
STEX: Semantic Markup in TEX/LATEX

Michael Kohlhase
Jacobs University, Bremen

http://kwarc.info/kohlhase

May 7, 2008

Abstract

We present a collection of TEX macro packages that allow to markup
TEX/LATEX documents semantically without leaving the document format,
essentially turning TEX/LATEX into a document format for mathematical
knowledge management (MKM).

i

http://kwarc.info/kohlhase

Contents

The sTeX Collection 1
1 Introduction 1
2 The Packages of the sTeX Collection 3
3 Utilities 7

cnx.dtx 8
4 Introduction 9
5 The User Interface 9

cmathml.dtx 14
6 Introduction 15
7 The User Interface 17

modules.dtx 29
8 Introduction 30
9 The User Interface 30

statements.dtx 34
10 Introduction 35
11 The User Interface 35

sproof.dtx 38
12 Introduction 38
13 The User Interface 38

omdoc.dtx 43
14 Introduction 44
15 The User Interface 44

presentation.dtx 46
16 Introduction 47
17 The User Interface 47

ii

The sTeX Collection

1 Introduction

The last few years have seen the emergence of various content-oriented Xml-based,
content-oriented markup languages for mathematics on the web, e.g. Open-
Math [BCC+04], Content-MathML [ABC+03], or our own OMDoc [Koh06].
These representation languages for mathematics, that make the structure of the
mathematical knowledge in a document explicit enough that machines can oper-
ate on it. Other examples of content-oriented formats for mathematics include the
various logic-based languages found in automated reasoning tools (see [RV01] for
an overview), program specification languages (see e.g. [Ber89]).

The promise if these content-oriented approaches is that various tasks involved
in “doing mathematics” (e.g. search, navigation, cross-referencing, quality con-
trol, user-adaptive presentation, proving, simulation) can be machine-supported,
and thus the working mathematician is relieved to do what humans can still do
infinitely better than machines: The creative part of mathematics — inventing
interesting mathematical objects, conjecturing about their properties and com-
ing up with creative ideas for proving these conjectures. However, before these
promises can be delivered upon (there is even a conference series [MKM07] study-
ing “Mathematical Knowledge Management (MKM)”), large bodies of mathemat-
ical knowledge have to be converted into content form.

Even though MathML is viewed by most as the coming standard for rep-
resenting mathematics on the web and in scientific publications, it has not not
fully taken off in practice. One of the reasons for that may be that the technical
communities that need high-quality methods for publishing mathematics already
have an established method which yields excellent results: the TEX/LATEX system:
and a large part of mathematical knowledge is prepared in the form of TEX/LATEX
documents.

TEX [Knu84] is a document presentation format that combines complex page-
description primitives with a powerful macro-expansion facility, which is utilized
in LATEX (essentially a set of TEX macro packages, see [Lam94]) to achieve more
content-oriented markup that can be adapted to particular tastes via specialized
document styles. It is safe to say that LATEX largely restricts content markup to
the document structure1, and graphics, leaving the user with the presentational
TEX primitives for mathematical formulae. Therefore, even though LATEX goes a
great step into the direction of an MKM format, it is not, as it lacks infrastructure
for marking up the functional structure of formulae and mathematical statements,
and their dependence on and contribution to the mathematical context.

1.1 The Xml vs. TEX/LATEX Formats and Workflows

MathML is an Xml-based markup format for mathematical formulae, it is stan-
dardized by the World Wide Web Consortium in [ABC+03], and is supported

1supplying macros e.g. for sections, paragraphs, theorems, definitions, etc.

1

by the major browsers. The MathML format comes in two integrated com-
ponents: presentation MathML and content MathML. The former provides a
comprehensive set of layout primitives for presenting the visual appearance of
mathematical formulae, and the second one the functional/logical structure of the
conveyed mathematical objects. For all practical concerns, presentation MathML
is equivalent to the math mode of TEX. The text mode facilitates of TEX (and
the multitude of LATEX classes) are relegated to other Xml formats, which embed
MathML.

The programming language constructs of TEX (i.e. the macro definition facili-
ties2) are relegated to the Xml programming languages that can be used to develop
language extensions. transformation language xslt [Dea99, Kay00] or proper
Xml-enabled The Xml-based syntax and the separation of the presentational-,
functional- and programming/extensibility concerns in MathML has some dis-
tinct advantages over the integrated approach in TEX/LATEX on the services side:
MathML gives us better

• integration with web-based publishing,

• accessibility to disabled persons, e.g. (well-written) MathML contains
enough structural information to supports screen readers.

• reusability, searchabiliby and integration with mathematical software sys-
tems (e.g. copy-and-paste to computer algebra systems), and

• validation and plausibility checking.

On the other hand, TEX/LATEX/s adaptable syntax and tightly integrated pro-
gramming features within has distinct advantages on the authoring side:

• The TEX/LATEX syntax is much more compact than MathML (see the dif-
ference in Figure 1 and Equation 1), and if needed, the community develops
LATEX packages that supply new functionality in with a succinct and intuitive
syntax.

• The user can define ad-hoc abbreviations and bind them to new control
sequences to structure the source code.

• The TEX/LATEX community has a vast collection of language extensions and
best practice examples for every conceivable publication purpose and an
established and very active developer community that supports these.

• There is a host of software systems centered around the TEX/LATEX lan-
guage that make authoring content easier: many editors have special modes
for LATEX, there are spelling/style/grammar checkers, transformers to other
markup formats, etc.

2We count the parser manipulation facilities of TEX, e.g. category code changes into the
programming facilities as well, these are of course impossible for MathML, since it is bound to
Xml syntax.

2

In other words, the technical community is is heavily invested in the whole
workflow, and technical know-how about the format permeates the community.
Since all of this would need to be re-established for a MathML-based workflow,
the technical community is slow to take up MathML over TEX/LATEX, even in
light of the advantages detailed above.

1.2 A LATEX-based Workflow for Xml-based Mathematical
Documents

An elegant way of sidestepping most of the problems inherent in transitioning from
a LATEX-based to an Xml-based workflow is to combine both and take advantage
of the respective advantages.

The key ingredient in this approach is a system that can transform TEXLATEX
documents to their corresponding Xml-based counterparts. That way, Xml-
documents can be authored and prototyped in the LATEX workflow, and trans-
formed to Xml for publication and added-value services, combining the two work-
flows.

There are various attempts to solve the TEX/LATEX to Xml transformation
problem; the most mature is probably Bruce Miller’s LaTeXML system [Mil07].
It consists of two parts: a re-implementation of the TEX analyzer with all of it’s
intricacies, and a extensible Xml emitter (the component that assembles the out-
put of the parser). Since the LATEX style files are (ultimately) programmed in TEX,
the TEX analyzer can handle all TEX extensions, including all of LATEX. Thus the
LaTeXML parser can handle all of TEX/LATEX, if the emitter is extensible, which
is guaranteed by the LaTeXML binding language: To transform a TEX/LATEX
document to a given Xml format, all TEX extensions3 must have “LaTeXML
bindings”binding, i.e. a directive to the LaTeXML emitter that specifies the
target representation in Xml.

