2 Activity

An activity is constructed as follows:

Activity.name(list-of-strings);

The parameter list-of-strings is a comma separated list of strings. These
strings are centered on top of each other to allow for the accommodation of a
longer activity description within a reasonable space.

An example is given below:

Activity.A("Learn MetaUML -",
"the MetaPost UML library");

drawObject(A);

Learn MetaUML -
the MetaPost UML library

6.3 Fork and Join

A fork or join is created by the macro:

Fork.name(type, length);

The parameter type is a string and can be either of "h", "horiz", "horizontal"
for horizontal bars, and either of "v", "vert", "vertical" for vertical bars. The
length gives the bar’s length.

Fork.forkA("h", 100);
Fork.forkB("v", 20);

leftToRight(10)(forkA, forkB);

drawObject(forkA, forkB);

6.4 Branch

A branch is created by the macro:

Branch.name;

Here is an example:

15

Branch.testA;

drawObject(testA);

6.5 Types of Links

In activity diagrams, transitions between activities are needed. They are typeset
as in the example below. In section 7.1 such a transition is showed. This type
of link is also used for state machine diagrams.

link(transition)(pointA -- pointB);

7 State Diagrams

The constructor of a state allows for aggregated sub-states:

State.name(state-name)(substates-list);

The parameter state-name is a string or a list of comma separated strings
representing the state’s name or description. The substates-list parameter is
used to specify the substates of this state as a comma separated list of objects;
this list may be void.

An example of a simple state:

State.s("Take order")();
drawObject(s);

Take order

7.1 Composite States

A composite state is defined by enumerating at the end of its constructor the
inner states. Interestingly enough, the composite state takes care of drawing
the sub-states it contains. The transitions must be drawn after the composite
state, as seen in the next example:

Begin.b;
End.e;
State.c("Component")();
State.composite("Composite")(b, e, c);

b.midx = e.midx = c.midx;
c.top = b.bottom - 20;
e.top = c.bottom - 20;

composite.info.drawNameLine := 1;
drawObject(composite);

link(transition)(b.s -- c.n);
link(transition)(c.s -- e.n);

16

Composite

Component

7.2 Internal Transitions

Internal transitions can be specified by using the macro:

stateTransitions.name(list-transitions);

Identifier name gives the state object whose internal transitions are being
set, and parameter list-transitions is a comma separated string list.

An example is given below:

State.s("An interesting state",
"which is worth mentioning")();

stateTransitions.s(
"OnEntry / Open eyes",
"OnExit / Sleep well");

s.info.drawNameLine := 1;

drawObject(s);

OnEntry / Open eyes
OnExit / Sleep well

An interesting state
which is worth mentioning

7.3 Special States

Similarly to the usage of Begin and End macros, one can define history states,
exit/entry point states and terminate pseudo-states, by using the following con-
structors.

History.nameA;
ExitPoint.nameB;
EntryPoint.nameC;
Terminate.nameD;

8 Drawing Paths

The link macro is powerful enough to draw relations following arbitrary paths:

17

path cool;
cool := A.e .. A.e+(20,10) ..

B.s+(20,-40) .. B.s+(-10,-30)
-- B.s;

link(inheritance)(cool);

link(aggregationUni)
(A.n ..(30,30)..B.w);

Regardless of how amusing this feature might be, it does become a bit of a
nuisance to use it in its bare form. When typesetting UML diagrams in good
style, one generally uses rectangular paths. It is for this kind of style that
MetaUML offers extensive support, providing a “syntactic sugar” for constructs
which can otherwise be done by hand, but with some extra effort.

8.1 Manhattan Paths

The “Manhattan” path macros generate a path between two points consisting of
one horizontal and one vertical segment. The macro pathManhattanX generates
first a horizontal segment, while the macro pathManhattanY generates first a
vertical segment. In MetaUML it also matters the direction of a path, so you
can choose to reverse it by using rpathManhattanX and rpathManhattanY (note
the prefix “r”):

pathManhattanX(A, B)
pathManhattanY(A, B)

rpathManhattanX(A, B)
rpathManhattanY(A, B)

18

Here is an example:

Class.A("A")()();
Class.B("B")()();

B.sw = A.ne + (10,10);
drawObjects(A, B);

link(aggregationUni)
(rpathManhattanX(A.e, B.s));

link(inheritance)
(pathManhattanY(A.n, B.w));

A

B

8.2 Stair Step Paths

These path macros generate stair-like paths between two points. The “stair”
can “rise” first in the direction of Ox axis (pathStepX) or in the direction of
Oy axis (pathStepY). How much should a step rise is given by an additional
parameter, delta. Again, the macros prefixed with “r” reverse the direction of
the path given by their unprefixed counterparts.

pathStepX(A, B, delta)
pathStepY(A, B, delta)

rpathStepX(A, B, delta)
rpathStepY(A, B, delta)

Here is an example:

stepX:=60;
link(aggregationUni)

(pathStepX(A.e, B.e, stepX));

stepY:=20;
link(inheritance)

(pathStepY(B.n, A.n, stepY));

A

B

stepX

stepY

8.3 Horizontal and Vertical Paths

There are times when drawing horizontal or vertical links is required, even
when the objects are not properly aligned. To this aim, the following macros
are useful:

pathHorizontal(pA, untilX)
pathVertical(pA, untilY)

19

rpathHorizontal(pA, untilX)
rpathVertical(pA, untilY)

A path created by pathHorizonal starts from the point pA and continues
horizontally until coordinate untilX is reached. The macro pathVertical con-
structs the path dually, working vertically. The prefix “r” reverses the direction
of the path.

