
The Package widetable∗

Claudio Beccari†

October 26, 2009

Contents

1 Legalese 1

2 Introduction 2

3 Usage 2

4 The method 3

5 The long division algorithm 3

6 Using the ε-TEX facilies 4

7 Acknowledgements 4

8 Implementation 4

9 Conclusion 11

Abstract

This package allows to typeset tables of specified width, provided they
fit in one page. Instead of introducing an infinite stretching glue, which has
an unsymmetrical effect in standard LATEX, here the \tabcolsep dimension
is computed so as to have the table come out with the proper width.

1 Legalese
This file is part of the widetable package.

This work may be distributed and/or modified under the conditions of the
LaTeX Project Public License, either version 1.3 of this license or (at your op-
tion) any later version. The latest version of this license is in http://www.latex-
project.org/lppl.txt and version 1.3 or later is part of all distributions of LaTeX
version 2003/12/01 or later.

This work has the LPPL maintenance status “maintained”.
The Current Maintainer of this work is Claudio Beccari
The list of all files belonging to the distribution is given in the file ‘manifest.txt’.
The list of derived (unpacked) files belonging to the distribution and covered

by the LPPL is defined by the unpacking scripts (with extension .ins) which are
part of the distribution.
∗Version number v.1.1; last revision 2009/10/26.
†claudio dot beccari at gmail dot com

1

2 Introduction
It is well known that when the standard environment tabular* is opened with a
specified width, it is necessary to introduce in the delimiter declaration @{...} of
(possibly) the first cell of the model row a declaration such as

\extracolsep{\fill}

in addition to other possible printable delimiters, such as vertical lines, and other
fixed spacing commands. The effect is that the extra stretchable glue operates only
on the left of each cell after (to the right of) the cell that received the declaration;
the first cell will never get larger in spite of the presence of this glue.

Another package, tabularX, normally distributed by the LATEX3 Team with
every version of the TEX system distribution, allows to create expandable cells,
provided they contain only text. These expandable cells are identified with the
column identifier X; this identifier defines a paragraph-like cell, the width of which
gets determined after some runs of the typesetter on the same source tabular
material, so as to find out the correct width of the textual columns.

The approach here is a little bit different: the cell contents need not be textual
and no cell width is determined in one or more runs of the typesetter; instead the
inter column glue is determined so as to fill every cell on both sides with the proper
space. The macros contained in this package are insensitive to the particular kind
of cell descriptors and to the presence of multiple \multicolumn commands. It
proved to work properly also if the array package extensions are used.

On the other hand, as well as for tabularX, it needs to typeset the table
three times; the first two times with standard values for the inter column glue
\tabcolsep, in order to find the exact parameters of the linear dependence of
the table width from the value of that glue; then executes some computations so
as to extrapolate the final correct value of \tabcolsep, and on the third run it
eventually typesets the table with the specified width.

The time increase needed for these three table typesettings are in general rather
negligible, nevertheless if a specific document contained many dozens of such ta-
bles, the compilation time might become observable.

It might be noticed that in order to perform the necessary computations a frac-
tional division algorithm had to be implemented; A specific LATEX run that loads
several different packages might then contain several fractional division macros,
besides those already contained in the kernel. But unfortunately each of these
macros has been designed for a specific purpose and a specific interface.

3 Usage
This package issues an error message only in case the environment includes other
unhided environment; this is explained in the Implementation section. Here it is
assumed that the table is first typeset to its natural width; should it appear too
small, and should it be typeset at a larger width, for example by filling the total

2

\linewidth available at that specific point, then and only then the tabular en-
vironment is changed to widetable, Should the initial table be moderately larger
than the \linewidth, than it might be shrinked to \linewidth with widetable,
provided there are enough columns, and therefore delimiters, to be reduced in
size. Of course it’s impossible to typeset any table with any negative value of
\tabcolsep; or better, it is possible, but the result in general is very messy.