2 The Packages of the sTeX Collection

In the following, we will shortly preview the packages and classes in the STEX
collection. They all provide part of the solution of representing semantic structure
in the TEX/LATEX workflow. We will group them by the conceptual level they
address1EdNote(1)

2.1 Content Markup of Mathematical Formulae in TEX/LATEX

The first two packages are concerned basically with the math mode in TEX,
i.e. mathematical formulae. The underlying problem is that run-of-the-mill
TEX/LATEX only specifies the presentation (i.e. what formulae look like) and not

3i.e. all macros, environments, and syntax extensions used int the source document
1EdNote: come up with a nice overview figure here!

3

their content (their functional structure). Unfortunately, there are no good meth-
ods (yet) to infer the latter from the former, but there are ways to get presentation
from content.

Consider for instance the following “standard notations”4 for binomial coef-
ficients:

(
n
k

)
, nC

k, Cnk , and Ckn all mean the same thing: n!
k!(n−k)! . This shows

that we cannot hope to reliably recover the functional structure (in our case the
fact that the expression is constructed by applying the binomial function to the
arguments n and k) from the presentation alone.

The solution to this problem is to dump the extra work on the author (after
all she knows what she is talking about) and give them the chance to specify the
intended structure. The markup infrastructure supplied by the STEX collection
lets the author do this without changing5 the visual appearance, so that the LATEX
workflow is not disrupted. . We speak of semantic preloading for this process and
call our collection of macro packages STEX (Semantic TEX). For instance, we can
now write

\CSumlLimits{k}1\infty{\Cexp{x}k} instead of the usual \sum_{k=1}^\infty x^k
(1)

In the first form, we specify that you are applying a function (CSumLimits =̂
Sum with Limits) to 4 arguments: (i) the bound variable k (that runs from) (ii)
the number 1 (to) (iii) ∞ (to infinity summing the terms) (iv) \Cexp{x}k (i.e. x
to the power k). In the second form, we merely specify hat LATEX should draw a
capital Sigma character (σ) with a lower index which is an equation k = 1 and an
upper index ∞. Then it should place next to it an x with an upper index k.

Of course human readers (that understand the math) can infer the content
structure from this presentation, but the LaTeXML converter (who does not un-
derstand the math) cannot, but we want to have the content MathML expression
in Figure 1

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<sum>

<bvar><ci>k</ci></bvar>

<lowlimit><cn>1</cn></lowlimit>

<uplimit><infinit/></cn></uplimit>

<apply><exp/><ci>x</ci><ci>k</ci></apply>

</apply>

</math>
Example 1: Content MathML Form of

∑∞
k=1 x

k

Obviously, a converter can infer this from the first LATEX structure with the
help of the curly braces that indicate the argument structure, but not from the

4The first one is standard e.g. in Germany and the US, the third one in France, and the last
one in Russia

5However, semantic annotation will make the author more aware of the functional structure
of the document and thus may in fact entice the author to use presentation in a more consistent
way than she would usually have.

4

second (because it does not understand the math). The nice thing about the
cmathml infrastructure is that you can still run LATEX over the first form and get
the same formula in the DVI file that you would have gotten from running it over
the second form. That means, if the author is prepared to write the mathematical
formulae a little differently in her LATEX sources, then she can use them in Xml
and LATEX at the same time.

2.1.1 cmathml: Encoding Content MathML in TEX/LATEX

The cmathml package provides a set of macros that correspond to the K-14 frag-
ment of mathematics (Kindergarten to undergraduate college level (=̂14th grade)).
We have already seen an example above in equation (1), where the content markup
in TEX corresponds to a content MathML-expression (and can actually be trans-
lated to this by the LaTeXML system.) However, the content MathML vocab-
ulary is fixed in the MathML specification and limited to the K-14 fragment; the
notation of mathematics of course is much larger and extensible on the fly.

2.1.2 presentation: Flexible Presentation for Semantic Macros

The presentation package supplies an infrastructure that allows to specify the
presentation of semantic macros, including preference-based bracket elision. This
allows to markup the functional structure of mathematical formulae without hav-
ing to lose high-quality human-oriented presentation in LATEX. Moreover, the
notation definitions can be used by MKM systems for added-value services, either
directly from the STEX sources, or after translation.

2.2 Mathematical Statements

2.2.1 statements: Extending Content Macros for Mathematical Nota-
tion

This package provides semantic markup facilities for mathematical statements like
Theorems, Lemmata, Axioms, Definitions, etc. in STEX files. This structure can
be used by MKM systems for added-value services, either directly from the STEX
sources, or after translation.

2.2.2 sproof: Extending Content Macros for Mathematical Notation

This package supplies macros and environment that allow to annotate the structure
of mathematical proofs in STEX files. This structure can be used by MKM systems
for added-value services, either directly from the STEX sources, or after translation.

2.3 Context Markup for Mathematics

2.3.1 modules: Extending Content Macros for Mathematical Notation

This package supplies a definition mechanism for semantic macros and a non-
standard scoping construct for them, which is oriented at the semantic depency

5

relation rather than the document structure. This structure can be used by MKM
systems for added-value services, either directly from the STEX sources, or after
translation.

2.4 Mathematical Document Classes

2.4.1 Connexions Modules

CNXLATEX is a collection of LATEX macros that allow to write Connexions mod-
ules without leaving the LATEX workflow. Modules are authored in CNXLATEX
using only a text editor, transformed to PDF and proofread as usual. In par-
ticular, the LATEX workflow is independent of having access to the Connexions
system, which makes CNXLATEX attractive for the initial version of single-author
modules.

For publication, CNXLATEX modules are transformed to CNXml via the La-
TeXML translator and can be uploaded to the Connexions system.

2.4.2 OMDoc Documents

The omdoc package provides an infrastructure that allows to markup OMDoc
documents in LATEX. It provides omdoc.cls, a class with the and omdocdoc.sty

2.4.3 Slides and Presentations

We present a document class from which we can generate both course slides and
course notes in a transparent way. Furthermore, we present a set of LaTeXML
bindings for these, so that we can also generate OMDoc-based course materials,
e.g. for inclusion in the ActiveMath system.

2.5 Conclusion

The STEX collection provides a set of semantic macros that extends the familiar
and time-tried LATEX workflow in academics until the last step of Internet pub-
lication of the material. For instance, a Connexions module can be authored
and maintained in LATEX using a simple text editor, a process most academics in
technical subjects are well familiar with. Only in a last publishing step (which is
fully automatic) does it get transformed into the Xml world, which is unfamiliar
to most academics.

Thus, STEX can serve as a conceptual interface between the document author
and MKM systems: Technically, the semantically preloaded LATEX documents
are transformed into the (usually Xml-based) MKM representation formats, but
conceptually, the ability to semantically annotate the source document is sufficient.