Usage example:

untilX := B.left;
link(association)

(pathHorizontal(A.e, untilX));

untilY:= C.bottom;
link(association)

(pathVertical(A.n, untilY));
A

B
b

C
foo: int

untilX

untilY

8.4 Direct Paths

A direct path can be created with directPath. The call directPath(A, B) is
equivalent to A -- B.

8.5 Paths between Objects

Using the constructs presented above, it is clear that one can draw links between
diagram objects, using a code like:

link(transition)(directPath(objA.nw, objB.se));

There are times however this may yield unsatisfactory visual results, espe-
cially when the appearance of the object’s corners is round. MetaUML provides
the macro pathCut whose aim is to limit a given path exactly to the region
outside the actual borders of the objects it connects. The macro’s synopsis is:

pathCut(thePath)(objectA, objectB)

Here, thePath is a given MetaPost path and objectA and objectB are two
MetaUML objects. By contract, each MetaUML object of type, say, X defines
a macro X border which returns the path that surrounds it. Because of that,
pathCut can make the appropriate modifications to thePath.

The following code demonstrates the benefits of the pathCut macro:

20

z = A.se + (30, -10);
link(transition)

(pathCut(A, B)(A.c--z--B.c));
A

B

8.5.1 Direct Paths between Centers

At times is quicker to just draw direct paths between the center of two objects,
minding of course the object margins. The macro which does this is clink:

clink(how-to-draw-information)(objA, objB);

The parameter how-to-draw-information is the same as for the macro
link; objA and objB are two MetaUML objects.

Below is an example which involves the inheritance relation:

clink(inheritance)(A, B);

A

B

9 Arranging Diagram Items

Using equations involving cardinal points, such as A.nw = B.ne + (10,0), is
good enough for achieving the desired results. However, programs are best to
be written for human audience, rather than for compilers. It does become a bit
tiresome to think all the time of cardinal points and figure out the direction of
positive or negative offsets. Because of that, MetaUML offers syntactic sugar
which allows for an easier understanding of the intent behind the positioning
code.

Suppose that we have three classes, A, B, C and their base class Base. We
want the base class to be at the top, and the derived classes to be on a line
below. A code like the following will do:

A.ne = B.nw + (20,0);
B.ne = C.nw + (20,0);
Base.s = B.n + (0,-20);

Now, look at the code again. What strikes you is that you cannot visualize
what it is all about, unless you really try — decoding the intent line by line.
What this code lacks is a feature called self-documenting: the code is good only
if you can read it as a story and understand its meaning.

Perhaps the following version of the code will make the point. All you need
to know is that the numeric argument represents a distance.

21

leftToRight(20)(A, B, C);
topToBottom(20)(Base, B);

Base

A B C

Below there are examples which show how these macros can be used. Sup-
pose that we have the following definitions for objects X, Y, and Z; also, let’s
assume that spacing is a numeric variable set to 5.

Picture.X("a");
Picture.Y("...");
Picture.Z("Cyan");

leftToRight.top(spacing)(X, Y, Z);
a ... Cyan

leftToRight.midy(spacing)(X, Y, Z); a ... Cyan

leftToRight.bottom(spacing)(X, Y, Z); a ... Cyan

topToBottom.left(spacing)(X, Y, Z);

a
...

Cyan

topToBottom.midx(spacing)(X, Y, Z);

a
...

Cyan

topToBottom.right(spacing)(X, Y, Z);

a
...

Cyan

To make typesetting even quicker in frequent usage scenarios, the following
equivalent contructs are also allowed:

leftToRight.midy(spacing)(X, Y, Z);
leftToRight(spacing)(X, Y, Z);

topToBottom.midx(spacing)(X, Y, Z);
topToBottom(spacing)(X, Y, Z);

If you want to specify that some objects have a given property equal, while
the distance between them is given elsewhere, you can use the macro same. This
macro accepts a variable number of parameters, but at least two. The following
table gives the interpretation of the macro for a simple example.