In other words widetable should be used as a second resort, so as to correct
some typesetting features not considered aesthetically acceptable.

The syntax for the use of the environment widetable is the same as that of
the tabular* environment; the only difference is the name. Therefore one has to
specify:

\begin{widetable}{〈width〉}{〈column descriptors〉}
〈line of cells〉\\
〈line of cells〉\\
...
〈line of cells〉\\
〈line of cells〉\\
\end{widetable}

4 The method
The principle on which this little package is based is the following; suppose a
certain table is typeset with an inter column glue t0 = 0 and that its width turns
out to be l0; suppose the same tabular material is typeset again with an inter
column glue t1 > 0 so that the table table gets as large as l1 > l0. Then, if the
table has to be as wide as l the inter column glue must equal the value

t =
l − l0
l1 − l0

· t1

Therefore we need to run the typesetting of the same tabular material with the
two values of the inter column glue set to zero and to t1, respectively, so as to
find the widths l0 and l1. Afterwards it has to determine the correct final value t,
and typeset once again the same tabular material for the last time. Of course the
first two runs must put their results into suitable boxes so as to avoid outputting
them into the output file, while at the same time allowing to record the width of
the enclosing boxes.

5 The long division algorithm
The only simple equation the algorithm must compute consists in evaluating the
difference of of two lengths (a computation that is perfectly feasible with the
available simple TEX primitive commands); a fractional division (not feasible with
any TEX primitive command), and finally into multiplying this division result by

3

the only non zero inter column glue (another simple task to be done with TEX
primitive commands).

I have tried several algorithms for computing the fractional result of the divi-
sion of two lengths; unfortunately no one guarantees a minimum of precision with
any sized operands; overflows and similar “accidents” are very common. Iterative
algorithms are difficult to initialize; scaling the operands give a good chance of get-
ting acceptable results, but in one way or another I always found some drawbacks.
Therefore I decided to program the so called “long division” algorithm preceded
by a number of tests in order to avoid spending time in vanishing results, and,
even more important, to waste time in getting overflows that cause an abnormal
termination of the typesetting program.

Of course there is no limit to a better solution; nevertheless the one I imple-
mented never crashed in any real world situation I tested.

6 Using the ε-TEX facilies
On the other side if the etex facilies are available a different approach may be
taken; etex natively performs several calculations connected by mathematical
operations. In particular the scaling operation such as a dimension multiplied
by a number ad immediately divided by another number is performed by storing
the intermediate result into a 64-bit register, so that no overflow takes place if the
operands represent lengths or the scaled-point numbers equivalent to these lengths.
If the etex facilties are available, other calculations are more easily performed in
order to determine directly the scaled length it is necessary to determine.

Therefore this package works equally well with old engines that do not have
the etex functionality and with modern engines that possess this functionality; of
course modern engines work much better and faster.

7 Acknowledgements
I must deeply thank Enrico Gregorio for the revision of this package macros and
for his wise suggestions about the correct programming style. If some glitch still
remains in the programming style, that is just my fault.

I also thank very much Peter R. Wilson who wrote the excellent class
memoir.cls and its formidable decumentation. I copied from his code the neces-
sary lines for testing the etex functionality of the engine that is processing this
file.

8 Implementation
the first thing to do is to globally define a certain number of TEX dimensions and
counters; these dimension and counter registers are selected among the first even
numbered ones, as our Grand Wizard suggested in the TEXbook.

4

Actually I’d prefer to define such registers within the group of the division
algorithm, so as not to mess up anything that might be used by other macros, but
I accepted the suggestion of Enrico Gregorio, about the programming style and I
left these register definitions in a global position, instead of a local group position.