The STEX macro packages have been validated together with a case study [Koh05],
where we semantically preload the course materials for a two-semester course
in Computer Science at Jacobs University Bremen and transform them to the

6

OMDoc MKM format, so that they can be used in the ActiveMath sys-
tem [MBA+01]. Another study of converting LATEX materials for the Connexions
project is under way.2EdNote(2)

2.6 Licensing, Download and Setup
3EdNote(3)

The STEX packages and classes can be obtained as a self-documenting LATEX
packages: To obtain a package 〈package〉 download the files 〈package〉.dtx and
〈package〉.ins from

https://svn.kwarc.info/repos/kwarc/projects/stex/sty/〈package〉/

To extract the LATEX package 〈package〉.sty and the LaTeXML bindings in
〈package〉.ltxml, run the LATEX formatter on cmathml.ins, e.g. by typing
latex cmathml.ins to a shell. To extract the documentation (the version of
this document that goes with the extracted package) run the LATEX formatter on
cmathml.dtx e.g. by typing latex 〈package〉.dtx to a shell.

Usually, the STEX distribution will also have the newest versions of the
files 〈package〉.sty, 〈package〉.ltxml, and the documentation 〈package〉.pdf pre-
generated for convenience, so they can be downloaded directly from the URL
above.

To install the package, copy the file 〈package〉.sty somewhere, where TEX/LATEX
can find it and rebuild TEX’s file name database. This is done by running the com-
mand texhash or mktexlsr (they are the same). In MikTEX, there is a menu option
to do this.

3 Utilities

To simplify dealing with STEX documents, we are providing a small collection of
command line utilities, which we will describe here. For details and downloads go
to http://kwarc.info/projects/stex.

msplit splits an STEX file into smaller ones (one module per file)

rf computes the “reuse factor”, i.e. how often STEX modules are reused over a
collection of documents

sgraph visualizes the module graph

sms computes the STEX module signatures for a give STEX file

bms proposes a sensible module structure for an un-annotated STEX file

2EdNote: say some more
3EdNote: talk about licensing

7

https://svn.kwarc.info/repos/kwarc/projects/stex/sty/
http://kwarc.info/projects/stex

cnx.dtx

File : cnx.dtx 8

4 Introduction

The Connexions project is a4EdNote(4)
The CNXml format — in particular the embeded content MathML — is

hard to write by hand, so we provide a set of enviroments that allow to embed the
CNXml document model into LATEX.

5 The User Interface

This document is not a manual for the Connexions XML encoding, or a practical
guide how to write Connexions modules. We only document the LATEX bindings
for CNXml and will presuppose experience with the format or familiarity with5.EdNote(5)
Note that formatting CNXLATEX documents with the LATEX formatter does little
to enforce the restrictions imposed by the CNXml document model. You will
need to run the LATEXML converter for that (it includes DTD validation) and any
CNX-specific quality assurance tools after that. 6EdNote(6)

The CNXLATEX class makes heavy use of the KeyVal package, which is part
of your LATEX distribution. This allows to add optional information to LATEX
macros in the form of key-value pairs: A macro \foo that takes a KeyVal argu-
ment and a regular one, so a call might look like \foo{bar} (no KeyVal infor-
mation given) or \foo[key1=val1,...,keyn=valn]{bar}, where key1,. . . ,keyn
are predefined keywords and values are LATEX token sequences that do not
contain comma characters (though they may contain blank characters). If a
value needs to contain commas, then it must be enclosed in curly braces, as
in \foo[args={a,comma,separated,list}]. Note that the order the key/value
pairs appear in a KeyVal Argument is immaterial.

5.1 Document Structure

\documentclass{cnx}

\begin{document}

\begin{cnxmodule}[name=Hello World,id=m4711]

\begin{ccontent}

\begin{cpara}[id=p01] Hello World\end{cpara}

\end{ccontent}

\end{cnxmodule}

\end{document}

Example 2: A Minimal CNXLATEX Document

The first set of CNXLATEX environments concern the top-level structure of the
modules. The minimal Connexions document in LATEX can be seen in Figure 2:

4EdNote: continue; copy from somewhere...
5EdNote: cite the relevant stuff here
6EdNote: talk about Content MathML and cmathml.sty somewhere

File : cnx.dtx 9

we still need the LATEX document environment, then the cnxmodule environmentcnxmodule

contains the module-specific information as a KeyVal argument with the two keys:
id for the module identifier supplied by the Connexions system) and name for
the title of the module.

The contentenvionrment delineates the module content from the metadataccontent

(see Section 5.5). It is needed to make the conversion to CNXml simpler.
CNXml knows three levels of sectioning, so the CNXLATEX class supplies threec*section

as well: csection, csubsection and csubsubsection. In contrast to regular
LATEX, these are environments to keep the tight connection between the formats.
These environments take an optional KeyVal argument with key id for the iden-
tifier and a regular argument for the title of the section (to be transformed into
the CNXml name element).

The lowest levels of the document structure are given by paragraphs and notes.cpara, cnote

The cpara and cnote environment take a KeyVal argument with the id key for
identification, the latter also allows a type key for the note type (an unspecified
string7).EdNote(7)

5.2 Mathematics

Mathematical formulae are integrated into text via the LATEX math mode, i.e.
wrapped in $ characters or between \(and \) for inline mathematics and wrapped
in $$ or between \[and \] for display-style math. Note that CNXml expects
Content MathML as the representation format for mathematical formulae, while
run-of-the-mill LATEX only specifies the presentation (i.e. the two-dimensional
layout of formulae). The LATEXML converter can usually figure out some of the
content MathML from regular LATEX, in other cases, the author has to specify it
e.g. using the infrastructure supplied by the cmathml package.

For numbered equations, CNXml supplies the equation element, for whichcequation

CNXLATEX provides the cequation environment. This environment takes a Key-
Val argument with the id key for the (required) identifier.

5.3 Statements

CNXml provides special elements that make represnet various types of claims; we
collectively call them statements.

The cexample environment and definition elements take a KeyVal argumentcexample

with key id for identification.
In CNXml, the rule element is used to represent a general assertion aboutcrule, statement, proof

the state of the world. The CNXLATEX rule8 environment is its CNXLATEX coun-EdNote(8)
terpart. It takes a KeyVal attribute with the keys id for identification, type to
specify the type of the assertion (e.g. “Theorem”, “Lemma” or “Conjecture”),
and name, if the assertion has a title. The body of the crule environment con-
tains the statemnt of assertion in the statement environment and (optionally) a

7EdNote: what are good values?
8EdNote: we have called this “crule”, since “rule” is already used by TEX.