22

same.top(X, Y, Z); X.top = Y.top = Z.top;
same.midy(X, Y, Z); X.midy = Y.midy = Z.midy;
same.bottom(X, Y, Z); X.bottom = Y.bottom = Z.bottom;
same.left(X, Y, Z); X.left = Y.left = Z.left;
same.midx(X, Y, Z); X.midx = Y.midx = Z.midx;
same.right(X, Y, Z); X.right = Y.right = Z.right;

To specify the relative position of two points more easily, one can use the
macros below, above, atright, atleft. Let us assume that A and B are two
points (objects of type pair in MetaPost). The following constructs are equiv-
alent:

B = A + (5,0); B = atright(A, 5);
B = A - (5,0); B = atleft(A, 5);
B = A + (0,5); B = above(A, 5);
B = A - (0,5); B = below(A, 5);

10 The MetaUML Infrastructure

MetaPost is a macro language based on equation solving. Using it may seem
quite tricky at first for a programmer accustomed to modern object-oriented
languages. However, the great power of MetaPost consists in its versatility. In-
deed, it is possible to write a system which mimics quite well object-oriented
behavior. Along this line, METAOBJ ([Roegel, 2002]) is a library worth men-
tioning: it provides a high-level objects infrastructure along with a battery of
predefined objects.

Surprisingly enough, MetaUML does not use METAOBJ. Instead, it uses a
custom written, lightweight object-oriented infrastructure, provisionally called
“util”. METAOBJ’s facilities, although impressive, were perceived by me as
being a bit too much for what was initially intented as a quick way of getting
some UML diagrams layed out. Inspired by METAOBJ, “util” was designed
to fulfill with minimal effort the specific tasks needed to confortably position,
allign or group visual objects which include text.

Another library having some object-oriented traits is the boxes library,
which comes with the standard MetaPost distribution. Early versions of MetaUML
did use boxes as an infrastructure, but this approach had to be abandoned even-
tually. The main reason was that it was difficult to achieve good visual results
when stacking texts (more on that further on). Also, it had a degree of flexibility
which became apparent to be insufficient.

10.1 Motivation

Suppose that we want to typeset two texts with their bottom lines aligned, using
boxit:

23

boxit.a ("yummy");
boxit.b ("cool");

a.nw = (0,0); b.sw = a.se + (10,0);

drawboxed (a, b); % or drawunboxed(a,b)
draw a.sw -- b.se dashed evenly

withpen pencircle scaled 1.1;

yummy cool

yummy cool

Note that, despite supposedly having their bottoms alligned, “yummy” looks
slightly higher than “cool”. This would be unacceptable in an UML class dia-
gram, when roles are placed at the ends of a horizontal association. Regardless
of default spacing being smaller in the util library, the very same unfortunate
misalignment effect rears its ugly head:

24

Picture.a("yummy");
Picture.b("cool");
% comment next line for unboxed
a.info.boxed := b.info.boxed := 1;

b.sw = a.se + (10,0);

drawObjects(a, b);

yummy cool

yummy cool

However, the strong point of util is that we have a recourse to this problem:

iPict.ignoreNegativeBase := 1;

Picture.a("yummy");
Picture.b("cool");
% the rest the same as above
drawObjects(a, b);

yummy cool

yummy cool

10.2 The Picture Macro

We have seen previously the line iPict.ignoreNegativeBase := 1. Who is
iPict and what is it doing in our program? MetaUML aims at separating the
“business logic” (what to draw) from the “interface” (how to draw). In order to
achieve this, it records the “how to draw” information within the so-called Info
structures. The object iPict is an instance of PictureInfo structure, which
has the following properties (or attributes):

left, right, top, bottom
ignoreNegativeBase
boxed, borderColor

The first four attributes specify how much space should be left around the
actual item to be drawn. The marvelous effect of ignoreNegativeBase has
just been shown (off), while the last two attributes control whether the border
should be drawn (when boxed=1) and if drawn, in which color.

There’s one more thing: the font to typeset the text in. This is specified
in a FontInfo structure which has two attributes: the font name and the font
scale. This information is kept within the PictureInfo structure as a contained
attribute iFont. Both FontInfo and PictureInfo have “copy constructors”
which can be used to make copies. We have already the effect of these copy
constructors at work, when we used:

Picture.a("yummy");
a.info.boxed := 1;

A copy of the default info for a picture, iPict, has been made within the
object a and can be accessed as a.info. Having a copy of the info in each object

25

may seem like an overkill, but it allows for a fine grained control of the drawing
mode of each individual object. This feature comes in very handy when working
with a large number of settings, as it is the case for MetaUML.

Let us imagine for a moment that we have two types of text to write: one
with a small font and a small margin and one with a big font and a big margin.
We could in theory configure each individual object or set back and forth global
parameters, but this is far for convenient. It is preferable to have two sets
of settings and specify them explicitly when they are needed. The following
code could be placed somewhere in a configuration file and loaded before any
beginfig macro:

PictureInfoCopy.iBig(iPict);
iBig.left := iBig.right := 20;
iBig.top := 10;
iBig.bottom := 1;
iBig.boxed := 1;
iBig.ignoreNegativeBase := 1;
iBig.iFont.name := defaultfont;
iBig.iFont.scale := 3;

PictureInfoCopy.iSmall(iPict);
iSmall.boxed := 1;
iSmall.borderColor := green;

Below is an usage example of these definitions. Note the name of the macro:
EPicture. The prefix comes form “explicit” and it’s used to acknowledge that
the “how to draw” information is given explicitly — as a parameter, rather than
defaulted to what’s recorded in iPict, as with the Picture macro. Having
predefined configurations yields short, convenient code.