Another point that initially I had solved in a different way was to use register
numbers over the value 255, the maximum that good old TEX could handle. Now
the typesetting/interpreter program pdftex embeds all the extensions introduced
with the former ε-TEX program; now the numbering of the registers can go up to
215− 1, and there is enough choice for any numbering. But it may be argued that
LATEX users do not upgrade their software so often, while there are some situations
where the use of obsolete versions must be still preferred (I can’t imagine any, but
they assure me that there are some). Therefore Enrico correctly suggests to use
the scratch even numbered registers (Knuth’s suggestion, although Knuth excluded
the counter registers from this statement, being the first 10 counters reserved for
complicated page numbering applications).

1 \dimendef\wt@Numer=2
2 \dimendef\wt@Denom=4
3 \countdef\wt@Num=2
4 \countdef\wt@Den=4
5 \countdef\wt@I=6
6 \def\wt@segno{}
7

We copy from memoir.cls the relevant lines and modify them in order to make
them suitable for this widetable package. The relevant point is that a new \if
is defined, \ifetex, and is immediately set to true or false depending on the
fact that the engine being used has the etex functionalities. Actually all modern
engines have these functionalites, but they might have been disabled; old engines
lack these functionalites. May be, if a real ifetex.sty package existed, it would not
be necessary to do any testing and to emulate its inner workings. May be this
package could more efficiently detect it the current engine might be conforming
to the etex specifications, but the latter have been disabled. In any case if the
package existed, its macros would be used instead of the emulated ones.

8 \newif\ifm@mifetex
9 \m@mifetexfalse

10 \IfFileExists{ifetex.sty}{\RequirePackage{ifetex}\relax}{%
11 \PackageWarningNoLine{widetable}{%
12 If there is an ‘ifetex’ package then it is not installed.\MessageBreak
13 The package is being emulated}%
14 \m@mifetextrue
15 \newif\ifetex
16 \etexfalse
17 \ifx\eTeXversion\undefined
18 \else
19 \ifx\eTeXversion\@undefined
20 \else
21 \ifx\eTeXversion\relax
22 \else

5

23 \ifnum\eTeXversion>0\relax
24 \etextrue
25 \fi
26 \fi
27 \fi
28 \fi
29 %%\EmulatedPackage{ifetex}[2008/07/23]% from memoir.cls
30 }
31

We then start the definition of the division algorithm; the name of the macro
and the separators of the delimited arguments are in Italian, thus minimizing the
risk of colliding with macros of other packages. “dividi. . . per. . . in. . . ” means
“divide. . . by. . . , to. . . ”; the first “. . . ” represent the dividend, the second “dots”
represent the divisor (both are lengths), while the third “. . . ” represent the quo-
tient (a signed fractional decimal number).

The first operations performed on the operands are to copy them into named
dimension registers; the named registers make the programming a little easier, in
the sense that the chosen names have a meaning and their contents should conform
to that meaning.

Then the sings of the register operands are checked and pssibly changed so as
to work with positive values; the overall result sign is memorized into a named
macro (all macros are named, but here the name conforms to its contents “segno”
maps to “sign”). Afterwards the zero value of the denominator is tested; if the
test is true the result assigned to the internal quotient macro \wt@Q is the signed
dimensional “infiniy”, that in TEX and LATEX is equal to 230−1 scaled points; this
value is assigned by the format to the kernel dimension register \maxdimen, so we
need just use this name, instead of assigning strange numerical values; the only
thing we must pay attention to is to strip the “pt” information from this “infinite”
dimension, since the quotient must be a dimensionless signed fractional decimal
number. Notice that in this apllication the denominator never vanishes, so that
actually some of the tests are useless; nevertheless if the macro is copied and used
in other packages they might turn up to be essential.

Otherwise we load the operands in similarly named counter registers, effectively
transferring the dimension integer number of scaled points to integer variables over
which we continue our operations.

We compute by the primitive TEX integer division command the integer part of
the quotient and we assing its expanded decimal value, followed by a decimal point,
to the temporary internal quotient. Getting back to dimensions, we compute the
remainder of the numerator minus the quotient times the denominator in terms
of lengths. We locally set the number of iterations \wt@I to six, and then we call
the iterative algorithm of the long division within a \@whilenum. . . \do cycle.