File : cnx.dtx 10

proof in the proof environment. Both take a KeyVal argument with an id key
for identification.

\begin{crule}[id=prop1,type=Proposition]

\begin{statement}[id=prop1s]

Sample statement

\end{statement}

\begin{proof}[id=prop1p]

Your favourite proof

\end{proof}

\end{crule}

Example 3: A Basic crule Example

A definition defines a new technical term or concept for later use. Thedefinition, cmeaning

definition environment takes a KeyVal argument with the keys id for identifi-
cation and term for the concept (definiendum) defined in this form. The definion
text is given in the cmeaning environment6, which takes a KeyVal argument with
key id for identification. After the cmeaning environment, a definition can
contain arbitrarily many cexamples.

\begin{definition}{term=term-to-be-defined, id=termi-def]

\begin{cmeaning}[id=termi-meaning]

{\term{Term-to-be-defined}} is defined as: Sample meaning

\end{cmeaning}

\end{definition}

Example 4: A Basic definition and cmeaning Example

5.4 Connexions: Links and Cross-References

As the name Connexions already suggests, links and cross-references are very im-
portant for Connexions modules. CNXml provides three kinds of them. Module
links, hyperlinks, and concept references.

Module links are speficied by the \cnxn macro, which takes a keyval argumentcnxn

with the keys document, target, and strength. The document key allows to
specify the module identifier of the desired module in the repository, if it is empty,
then the current module is intended. The target key allows to specify the docu-
ment fragment. Its value is the respective identifier (given by its id attribute in
CNXml or the id key of the corresponding environment in CNXLATEX). Finally,
the strength key allows to specify the relevance of the link.

The regular argument of the \cnxn macro is used to supply the link text.
Hyperlinks can be specified by the \link macro in CNXLATEX. It takes alink

6we have called this cmeaning, sinc menaning is already taken by TEX

File : cnx.dtx 11

KeyVal argument with the key src to specify the URL of the link. The regular
argument of the \link macro is used to supply the link text.

The \term marcro can be used to specify the9term

EdNote(9)

5.5 Metadata

Metadata is mostly managed by the system in Connexions, so we often do not
need to care about it. On the other hand, it influences the system, so if we
have work on the module extensively before converting it to CNXml, it may be
worthwile specify some of the data in advance.

\begin{metadata}[version=2.19,

created=2000/07/21,revised=2004/08/17 22:07:27.213 GMT-5]

\begin{authorlist}

\cnxauthor[id=miko,firstname=Michael,surname=Kohlhase,

email=m.kohlhase@iu-bremen.de]

\end{authorlist}

\begin{keywordlist}\keyword{Hello}\end{keywordlist}

\begin{cnxabstract}

A Minimal CNXLaTeX Document

\end{cnxabstract}

\end{metadata}

Example 5: Typical CNXLATEX Metadata

The metadata environment takes a KeyVal argument with the keys version,metadata

created, and revised with the obvious meanings. The latter keys take ISO
8601 norm representations for dates and times. Concretely, the format is
CCYY-MM-DDThh:mm:ss where “CC” represents the century, “YY” the year, “MM”
the month, and “DD” the day, preceded by an optional leading “-” sign to indicate
a negative number. If the sign is omitted, “+” is assumed. The letter “T” is the
date/time separator and “hh”, “mm”, “ss” represent hour, minutes, and seconds
respectively.

The lists of authors and maintainers can be specified in the authorlist andauthorlist, maintainerlist

maintainerlist environments, which take no arguments.
The entries on this lists are specified by the \cnxauthor and \maintainercnxauthor,maintainer

macros. Which take a KeyVal argument specifying the individual. The id key
is the identifier for the person, the honorific, firstname, other, surname, and
lineage keys are used to specify the various name parts, and the email key is
used to speficy the e-mail address of the person.

The keywords are specified with a list of keyword macros, which take thekeywordlist, keyword

respective keyword in their only argument, inside a keyword environment. Neither
take any KeyVal arguments.

The abstract of a Connexions module is considered to be part of the meta-cnxabstract

9EdNote: continue, pending Chuck’s investigation.

File : cnx.dtx 12

data. It is specified using the cnxabstract environment. It does not take any
arguments.

5.6 Exercises

An exercise or problem in Connexions is specified by the cexercise environment,cexercise, cproblem,

csolution which takes an optional keyval argument with the keys id and name. It must
contain a cproblem environment for the problem statement and a (possibly) empty
set of csolution environments. Both of these take an optional keyval argument
with the key id.

5.7 Graphics, etc.

For graphics we will use the cfigure10 macro, which provides a non-floating envi-cfigure

EdNote(10) ronment for including graphics into CNXml files. cfigure takes three arguments
first an optional CNXml keys, then the keys of the graphicx package in a regular
argument (leave that empty if you don’t have any) and finally a path. So

\cfigure[id=foo,type=image/jpeg,caption=The first FOO]{width=7cm,height=2cm}{../images/foo}

Would include a graphic from the file at the path ../images/foo, equip this image
with a caption, and tell LATEXML that11 the original of the images has the MIMEEdNote(11)
type image/jpeg.

10EdNote: probably better call it cgraphics
11EdNote: err, exactly what does it tell latexml?

File : cnx.dtx 13

cmathml.dtx

File : cmathml.dtx 14

6 Introduction

This document describes the collection of semantic macros for content MathML
and their LATEXML bindings. These macros can be used to mark up mathematical
formulae, exposing their functional/logical structure. This structure can be used
by MKM systems for added-value services, either directly from the STEX sources,
or after translation. Even though it is part of the STEX collection, it can be
used independently. Note that this documentation of the package presupposes the
discussion of the STEX collection to be self-contained.

6.1 Encoding Content MathML in TEX/LATEX

The cmathml packge presented here addresses part of transformation problem: rep-
resenting mathematical formulae in the LATEX workflow, so that content MathML
representations can be derived from them. The underlying problem is that run-of-
the-mill TEX/LATEX only specifies the presentation (i.e. what formulae look like)
and not their content (their functional structure). Unfortunately, there are no
good methods (yet) to infer the latter from the former, but there are ways to get
presentation from content.

The solution to this problem is to dump the extra work on the author (after
all she knows what she is talking about) and give them the chance to specify the
intended structure. The markup infrastructure supplied by the cmathml package
lets the author do this without changing the visual appearance, so that the LATEX
workflow is not disrupted.