EPicture.a(iBig)("yummy");
EPicture.b(iSmall)("cool");
% you can still modify a.info, b.info

b.sw = a.se + (10,0);

drawObjects(a, b);

yummy
cool

10.3 Stacking Objects

It is possible to stack objects, much in the style of setboxjoin from boxes
library.

26

Picture.a0("yummy");
Picture.a1("cool");
Picture.a2("fool");

setObjectJoin(pa.sw = pb.nw);
joinObjects(scantokens listArray(a)(3));

drawObjects(scantokens listArray(a)(3));
% or drawObjects (a0, a1, a2);

yummy
cool
fool

The listArray macro provides here a shortcut for writing a0, a1, a2. This
macro is particularly useful for generic code which does not know beforehand
the number of elements to be drawn. Having to write the scantokens keyword
is admittedly a nuisance, but this is required.

10.4 The Group Macro

It is possible to group objects in MetaUML. This feature is the cornerstone
of MetaUML, allowing for the easy development of complex objects, such as
composite stats in state machine diagrams.

Similarly to the macro Picture, the structure GroupInfo is used for spec-
ifying group properties; its default instantiation is iGroup. Furthermore, the
macro EGroup explicitely sets the layout information.

Here is an example:

iGroup.left:=20;
iGroup.right:=15;
iGroup.boxed:=1;
iPicture.boxed:=1;

Picture.a("yummy");
Picture.b("cool");
Picture.c("fool");

b.nw = a.nw + (20,20); % A
c.nw = a.nw + (15, 40); % B

Group.g(a, b, c);
g.nw = (10,10); % C

drawObject(g);

yummy

cool

fool

Note that after some objects are grouped, they can all be drawn by invoking
the drawObject macro solely on the group that aggregates them. Another
important remark is that it is necessary only to set the relative positioning of

27

objects within a group (line A and B); afterward, one can simply “move” the
group to a given position (line C), and all the contained objects will move along.

10.5 The PictureStack Macro

The PictureStack macro is a syntactic sugar for a set of pictures, stacked
according to predefined equations and grouped together.

iStack.boxed := 1;
iStack.iPict.boxed := 1;
PictureStack.myStack("foo",
"bar: int" infont "tyxtt",
"nicely-centered" infont defaultfont,
"nice")("vcenter");

drawObject(myStack);

foo
bar: int

cool-man-centered
nice

Note the last parameter of the macro PictureStack, here vcenter. It is
used to generate appropriate equations based on a descriptive name. The spac-
ing between individual picture objects is set by the field iStack.spacing. Cur-
rently, the following alignment names are defined: vleft, vright, vcenter,
vleftbase, vrightbase, vcenterbase. All these names refer to vertical align-
ment (the prefix “v”); alignment can be at left, right or centered. The variants
having the suffix “base” align the pictures so that iStack.spacing refer to the
distance between the bottom lines of the pictures. The unsuffixed variants use
iStack.spacing as the distance between one’s bottom line and the next’s top
line.

The “base” alignment is particularly useful for stacking text, since it offers
better visual appearance when iPict.ignoreNegativeBase is set to 1.

11 Components Design

Each MetaUML component (e.g. Picture, PictureStack, Class) is designed
according to an established pattern. This section gives more insight on this.

In order to draw a component, one must know the following information:

• what to draw, or what are the elements of a component.

• how to draw, or how are the elements positioned in relation to each other
within the component

• where to draw

For example, in order to draw a picture object we must know, respectively:

• what is the text or the native picture that needs to be drawn

• what are the margins that should be left around the contents

28

• where is the picture to be drawn

Why do we bother with these questions? Why don’t we just simply draw
the picture component as soon as it was created and get it over with? That is,
why doesn’t the following code just work?

Picture.pict("foo");

Well, although we have the answer to question 1 (what to draw), we still
need to have question 3 answered. The code below becomes thus a necessity
(actually, you are not forced to specify the positioning of an object, because its
draw method positions it to (0,0) by default):

% question 1: what to draw
Picture.pict("foo");

% question 3: where to draw
pict.nw = (10,10);

% now we can draw
drawObject(pict);

How about question 2, how to draw? By default, this problem is addressed
behind the scenes by the component. This means, for the Picture object, that a
native picture is created from the given string, and around that picture certain
margins are placed, by means of MetaPost equations. (The margins come in
handy when one wants to quickly place Picture objects near others, so that the
result doesn’t look too cluttered.) If these equations were defined within the
Picture constructor, then an usability problem would have appeared, because it
wouldn’t have been possible to modify the margins, as in the code below:

% question 1: what to draw
Picture.pict("foo");

% question 2: how to draw
pict.info.left := 10;
pict.info.boxed := 1;

% question 3: where to draw
pict.nw = (0,0);

% now we can draw
drawObject(pict);

To allow for this type of code, the equations that define the layout of the
Picture object (here, what the margins are) must be defined somewhere after
the constructor. This is done by a macro called Picture layout. This macro

29

defines all the equations which link the “what to draw” information to the
“how to draw” information (which in our case is taken from the info member,
a copy of iPict). Nevertheless, notice that Picture layouts is not explicitly
invoked. To the user’s great relief, this is taken care of automatically within the
Picture draw macro.