At the exit of this cycle the internal quotient \wt@Q contains all the digits of
the integer and the fractional part of the result.

Now comes the interesting part: we are within a group and we must “throw”
the quotient outside the group, but hopefully we would not like to leave some-
thing behind; we then define an expanded macro that contains the unexpanded

6

\endgroup so that when we execute that macro, it is this very action that closes
the group and at the same time, in spite of having been started within it, it keeps
being executed bringing outside the definition of the external quotient that will
be executed outside the group with the expanded value of the internal quotient.
When \x is finished it does not exist any more as well as any value that was
assigned or defined within the group.
32 \def\dividi#1\per#2\in#3{%
33 \begingroup
34 \wt@Numer #1\relax \wt@Denom #2\relax
35 \ifdim\wt@Denom<\z@ \wt@Denom -\wt@Denom \wt@Numer -\wt@Numer\fi
36 \ifdim\wt@Numer<\z@ \def\wt@segno{-}\wt@Numer -\wt@Numer\fi
37 \ifdim\wt@Denom=\z@
38 \edef\wt@Q{\ifdim\wt@Numer<\z@-\fi\strip@pt\maxdimen}%
39 \else
40 \wt@Num=\wt@Numer \wt@Den=\wt@Denom \divide\wt@Num\wt@Den
41 \edef\wt@Q{\number\wt@Num.}%
42 \advance\wt@Numer -\wt@Q\wt@Denom \wt@I=6
43 \@whilenum \wt@I>\z@ \do{\wt@dividiDec\advance\wt@I\m@ne}%
44 \fi
45 \edef\x{\noexpand\endgroup\noexpand\def\noexpand#3{\wt@segno\wt@Q}}
46 \x
47 }
48

The cycle for the long division consists in multiplying the remainder in
\wt@Numer by ten, then reassigning the dimension value to the numerator in-
teger counter so as to determine a new digit of the quotient in \wt@q. After this,
this digit is appended by means of an expanded definition of the internal quotient,
but it is used also for determining the new remainder in the \wt@Numer dimen-
sion register. Since the iteration is performed six times, six fractional digits are
determined by this procedure, probably one digit too many, but its better one too
many than the opposite.
49 \def\wt@dividiDec{%
50 \wt@Numer=10\wt@Numer \wt@Num=\wt@Numer \divide\wt@Num\wt@Den
51 \edef\wt@q{\number\wt@Num}\edef\wt@Q{\wt@Q\wt@q}%
52 \advance\wt@Numer -\wt@q\wt@Denom}
53

On the other hand for exploiting the facilites of the etex engine we define
a new command \scala (“ imperative of the verb to scale”) that performs the
scaling oepration by executing first a multiplication and then a division, while
accumulating the intermediate result into a 64-bit register so as not to loose preci-
sion. Therefore this new command receives four arguments: the first is the length
to be scaled, the second and the third are two lengths the ratio of which forms the
scaling factore, and the foruth is the resulting scaled dimension. The numerator
and the denominator lengths whose ratio defines the scaling factor are stored into
two numerical registers as scaled points; therefore the length to be scaled is first
multiplied by the numerator integer number of scaled points, and immediately
divided by the denominator integer number of scaled points; the result is assigned

7

to a temmporary dimension that on exit will be assigned to the fourth macro ar-
gument. in order to preserve all the variable and register contents, everything is
done within a group and the final result is thrown out of the group by means of
the usual trick already used in the \dividi macro above.
54 \def\scala#1\per#2\diviso#3\in#4{\begingroup
55 \wt@Num #2\relax \wt@Den #3\relax
56 \ifnum\wt@Den<\z@ \wt@Den -\wt@Den \wt@Num -\wt@Num \fi
57 \ifnum\wt@Den=\z@
58 \@tempdima\ifnum\wt@Num<0-\fi\maxdimen
59 \else
60 \@tempdima\dimexpr#1*\wt@Num/\wt@Den\relax
61 \fi
62 \edef\x{\noexpand\endgroup\noexpand\def\noexpand#4{\the\@tempdima}}%
63 \x}
64

At this point it will be the widetable environment responsibility to call \scala
or \dividi according to the availaility of the etex facilities specified by the status
of the \ifetex test.