To use these cmathml macros in a LATEX document, you will have to include
the cmathml package using \usepackage{cmathml} somewhere in the document
preamble. Then you can use the macros

$\Ceq{\Cexp{\Ctimes{\Cimaginaryi,\Cpi}},\Cuminus{\Ccn{1}}}$

which will result in eiπ = −1 when the document is formatted in LATEX. If the
document is converted to Xml using the LATEXML conversion tool, then the result
will be content MathML representation:

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<eq/>

<apply>

<exp/>

<apply><times><imaginaryi/><pi/></times></apply>

</apply>

<apply><minus/><cn>1</cn></apply>

</apply>

</math>

Example 6: Content MathML Form of eiπ = −1

File : cmathml.dtx 15

6.2 Changing the TEX/LATEX Presentation

It is possible to change the default presentation (i.e. the result under LATEX
formatting): The semantic macros only function as interface control sequences,
which call an internal macro that does the actual presentation. Thus we simply
have to redefine the internal macro to change the presentation. This is possible
locally or globally in the following way:

\makeatletter

\gdef\CMathML@exp#1{exp(#1)}

\def\CMathML@pi{\varpi}

\makeatother

The first line is needed to lift the LATEX redefinition protection for internal
macros (those that contain the character), and the last line restores it for the
rest of the document. The second line has a global (i.e. the presentation will
be changed from this point on to the end of the document.) redefinition of the
presentation of the exponential function in the LATEX output. The third line has
a local redefinition of the presentation (i.e. in the local group induced by LATEX’s
begin/end grouping or by TEX’s grouping induced by curly braces). Note that the
argument structure has to be respected by the presentation redefinitions. Given
the redefinitions above, our equation above would come out as exp(i$) = −1.

6.3 The Future: Heuristic Parsing

The current implementation of content MathML transformation from LATEX to
MathML lays a heavy burden on the content author: the LATEX source must be
semantically preloaded — the structure of the formulae must be fully annotated.
In our example above, we had to write \Ceq{A,B} instead of the more conventional
(and more legible) A=B.12EdNote(12)

The reason for this is that this keeps the transformation to content MathML
very simple, predictable and robust at the expense of authoring convenience. The
implementation described in this module should be considered as a first step and
fallback solution only. Future versions of the LATEXML tool will feature more intel-
ligent solutions for determining the implicit structure of more conventional math-
ematical notations (and LATEX representations), so that writing content MathML
via LATEX will become less tedious.

However, such more advanced techniques usually rely on linguistic, structural,
and semantic information about the mathematical objects and their preferred
representations. They tend to be less predictable to casual users and may lead to
semantically unexpected results.13EdNote(13)

12EdNote: come up with a good mixed example
13EdNote: talk about sTeX and extensibility in MathML/OpenMath/OMDoc

File : cmathml.dtx 16

7 The User Interface

We will now tabulate the semantic macros for the Content MathML elements. We
have divided them into modules based on the sectional structure of the MathML2
recommendation (2nd edition). Before we go into the specific elements one-by-one,
we will discuss some general properties of the cmatml macros and their LATEXML
bindings.

7.1 Generalities of the Encoding

The semantic macros provided by the cmatml package differ mainly in the way
they treat their arguments. The simplest case are those for constants 7.12 that
do not take any. Others take one, two, three, or even four arguments, which
have to be TEX tokens or have to be wrapped in curly braces. For operators that
are associative like addition the argument sequence is provided as a single TEX
argument (wrapped in curly braces) that contains a comma-separated sequence of
arguments (wrapped in curly braces where necessary).

The current setup of the cmathml infrastructure minimizes the need of speci-\Capply

fying the MathML apply element, since the macros are all in applied form: As
we have seen in the example in the Introduction 8, a macro call like \Cexp{A}
corresponds to the application of the exponential function to some object, so the
necessary apply elements in the MathML representation are implicit in the LATEX
formulation and are thus added by the transformation. Of course this only works,
if the function is a content MathML element. Often, in mathematics we will
have situations, where the function is a variable (or “arbitrary but fixed”) func-
tion. Then the formula f(x) represented as $f(x)$ in TEX could (and sometimes
will) be misunderstood by the Math parser as f · x, i.e. a product of the number
f with the number x, where x has brackets for some reason. In this case, we can
disambiguate by using \Capply{f}x, which will also format as f(x).14EdNote(14)

By the same token, we do not need to represent the qualifier elements
condition and domainofapplication7, for binding operators. They are are
folded into the special forms of the semantic macros for the binding operators
below (the ones with the Cond and DA endings):

For operators that are associative, commutative, and idempotent (ACI i.e.
bracketing, order, and multiplicity of arguments does not matter) MathML sup-
plies the a special form of application as a binding operator (often called the
corresponding “big operator)”, which ranges over a whole set of arguments. For
instance for the ACI operator ∪ for set uinon has the “big” operator for unions
over collections of sets e.g. used in the power set

⋃
S⊆T S of a set T . In some cases,

the “big” operators are provided independently by MathML, e.g. the ACI addi-
tion operator has the sum operator as a corresponding “big operator”:

∑
x∈N x

i

is the sum of the powers of x for all natural numbers. Where they are not, we will
14EdNote: what about n-ary functions?
7We do not support the fn element as it is deprecated in MathML2 and the declare and

sep elements, since their semantic status is unclear (to the author, if you feel it is needed, please
gripe to me).

File : cmathml.dtx 17

supply extra macros in the cmathml package, e.g. the \CUnion macro as the big
operator for \Cunion.

Finally, some of the binding operators have multiple content models flagged
by the existence of various modifier elements. In these cases, we have provided
different semantic macros for the different cases.

7.2 The Token Elements

The MathML token elements are very simple containers that wrap some presenta-
tion MathML text. The csymbol element is the extension element in MathML.
It’s content is the presentation of symbol, and it has a definitionURL attribute
that allows to specify a URI that specifies the semantics of the symbol. This URL
can be specified in an optional argument to teh \Ccsymbol macro, in accordance
with usual mathematical practice, the definitionURL is not presented.\Ccn

\Cci

\Ccsymbol
macro args Example Result
\Ccn token \Ccn{t} t
\Cci token \Cci{t} t
\Ccsymbol token, URI \Ccsymbol[http://w3.org]{t} t

Like the \Ccsymbol macro, all other macros in the camthml package take an op-
tional argument8 for the definitionURL attribute in the corresponding MathML
element.

8This may change into a KeyVaL argument in future versionss of the cmathml package.

File : cmathml.dtx 18

7.3 The Basic Content Elements

The basic elements comprise various pieces of the MathML infrastructure. Most
of the semantic macros in this section are relatively uneventful.