There are times however, when explicitly invoking a macro like Picture layout
becomes a necessity. This is because, by contract, it is only after the layout
macro is invoked that the final dimensions (width, height) of an object are defi-
nitely and permanently known. Imagine that we have a component whose job is
to surround in a red-filled rectangle some other objects. This component needs
to know what the dimensions of the contained objects are, in order to be able to
set its own dimensions. At drawing time, the contained objects must not have
been drawn already, because the red rectangle of the container would overwrite
them. Therefore, the whole pseudo-code would be:

Create objects o1, o2, ... ok;
Create container c(o1, o2, ..., ok);
Optional: modify info-s for o1, o2, ... ok;
Optional: modify info for c;

layout c, requiring layout of o1, o2, ... ok;
establish where to draw c;
draw red rectangle defined by c;
draw components o1, o2, ...ok within c

Note that an object mustn’t be laid out more than once, because otherwise
inconsistent or superfluous equations would arise. To enforce this, by contract,
any object must keep record of whether its layout method has already been
invoked, and if the answer is affirmative, subsequent invocations of the layout
macro would do nothing. It is very important to mention that after the layout
macro is invoked over an object, modifying the info member of that object has
no subsequent effect, since the layout equations are declared and interpreted
only once.

11.1 Notes on the Implementation of Links

MetaUML considers edges in diagram graphs as links. A link is composed of
a path and the heads (possible none, one or two). For example, an association
has no heads, and one must simply draw along the path with a solid pen. An
unidirectional aggregation has a solid path and two heads: one is an arrow and
the other is a diamond. So the template algorithm for drawing a link is:

0. Reserve space for heads
1. Draw the path (except for the heads)
2. Draw head 1
3. Draw head 2

30

AB the path specified by the user
|AA′| iLink.widthA
|BB′| iLink.widthB

A BA1 B1

Figure 2: Details on how a link is drawn by MetaUML.

Each of the UML link types define how the drawing should be done, in each
of the cases (1, 2 and 3). Consider the link type of unidirectional composition.
Its “class” is declared as:

vardef CompositionUniInfo@# =
LinkInfo@#;

@#widthA = defaultRelationHeadWidth;
@#heightA = defaultRelationHeadHeight;
@#drawMethodA = "drawArrow";

@#widthB = defaultRelationHeadWidth;
@#heightB = defaultRelationHeadHeight;
@#drawMethodB = "drawDiamondBlack";

@#drawMethod = "drawLine";
enddef;

Using this definition, the actual description is created like this:

CompositionUniInfo.compositionUni;

As shown previously, is is the macro link which performs the actual drawing,
using the link description information which is given as parameter (generally
called iLink). For example, we can use:

link(aggregationUni)((0,0)--(40,0));

Let us see now the inner workings of macro link. Its definition is:

vardef link(text iLink)(expr myPath)=
LinkStructure.ls(myPath,

iLink.widthA, iLink.widthB);
drawLinkStructure(ls)(iLink);

enddef;

First, space is reserved for heads, by “shortening” the given path myPath by
iLink.widthA at the beginning and by iLink.widthB at the end. After that,
the shortened path is drawn with the “method” given by iLink.drawMethod and
the heads with the “methods” iLink.drawMethodA and iLink.drawMethodB,
respectively (figure 2).

31

11.2 Object Definitions: Easier generic declare

In MetaPost, if somebody wants to define something resembling a class in an
object-oriented language, named, say, Person, he would do something like this:

vardef Person@#(expr _name, _age)=
% @# prefix can be seen as ‘this‘ pointer
string @#name;
numeric @#age;

@#name := _name;
@#age := _age;

enddef;

This allows for the creation of instances (or objects) of class Person by using
declarations like:

Person.personA;
Person.personB;

However, if one also wants to able able to create indexed arrays of persons,
such as Person.student0, Person.student1 etc., the definition of class Person
must read:

vardef Person@#(expr _name, _age)=
n := str @#;
generic_declare(string) _n.name;
generic_declare(numeric) _n.age;

@#name := _name;
@#age := _age;

enddef;

This construction is rather inelegant. MetaUML offers alternative macros
to achieve the same effect, uncluttering the code by removing the need for the
unaesthetic n and n.

vardef Person@#(expr _name, _age)=
attributes(@#);
var(string) name;
var(numeric) age;

@#name := _name;
@#age := _age;

enddef;

32

12 Customization in MetaUML: Examples

We have seen that in MetaUML the “how to draw” information is memorized
into the so-called “Info” structures. For example, the default way in which
a Picture object is to be drawn is recorded into an instance of PictureInfo,
named iPict. In this section we present a case study involving the customiza-
tion of Class objects. The customization of any other MetaUML objects works
similarly. Here we cannot possibly present all the customization options for all
kinds of MetaUML objects: this would take too long. Nevertheless, an inter-
ested reader can refer to the top of the appropriate MetaUML library file, where
Info structures are defined. For example, class diagram related definitions are
in metauml class.mp, activity diagram definitions are in metauml activity.mp
etc.