Now we define the dimension register that is to contain the desired table width.
We further define the start of the tabular typesetting that will be useful in a while.
Actually the table preamble is being saved into a macro, so that when the 〈width〉
and the 〈column descriptors〉 are given to the opening environment statement,
these saved quantities can be used again and again.
65 \newdimen\wt@width
66

67 \def\wt@starttabular{\expandafter\tabular\expandafter{\wt@preamble}}
68

The environment opening as well as the environment closing are defined by
means of low level commands. Due to the syntax of the opening command that
requires two compulsory arguments, these are saved in the recently defined dimen-
sion register and to a macro respectively; anotehr macro \wt@getTable is used to
get the body of the table; the \end{widetable} statement represents the ending
delimiter of the table contents.
69 \def\widetable#1#2{%
70 \def\@tempC{widetable}\setlength{\wt@width}{#1}%
71 \def\wt@preamble{#2}\wt@getTable}
72

A new boolean, wt@scartare, is defined; this boolean variable will be set true
in order to detect if the table body is is not well formed, with \begin and \end
statements tha don’t match, and the like; actually the widetable environment can
contain other environmente, even another widetable environment, but the exter-
nal one should not be upset by the internal ones. In order to achieve this result,
it is necessary that any embedded environment is hidden int a group delimited by
a pair of matching braces.
73 \newif\ifwt@scartare\wt@scartarefalse
74

8

The closing statement will acttually do the greatest part of the job. First of all
if the above mentioned boolean variable is true, it skips everyting and it does not
set any table; but if the boolean variable is false, the table body is well formed and
it can do the job as described in the previous sections. It first sets \tabcolsep
to zero and sets the resulting table in box zero; the lower level tabular with the
information saved into \wt@startabular and the body of the table contained into
the token register zero.

Then it sets \tabcolsep to 1 cm (arbitrarily chosen) and typesets again the
table into box two. The width of box zero is l0 and that of box two is l1; these are
the lengths needed by the equation that evaluates the final typesetting glue. The
arbitrary constant of 1 cm is t1, and the specified width l is the dimension saved
into \wt@width. The subtractions are operated directly on the dimension regis-
ters \wt@width (the numerator) and on the auxiliary register \@tempdimenb; the
\dividi or the \scala command, depending on the \ifetex status, is executed
in order to get the scaling ratio in \@tempA, if the etex facilites are not available,
and, in any case, the final definitive value of \tabcolsep is eventually computed.
The table is finally typeset without using boxes, while the contents of box zero
and two are restored upon exiting the environment to any value they might have
contained before entering widetable.
75 \def\endwidetable{%
76 \ifwt@scartare
77 \noindent\null
78 \else
79 \tabcolsep=\z@
80 \setbox\z@=\hbox{\wt@starttabular\the\toks@\endtabular}%
81 \tabcolsep=1cm\relax
82 \setbox\tw@=\hbox{\wt@starttabular\the\toks@\endtabular}%
83 \advance\wt@width-\wd\z@
84 \@tempdimb=\wd\tw@
85 \advance\@tempdimb-\wd\z@
86 \ifetex
87 \scala\tabcolsep\per\wt@width\diviso\@tempdimb\in\tabcolsep\relax
88 \else
89 \dividi\wt@width\per\@tempdimb\in\@tempA
90 \tabcolsep=\@tempA\tabcolsep
91 \fi
92 \wt@starttabular\the\toks@\endtabular
93 \fi
94 \ignorespacesafterend
95 }
96