\Cinverse

\Ccompose

\Cident

\Cdomain

\Ccodomain

\Cimage

macro args Example Result
\Cinverse 1 \Cinverse{f} f−1

\Ccompose 1 \Ccompose{f,g,h} f ◦ g ◦ h
\Cident 0 \Cident id
\Cdomain 1 \Cdomain{f} dom(f)
\Ccodomain 1 \Ccodomain{f} codom(f)
\Cimage 1 \Cimage{f} Im(f)

For the lambda element, we only have the domainofapplication element, so\Clambda

\ClambdaDA

\Crestrict

that we have three forms a λ-construct can have. The first one is the simple
one where the first element is a bound variable. The second one restricts the
appliccability of the bound variable via a domainofapplication element, while
the third one does not have a bound variable, so it is just a function restriction
operator.15EdNote(15)

macro args Example Result
\Clambda 2 \Clambda{x,y}{A} λ(x, y,A)
\ClambdaDA 3 \ClambdaDA{x}{C}{A} λ(x, y:C,A)
\Crestrict 2 \Crestrict{f}{S} f |S

The interval constructor actually represents four types of intervals inccinterval

cointerval

ocinterval

oointerval

MathML. Therefore we have four semantic macros, one for each combination
of open and closed endings:

macro args Example Result
\Cccinterval 2 \Cccinterval{1}{2} [1, 2]
\Ccointerval 2 \Ccointerval{1}{2} [1, 2)
\Cocinterval 2 \Cocinterval{1}{2} (1, 2]
\Coointerval 2 \Coointerval{1}{2} (1, 2)

The final set of semantic macros are concerned with piecewise definition of\Cpiecewise

\Cpiece

\Cotherwise

functions.

macro args Example Result
\Cpiecewise 1 see below see below
\Cpiece 2 \Cpiece{A}{B} A if B
\Cotherwise 1 \Cotherwise{B} 1 else

For instance, we could define the abstract value function on the reals with the
following markup

15EdNote: need ClambdaCond

File : cmathml.dtx 19

Semantic Markup Formatted
\Ceq{\Cabs{x},

\Cpiecewise{\Cpiece{\Cuminus{x}}{\Clt{x,0}}

\Cpiece{0}{\Ceq{x,0}}

\Cotherwise{x}}}

|x| =

 −x if (x < 0)
0 if (x = 0)
x else

File : cmathml.dtx 20

7.4 Elements for Arithmetic, Algebra, and Logic

This section introduces the infrastructure for the basic arithmetic operators. The
first set is very simple

\Cquotient

\Cfactorial

\Cdivide

\Cminus

\Cplus

\Cpower

\Crem

\Ctimes

\Croot

macro args Example Result
\Cquotient 2 \Cquotient{1}{2} 1

2

\Cfactorial 1 \Cfactorial{7} 7!
\Cdivide 2 \Cdivide{1}{2} 1÷ 2
\Cminus 2 \Cminus{1}{2} 1− 2
\Cplus 1 \Cplus{1} 1
\Cpower 2 \Cpower{x}{2} x2

\Crem 2 \Crem{7}{2} 7 mod 2
\Ctimes 1 \Ctimes{1,2,3,4} 1 · 2 · 3 · 4
\Croot 2 \Croot{3}{2} 3

√
2

The second batch below is sligtly more complicated, since they take a set of
arguments. In the cmathml package, we treat them like associative operators,
i.e. they act on a single argument that contains a sequence of comma-separated
arguments16EdNote(16)

\Cmax

\Cmin

\Cgcd

\Clcm

macro args Example Result
\Cmax 1 \Cmax{1,3,6} max(1, 3, 6)
\Cmin 1 \Cmin{1,4,5} min(1, 4, 7)
\Cgcd 1 \Cgcd{7,3,5} gcd(7, 3, 5)
\Clcm 1 \Clcm{3,5,4} lcm(3, 5, 4)

The operators for the logical connectives are associative as well17. Here, con-EdNote(17)
junction, (exclusive) disjunction are n-ary associative operators, therefore their
semantic macro only has one TEX argument which contains a comma-separated
list of subformulae.\Cand

\Cor

\Cxor

\Cnot

\Cimplies

macro args Example Result
\Cand 1 \Cand{A,B,C} A ∧B ∧ C
\Cor 1 \Cor{A,B,C} A ∨B ∨ C
\Cxor 1 \Cxor{A,B,C} A⊕B ⊕ C
\Cnot 1 \Cnot{A} ¬A
\Cimplies 2 \Cimplies{A}{B} A =⇒ B

The following are the corresponding big operators, where appropriate.\CAndDA

\CAndCond

\COrDA

\COrCond

\CXorDA

\CXorCond

16EdNote: implement this in the latexml side
17EdNote: maybe add some precedences here.

File : cmathml.dtx 21

macro args Example Result
\CAndDA 2 \CAndDA\Cnaturalnumbers\phi

∧
N φ

\CAndCond 3 \CAndCond{x}{\Cgt{x}5}{\psi(x)}
∧
x x5

\COrDA 2 \COrDA\Cnaturalnumbers\phi
∨

N φ
\COrCond 3 \COrCond{x}{\Cgt{x}5}{\psi(x)}

∨
x5 ψ(x)

\CXorDA 2 \CXorDA\Cnaturalnumbers\phi
⊕

N φ
\CXorCond 3 \CXorCond{x}{\Cgt{x}5}{\psi(x)}

⊕
x5 ψ(x)

The semantic macros for the quantifiers come in two forms: with- and without
a condition qualifier. In a restricted quantification of the form ∀x,C : A, the
bound variable x ranges over all values, such that C holds (x will usually occur in
the condition C). In an unrestricted quantification of the form ∀x : A, the bound
variable ranges over all possible values for x.\Cforall

\CforallCond

\Cexists

\CexistsCond

macro args Example Result
\Cforall 2 \Cforall{x,y}{A} ∀x, y:A
\CforallCond 3 \CforallCond{x}{C}{A} ∀x,C:A
\Cexists 2 \Cexists{x,y}{A} ∃x, y:A
\CexistsCond 3 \CexistsCond{x}{C}{A} ∃x,C:A

The rest of the operators are very simple in structure.\Cabs

\Cconjugate

\Carg

\Creal

\Cimaginary

\Cfloor

\Cceiling

macro args Example Result
\Cabs 1 \Cabs{x} |x|
\Cconjugate 1 \Cconjugate{x} x
\Carg 1 \Carg{x} ∠x
\Creal 1 \Creal{x} <x
\Cimaginary 1 \Cimaginary{x} =x
\Cfloor 1 \Cfloor{1.3} b1.3c
\Cceiling 1 \Cceiling{x} dxe

7.5 Relations

The relation symbols in MathML are mostly n-ary associative operators (taking
a comma-separated list as an argument).

\Ceq

\Cneq

\Cgt

\Clt

\Cgeq

\Cleq

\Cequivalent

\Capprox

\Cfactorof

macro args Example Result
\Ceq 1 \CeqA,B,C A = B = C
\Cneq 2 \Cneq{1}{2} 1 6= 2
\Cgt 1 \Cgt{A,B,C} A > B > C
\Clt 1 \Clt{A,B,C} A < B < C
\Cgeq 1 \Cgeq{A,B,C} A ≥ B ≥ C
\Cleq 1 \Cleq{A,B,C} A ≤ B ≤ C
\Cequivalent 1 \Cequivalent{A,B,C} A ≡ B ≡ C
\Capprox 2 \Capprox{1}{2} 1 ≈ 1.1
\Cfactorof 2 \Cfactorof{7}{21} 7 | 21

File : cmathml.dtx 22

7.6 Elements for Calculus and Vector Calculus

The elements for calculus and vector calculus have the most varied forms.
The integrals come in four forms: the first one is just an indefinite integral over

a function, the second one specifies the bound variables, upper and lower limits.
The third one specifies a set instead of an interval, and finally the last specifies a
bound variable that ranges over a set specified by a condition.