12.1 Global settings

Let us assume that we do not particularly like the default foreground color of
all classes, and wish to change it so something yellowish. In this scenario, one
would most likely want to change the appropriate field in iClass:

iClass.foreColor := (.9, .9, 0);

After this, we can obtain the following result:

Class.A("A")()();
Class.B("B")()();
Class.C("C")()();

B.w = A.e + (20,0);
C.n = .5[A.se, B.sw] + (0, -10);

drawObjects(A, B, C);

A B

C

12.2 Individual settings

When one wants to make modifications to the settings of one particular Class
objects, another strategy is more appropriate. How about having class C stand
out with a light blue foreground color, a bigger font size for the class name and
a blue border?

33

iPict.foreColor := (.9, .9, 0);

Class.A("A")()();
Class.B("B")()();
Class.C("C")()();
C.info.foreColor := (.9, .7, .7);
C.info.borderColor := green;
C.info.iName.iFont.scale := 2;

% positioning code ommited
drawObjects(A, B, C);

A B

C

As an aside, note that for each Class object its info member is created as a
copy of iClass: the actual drawing is performed using this copied information.
Because of that, one can modify the info member after the object has been
created and still get the desired results.

Another thing worth mentioning is that the ClassInfo structure contains
the iName member, which is an instance of PictureInfo. In our example
we do not want to modify the spacings around the Picture object, but the
characteristics of the font its contents is typeset into. To do that, we mod-
ify the iName.iFont member, which by default is a copy of iFont (an in-
stance of FontInfo, defined in util picture.mp). If, for example, we want
to change the font the class name is rendered into, we would set the attribute
iName.iFont.name to a string representing a font name on our system (as used
with the MetaPost infont operator).

12.3 Predefined settings

This usage scenario is perhaps more interesting. Suppose that we have two types
of classes which we want to draw differently. Making the setting adjustments
for each individual class object would soon become a nuisance. MetaUML’s
solution consists in the ability of using predefined “how to draw” Info objects.
Let us create such objects:

ClassInfoCopy.iHome(iClass);
iHome.foreColor := (0, .9, .9);

ClassInfo.iRemote;
iRemote.foreColor := (.9, .9, 0);
iRemote.borderColor := green;

Object iHome is a copy of iClass (as it might have been set at the time of
the macro call). Object iRemote is created just as iClass is originally created.
We can now use these Info objects to easily set the “how to draw” information
for classes. The result is depicted below, please note the “E” prefix in EClass:

34

EClass.A(iHome)("UserHome")()();
EClass.B(iRemote)("UserRemote")()();
EClass.C(iHome)("CartHome")()();
EClass.D(iRemote)("CartRemote")()();

UserHome UserRemote

CartHome CartRemote

12.4 Extreme customization

When another font (or font size) is used, one may also want to modify the
spacings between the attributes’ and methods’ baselines. Figure below is the
result of the (unlikely) code:

Class.A("Foo")
("a: int", "b: int")
("foo()", "bar()", "gar()");

A.info.iName.iFont.name := metauml_defaultFontBold;
A.info.iName.iFont.scale := 1.2;

A.info.iAttributeStack.iPict.iFont.scale := 0.8;
A.info.iAttributeStack.top := 10;
A.info.iAttributeStack.spacing := 11;

A.info.iMethodStack.iPict.iFont.scale := 2;
A.info.iMethodStack.spacing := 17;
A.info.iMethodStack.bottom := 10;

drawObject(A);

Foo

a: int
b: int

foo()
bar()
gar()

Both iAttributeStack and iMethodStack are instances of PictureStackInfo,
which is used to control the display of PictureStack objects.

As font names, you can choose from the globally defined metauml defaultFont,
metauml defaultFontOblique, metauml defaultFontBold, metauml defaultFontBoldOblique,
or any other name of a font that is available on your system.

References

[Roegel, 2002] Roegel, D. (2002). The METAOBJ tutorial and reference man-
ual. Available from www.loria.fr/ roegel/TeX/momanual.pdf.

[Knuth, 1986] Knuth, D. E. (1986). The TEXbook. Addison-Wesley Publishing
Company.

[Lamport, 1994] Lamport, L. (1994). LATEX a Document Preparation System.
Addison-Wesley Publishing Company, 2nd edition.

35

[Hobby, 1992] Hobby, J. (1992) A User’s Manual for MetaPost. Available from
http://www.tug.org/tutorials/mp/.

[Gjelstad, 2001] Gjelstad, E. (2001). uml.sty 0.09.09. Available from
http://heim.ifi.uio.no/~ellefg/uml.sty/.