Of course other actions must be performed before executing the closing envi-
ronment statement. We need a macro wt@finetabella that is equivalent to the
ending environment statement.
97 \def\wt@finetabella{\end{widetable}}%
98

We finally can define the all important macro that gets the table body; it

9

requires two delimited arguments: in #1 the table body and, after the \end com-
mand, the closing environment name will be set in #2. The environment name
is assigned to the macro \@tempB, which is checked against the correct name
widetable saved in the macro \@tempC by the opening command. If the names
match, then the table body is assigned to the token register zero, to be used later
on by the typesetting macros. But if the names don’t match, then something went
wrong and a package message is issued to explain what happened and how the
program will manage the situation.

Specifically the names may not match if a cell contained another environment
and its whole \begin{...}...\end{...} was not closed within a pair of matched
braces. If an enclosed environment is hidden within a group, the delimited macro
\wt@getTable will ignore such embedded environment, otherwise it will get a non
matching name and messy things might happen. Besides warning about this fact,
the body of the table, at least what has been read by the macro, will be discarded
and substituted with a box containing a message; therefore a table will be typeset,
but not the desired one. The remaining part of the body remains in the input
stream and might cause, presumably, strange errors, such as & characters used
outside a tabular or array environment. We must take care of this so that the
typesetting procedure does not crash.
99 \def\wt@getTable#1\end#2{\def\@tempB{#2}%

100 \ifx\@tempB\@tempC
101 \toks@={#1}%
102 \expandafter\wt@finetabella
103 \else
104 \PackageWarning{widetable}{%
105 The table contains environment ‘\@tempB’ %
106 \MessageBreak
107 not enclosed in braces. This is expressly forbidden!%
108 \MessageBreak
109 The table is not typeset and is substituted%
110 \MessageBreak
111 with a framed box}%
112 \advance\wt@width-2\fboxsep
113 \noindent\fbox{\parbox{\wt@width}{The table was not typeset because
114 it contains a visible \texttt{\char‘\\end} in one or more cells.}}\par
115 \expandafter\wt@finishTable
116 \fi
117 }
118

In order to avoid a complete mess, we have to iteratively gobble the rest of the
input stream until a valid \end{widetable} is encountered; Actually the following
macro will do a nice job in general, but it is not infallible if the input stream is
really composed in a very bad way. In facts it calls itself again and again, always
gobbling it arguments, until a valid terminating environment name matches the
name widetable.

119 \def\wt@finishTable#1\end#2{%
120 \def\@tempB{#2}%

10

121 \ifx\@tempB\@tempC
122 \wt@scartaretrue\expandafter\wt@finetabella
123 \else
124 \expandafter\wt@finishTable
125 \fi
126 }

9 Conclusion
Tables should always have their natural width, but. . . The default value of
\tabcolsep is fixed by the document class, it is not prescribed by a supreme
law: therefore what does it mean “natural width”. Probably the one determined
by the class default value of \tabcolsep so all tables have the same general look.

Nevertheless sometimes a table is slightly wider than the current measure; why
not shrink the table by shrinking \tabcolsep by the right ammount in order to
fit the measure? The result might be a table where only the interculomn spaces
are shrunk, not the whole table, fonts, drawings, and figures included, a result
easily obtainable with a \resizebox command available throught th graphicx.sty
package. Nobody forbids to follow this technique, of course, but the widetable
route might yield a better result.

The same is true when a natural width table is slightly shorter than the mea-
sure; enlarging it by retouching the \tabcolsep intercolumn space might be the
right solution in order to avoid a multitude of slightly different indents or left
margins.

This package might be useful also for copying some macros so as to avoid some
programming in other packages; this use is certainly permitted by the LaTeX
Project Public License, which sets the observance of very light obbligations.

127

128 \endinput

11