\Cint

\CintLimits

\CintDA

\CintCond
macro args Example Result
\Cint 1 \Cint{f}

∫
f

\CintLimits 4 \CintLimits{x}{0}{\Cinfinit}{f(x)}
∫∞
0
f(x)dx

\CintDA 2 \CintDA{\Creals}{f}
∫

R f
\CintCond 3 \CintCond{x}{\Cin{x}{D}}{f(x)}

∫
x∈D f(x)dx

The differentiation operators are used in the usual way: simple differentiation\Cdiff

\Cddiff is represented by the \Cdiff macro which takes the function to be differentiated
as an argument, differentiation with the d-notation is possible by the \Cddiff,
which takes the bound varible18 as the first argument and the function expressionEdNote(18)
(in the bound variable) as a second argument.

Partial Differentiation is specified by the \Cpartialdiff macro. It takes the\Cpartialdiff

overall degree as the first argument (to leave it out, just pass the empty argument).
The second argument is the list of bound variables (with their degrees; see below),
and the last the function expression (in these bound variables). To specify the\Cdegree

respective degrees of differentiation on the variables, we use the \Cdegree macro,
which takes two arguments (but no optional argument), the first one is the degree
(a natural number) and the second one takes the variable. Note that the overall
degree has to be the sum of the degrees of the bound variables.

macro args Example Result
\Cdiff 1 \Cdiff{f} f ′

\Cddiff 2 \Cddiff{x}{f} df(x)
dx

\Cpartialdiff 3 \Cpartialdiff{3}{x,y,z}{f(x,y)} ∂3

∂x,y,z f(x, y)

\Cpartialdiff 3 \Cpartialdiff{7}
{\Cdegree{2}{x},\Cdegree{4}{y},z}
{f(x,y)}

∂7

∂2x,4y,z f(x, y)

For content MathML, there are two kinds of limit expressions: The simple\Climit

\ClimitCond one is specified by the \Climit macro, which takes three arguments: the bound
variable, the target, and the limit expression. If we want to place additional
conditions on the limit construction, then we use the \ClimitCond macro, which
takes three arguments as well, the first one is a sequence of bound variables, the
second one is the condition, and the third one is again the limit expression.

If we want to speak qualitatively about limit processes (e.g. in the condition of\Ctendsto

\CtendstoAbove

File : cmathml.dtx 23

\CtendstoBelow

a \ClimitCond expression), then can use the MathML tendsto element, which
is represented by the \Ctendsto macro, wich takes two expressions arguments.
In MathML, the tendsto element can be further specialized by an attribute to
indicate the direction from which a limit is approached. In the cmathml pack-
age, we supply two additional (specialized) macros for that: \CtendstoAbove and
\CtendstoBelow.

macro args Example Result
\Climit 3 \Climit{x}{0}{\Csin{x}} limx→0 sin(x)
\ClimitCond 3 \ClimitCond{x}{\Ctendsto{x}{0}}{\Ccos{x}} limx→0 cos(x)
\Ctendsto 2 \Ctendsto{f(x)}{2} f(x)→ 2
\CtendstoAbove 2 \CtendstoAbove{x}{1} x↘ 1
\CtendstoBelow 2 \CtendstoBelow{x}{2} x↗ 2

\Cdivergence

\Cgrad

\Ccurl

\Claplacian

macro args Example Result
\Cdivergence 1 \Cdivergence{A} ∇ ·A
\Cgrad 1 \Cgrad{\Phi} ∇Φ
\Ccurl 1 \Ccurl{\Xi} ∇× Ξ
\Claplacian 1 \Claplacian{A} ∇2A

7.7 Sets and their Operations

The \Cset macros is used as the simple finite set constructor, it takes one argument\Cset

\Clist

\CsetDA

\CsetRes

\CsetCond

that is a comma-separated sequence of members of the set. \CsetRes allows to
specify a set by restricting a set of variables, and \CsetCond is the general form
of the set construction.19

EdNote(19)
macro args Example Result
\Cset 1 \Cset{1,2,3} {1, 2, 3}
\CsetRes 2 \CsetRes{x}{\Cgt{x}5} {x|x5}
\CsetCond 3 \CsetCond{x}{\Cgt{x}5}{\Cpower{x}3} {x5|x3}
\CsetDA 3 \CsetDA{x}{\Cgt{x}5}{S_x}} {x ∈ x5|Sx}
\Clist 1 \Clist{3,2,1} list(3, 2, 1)

\Cunion

\Cintersect

\Ccartesianproduct

\Csetdiff

\Ccard

\Cin

\Cnotin

macro args Example Result
\Cunion 1 \Cunion{S,T,L} S ∪ T ∪ L
\Cintersect 1 \Cintersect{S,T,L} S ∩ T ∩ L
\Ccartesianproduct 1 \Ccartesianproduct{A,B,C} A×B × C
\Csetdiff 2 \Csetdiff{S}{L} S \ L
\Ccard 1 \Ccard{\Cnaturalnumbers} #N
\Cin 2 \Cin{a}{S} a ∈ S
\Cnotin 2 \Cnotin{b}{S} b /∈ S

18EdNote: really only one?
19EdNote: need to do this for lists as well? Probably

File : cmathml.dtx 24

The following are the corresponding big operators for the first three binary
ACI functions.\CUnionDA

\CUnionCond

\CIntersectDA

\CIntersectCond

\CCartesianproductDA

\CCartesianproductCond

macro args Example Result
\CUnionDA 2 \CUnionDA\Cnaturalnumbers{S_i}

∧
N Si

\CUnionCond 3 \CUnionCond{x}{\Cgt{x}5}{S_x}}
∧
x x5

\CIntersectDA 2 \CIntersectDA\Cnaturalnumbers{S_i}
∨

N Si
\CIntersectCond 3 \CIntersectCond{x}{\Cgt{x}5}{S_x}

∨
x5 Sx

\CCartesianproductDA 2 \CCartesianproductDA\Cnaturalnumbers{S_i}
⊕

N Si
\CCartesianproductCond 3 \CCartesianproductCond{x}{\Cgt{x}5}{S_x}

⊕
x5 Sx

For the set containment relations, we are in a somewhat peculiar situation:\Csubset

\Cprsubset

\Cnotsubset

\Cnotprsubset

content MathML only supplies the subset side of the reations and leaves out
the superset relations. Of course they are not strictly needed, since they can be
expressed in terms of the subset relation with reversed argument order. But for the
cmathml package, the macros have a presentational side (for the LATEX workflow)
and a content side (for the LATEXML converter) therefore we will need macros for
both relations.

macro args Example Result
\Csubset 1 \Csubset{S,T,K} S ⊆ T ⊆ K
\Cprsubset 1 \Cprsubset{S,T,K} S ⊂ T ⊂ K
\Cnotsubset 2 \Cnotsubset{S}{K} S 6⊆ K
\Cnotprsubset 2 \Cnotprsubset{S}{L} S 6⊂ L