[Diamantini, 1998] Diamantini, M. (1998). Interface utilisateur du package pst-
uml. Available from http://perce.de/LaTeX/pst-uml/.

[Palmer, 1999] Palmer, D. (1999). The umldoc UML Documentation Package.
Available from http://www.charvolant.org/~elements/.

[OMG, 2003] Object Management Group (2003). XML Metadata Interchange
(XMI) Specification. Available from http://www.omg.org/.

36

13 Test suite

13.1 Low-level

Test 1 —
nothing shown (intentionally)
Test 2 —
nothing shown (intentionally)

13.2 Fonts

Test 1 —
Font name: () pcrr

<<stereotype>>

<<a>>, <>, <<c>>

[guard]

[stillhungry] closing paranthesis SHOWN after hungry !

[still hungry] closing paranthesis NOT shown after hungry !

[][][][]hm]

{constraint}

{a constraint} closing paranthesis NOT shown !

Test 2 —
Font name: () tyxbtt
«stereotype»

«a», «b», «c»

[guard]

[stillhungry] closing paranthesis SHOWN after hungry !

[still hungry] closing paranthesis NOT shown after hungry !

[][][][]hm]

{constraint}

{a constraint} closing paranthesis NOT shown !

Test 3 —
assembleElementLocalMatrix(k: KeyType, mat: LocalMatrixType, a: AssembleAction)

assembleElementLocalMatri(k: KeyType, mat: LocalMatrixType, a: AssembleAction)

assembleElntLocalMatri(k: KeyType, mat: LocalMatrixType, a: AssembleAction)

37

13.3 Cliparts

Locks —

foo

13.4 Util library

13.4.1 Picture tests

Test 1 —

xxxyyy
foo, bar, foo

nice, ugly

what a nice feature

Test 2 —

foo
bar

foo
bar

root

toof

Test 3 —

a
cool
good
tust
fookaaa
dddd
asf

good..

.f: int .goofy: int .goot

goof

Test 4 —
goof Aoorian fpp f: int aa()

goof Aoorian fpp f: int aa()

Test 5 —
«foo»
Test 6 —

foo bar cool

x: int
an anounymous item

38

13.4.2 Group tests

Test 1 —
p0

p1

Test 2 —

Test picture in group

s s

13.4.3 PictureStack tests

Test 1 —

Test 2 —
foo

bar: int

cool man
nice

Test 3 —
fooornika
gar nichts
nicelina

fooornika
gar nichts
nicelina

fooornika
gar nichts
nicelina

13.4.4 Positioning tests

Test 1 —
a ... XYZ

a ... XYZ
Test 2 —
a ... XYZ

a ... XYZ
Test 3 —
a ... XYZ

a ... XYZ
Test 4 —

39

a
...

XYZ

a
...

XYZ
Test 5 —

a
...

XYZ

a
...

XYZ
Test 6 —

a
...

XYZ

a
...

XYZ

13.5 Class diagram

13.5.1 Class tests

Test 1 —
AAA

noo:int
bar:double
c:Integer
f: int
foo()
bar()

AAA
noo:int
bar:double
c:Integer
f: int
noo()
bar()

Test 2 —
AAA

foo:int
bar:double
c:Integer
f: int

AAA
foo:int
bar:double
c:Integer
f: int

Test 3 —
AAA AAA

40

Test 4 —
«ooo»

«home»
«intergace»

AAA

«ooo»
«home»

«intergace»

AAA

Test 5 —
«interface»

«home»
User

Test 6 —
User

Test 7 —
Observer

update(src: Object)

Test 8 —
Observer

update(src: Object)

Test 9 —
Observer

update(src: Object)

Test 10 —
AbstractClass

[]{}
update(src: Object)

Test 11 —
AbstractClass

[]{}
update(src: Object)

13.5.2 Class template tests

Test 1 —

Person
foo
bar

Test 2 —

41

Person
foo: int

Test 3 —

VeryVeryLongClassName
int foo

Shortie
abracadabra: long long int

T

Shortie
abracadabra: long long int

TrulyAmazingLongTypename

13.5.3 Qualified Association tests

Test 1 —
Person

accountNumber:int
foo: id

Test 2 —
Person

accountNumber:int
foo: id
foolang

42

13.6 Package diagram

13.6.1 Package tests

Test 1 —
This package contains them all

java.sun.com

One class package

A class

Multipackage

An instance

A state An activity

Test 2 —
Name on top

By default name
is in the middle

Contains class

A class
Attribute
Method

13.7 Paths

Test 1 —

Bar

Foo
a: int
b: int

43

13.8 Behavioral diagrams

13.8.1 Activity tests

Test 1 —

Test 2 —

go to school
while singing

13.8.2 State Machine tests

Test 1 —

Test 2 —

the light is
visibly on

Another nice state

Test 3 —

OnEntry / doVeryHappy
OnExit / doSomewhatSad

Interesting state

Test 4 —

44

Composite state

A state Another state

Test 5 —

13.8.3 Usecase tests

Test 1 —

Test 2 —

foo Bar in debug mode
fooling around

Student

.
X

Test 3 —

45

foo

Log in for an eagerly
awaiting user

which spans the 3rd line

foo xasdf asdf as
asdfa

foo xasdf asdf as
asdfa

cru asdf asdf ygh
Sdfg s

Test 4 —

User A2
doesn’t looks all too nice

by today’s standards

Test 5 —

User A
on two lines
Test 6 —

User A
reloaded
Test 7 —

A highly customizable

usecase. Foo bar!

Test 8 —

46

A highly customizable
usecase. Foo bar!

Test 9 —

A highly
 customizable usecase.

Another very
 customizable usecase.

13.9 Miscelaneous

13.9.1 Notes

Test 1 —
Antananarivo
Machupichu

Test 2 —

Please disregard this note

Please take the other note
very seriously

13.9.2 Objects (Class Instances)

Test 1 —
:Foo

int: val1
bool: val2

:Bar
very long text for testing purposes

s: Student
line1
line2
line3
line4
line5

Example
small

g: Yummy
{placed}
{color=red}

47

13.10 User requests

Test 1 —
«interface»

ElementLocalSystemAcceptor

startElementAssebly()
assembleElementLocalMatrix(k: KeyType, mat: LocalMatrixType, a: AssembleAction)
assembleElementLocalRHS(k: KeyType, rhs: LocalRHSType, a: AssembleAction)
endElementAssembly()

KeyType: typename
«interface»

FaceLocalSystemAcceptor

startFaceAssebly()
assembleFaceLocalMatrix(k1: KeyType, k2: KeyType, mat: LocalMatrixType, a: AssembleAction)
assembleFaceLocalRHS(k: KeyType, rhs: LocalRHSType, a: AssembleAction)
endFaceAssembly()

KeyType: typename
«interface»

SolutionProvider

startSortBack()
getLocalSolution(k: KeyType, sol: LocalSolutionType)
endSortBack()

KeyType: typename

LapackMatrixSorter
indMan: IndexManager
A: LaGenMatDouble&
x: LaVectorDouble&
b: LaVectorDouble&
startElementAssembly()

KeyType: typename
IndexManager: class

Test 2 —

Eat something good
from the kitchen

Read a book

foo

13.11 Skins

Test 1 —
HelloSkin
nice: int

done(): void

Test 1 —
HelloSkinGlobal

foo: int

bar(): void

48

14 GNU Free Documentation License

Version 1.2, November 2002
Copyright c©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document ”free” in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated
herein. The ”Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as ”you”. You accept the
license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary

49

Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discour-
age subsequent modification by readers is not Transparent. An image format is
not Transparent if used for any substantial amount of text. A copy that is not
”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, ”Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific sec-
tion name mentioned below, such as ”Acknowledgements”, ”Dedications”,
”Endorsements”, or ”History”.) To ”Preserve the Title” of such a sec-
tion when you modify the Document means that it remains a section ”Entitled
XYZ” according to this definition.

50

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

51

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
”History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the ”History” section. You may omit a network

52

location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled ”Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties–for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, pro-
vided that you include in the combination all of the Invariant Sections of all

53

of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in
the various original documents, forming one section Entitled ”History”; likewise
combine any sections Entitled ”Acknowledgements”, and any sections Entitled
”Dedications”. You must delete all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in
the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an ”aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the
individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,

54

but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedica-
tions”, or ”History”, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License ”or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled ”GNU Free Documentation
License”.

55

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other combina-
tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

56

	Introduction
	Class Diagrams
	Stereotypes
	Interfaces and Abstract Classes
	Objects (or Class Instances)
	Parametrized Classes (Templates)
	Types of Links
	Associations
	Dependencies and Stereotypes

	Notes
	Attaching notes to diagram elements

	Packages
	Types of Links

	Use Case Diagrams
	Use Cases
	Actors
	Types of Links

	Activity Diagrams
	Begin, End and Flow End
	Activity
	Fork and Join
	Branch
	Types of Links

	State Diagrams
	Composite States
	Internal Transitions
	Special States

	Drawing Paths
	Manhattan Paths
	Stair Step Paths
	Horizontal and Vertical Paths
	Direct Paths
	Paths between Objects
	Direct Paths between Centers

	Arranging Diagram Items
	The MetaUML Infrastructure
	Motivation
	The Picture Macro
	Stacking Objects
	The Group Macro
	The PictureStack Macro

	Components Design
	Notes on the Implementation of Links
	Object Definitions: Easier generic_declare

	Customization in MetaUML: Examples
	Global settings
	Individual settings
	Predefined settings
	Extreme customization

	Test suite
	Low-level
	Fonts
	Cliparts
	Util library
	Picture tests
	Group tests
	PictureStack tests
	Positioning tests

	Class diagram
	Class tests
	Class template tests
	Qualified Association tests

	Package diagram
	Package tests

	Paths
	Behavioral diagrams
	Activity tests
	State Machine tests
	Usecase tests

	Miscelaneous
	Notes
	Objects (Class Instances)

	User requests
	Skins

	GNU Free Documentation License