The following set of macros are presented in LATEX as their name suggests, but\Csupset

\Cprsupset

\Cnotsupset

\Cnotprsupset

upon transformation will generate content markup with the MathML elements
(i.e. in terms of the subset relation).

macro args Example Result
\Csupset 1 \Csupset{S,T,K} S ⊇ T ⊇ K
\Cprsupset 1 \Cprsupset{S,T,K} S ⊃ T ⊃ K
\Cnotsupset 2 \Cnotsupset{S}{K} S 6⊇ K
\Cnotprsupset 2 \Cnotprsupset{S}{L} S 6⊃ L

7.8 Sequences and Series

\CsumLimits

\CsumCond

\CsumDA

\CprodLimist

\CprodCond

\CprodDA

macro args Example Result

\CsumLimits 4 \CsumLimits{i}{0}{50}{x^i}
∑50
i=0 x

i

\CsumCond 3 \CsumCond{i}{\Cintegers}{i}
∑
i∈Z i

\CsumDA 2 \CsumDA{\Cintegers}{f}
∑

Z f
\CprodLimits 4 \CprodLimits{i}{0}{20}{x^i}

∏
i=20220xi

\CprodCond 3 \CprodCond{i}{\Cintegers}{i}
∏
i∈Z i

\CprodDA 2 \CprodDA{\Cintegers}{f}
∏
f

File : cmathml.dtx 25

7.9 Elementary Classical Functions

\Csin

\Ccos

\Ctan

\Csec

\Ccsc

\Ccot

macro args Example Result
\Csin 1 \Csin{x} sin(x)
\Ccos 1 \Ccos{x} cos(x)
\Ctan 1 \Ctan{x} tan(x)
\Csec 1 \Csec{x} sec(x)
\Ccsc 1 \Ccsc{x} csc(x)
\Ccot 1 \Ccot{x} cot(x)

\Csinh

\Ccosh

\Ctanh

\Csech

\Ccsch

\Ccoth

macro args Example Result
\Csinh 1 \Csinh{x} sinh(x)
\Ccosh 1 \Ccosh{x} cosh(x)
\Ctanh 1 \Ctanh{x} tanh(x)
\Csech 1 \Csech{x} sech(x)
\Ccsch 1 \Ccsch{x} csch(x)
\Ccoth 1 \Ccoth{x} coth(x)

\Carcsin

\Carccos

\Carctan

\Carcsec

\Carccsc

\Carccot

macro args Example Result
\Carcsin 1 \Carcsin{x} arcsin(x)
\Carccos 1 \Carccos{x} arccos(x)
\Carctan 1 \Carctan{x} arctan(x)
\Carccosh 1 \Carccosh{x} arccosh(x)
\Carccot 1 \Carccot{x} arccot(x)

\Carcsinh

\Carccosh

\Carctanh

\Carcsech

\Carccsch

\Carccoth

macro args Example Result
\Carccoth 1 \Carccoth{x} arccoth(x)
\Carccsc 1 \Carccsc{x} arccsc(x)
\Carcsinh 1 \Carcsinh{x} arcsinh(x)
\Carctanh 1 \Carctanh{x} arctanh(x)
\Cexp 1 \Cexp{x} exp(x)
\Cln 1 \Cln{x} ln(x)
\Clog 2 \Clog{5}{x} log5(x)

7.10 Statistics

The only semantic macro that is non-standard in this module is the one for the
moment and momentabout elements in MathML. They are combined into the
semantic macro CmomentA; its first argument is the degree, its second one the point
in the distribution, the moment is taken about, and the third is the distribution.

\Cmean

\Csdev

\Cvar

\Cmedian

\Cmode

\Cmoment

\CmomentA

File : cmathml.dtx 26

macro args Example Result
\Cmean 1 \Cmean{X} mean(X)
\Csdev 1 \Csdev{X} std(X)
\Cvar 1 \Cvar{X} var(X)
\Cmedian 1 \Cmedian{X} median(X)
\Cmode 1 \Cmode{X} mode(X)
\Cmoment 3 \Cmoment{3}{X} 〈X3〉
\CmomentA 3 \CmomentA{3}{p}{X} 〈p3〉X

7.11 Linear Algebra

In these semantic macros, only the matrix constructor is unusual; instead of con-
structing a matrix from matrixrow elements like MathML does, the macro follows
the TEX/LATEX tradition allows to give a matrix as an array. The first argument
of the macro is the column specification (it will only be used for presentation
purposes), and the second one the rows.

\Cvector

\Cmatrix

\Cdeterminant

\Ctranspose

\Cselector

\Cvectorproduct

\Cscalarproduct

\Couterproduct

macro args Example Result
\Cvector 1 \Cvector{1,2,3} (1, 2, 3)

\Cmatrix 2 \Cmatrix{ll}{1 & 2\\ 3 & 4}

(
1 2
3 4

)
\Cdeterminant 1 \Cdeterminant{A} |A|
\Ctranspose 1 \Ctranspose{A} A>

\Cselector 2 \Cselector{A}{2} A2

\Cvectproduct 2 \Cvectproduct{\phi}{\psi} φ · ψ
\Cscalarproduct 2 \Cscalarproduct{\phi}{\psi} φψ
\Couterproduct 2 \Couterproduct{\phi}{\psi} φ× ψ

7.12 Constant and Symbol Elements

The semantic macros for the MathML constant and symbol elements are very
simple, they do not take any arguments, and their name is just the MathML
element name prefixed by a capital C.

\Cintegers

\Creals

\Crationals

\Ccomplexes

\Cprimes

macro args Example Result
\Cintegers \Cintegers Z
\Creals \Creals R
\Crationals \Crationals Q
\Cnaturalnumbers \Cnaturalnumbers N
\Ccomplexes \Ccomplexes C
\Cprimes \Cprimes P

\Cexponentiale

\Cimaginaryi

\Ctrue

\Cfalse

\Cemptyset

\Cpi

\Ceulergamma

\Cinfinit

File : cmathml.dtx 27

macro args Example Result
\Cexponemtiale \Cexponemtiale e
\Cimaginaryi \Cimaginaryi i
\Cnotanumber \Cnotanumber NaN
\Ctrue \Ctrue true
\Cfalse \Cfalse false
\Cemptyset \Cemptyset ∅
\Cpi \Cpi π
\Ceulergamma \Ceulergamma γ
\Cinfinit \Cinfinit ∞

7.13 Extensions

Content MathML does not (even though it claims to cover M-14 Math) symbols
for all the common mathematical notions. The cmathmlx attempts to collect these
and provide TEX/LATEX and LATEXML bindings.

\Ccomplement

macro args Example Result
\Ccomplement 1 \Ccomplement{\Cnaturalnumbers} Nc

File : cmathml.dtx 28

modules.dtx

File : modules.dtx 29

8 Introduction

Following general practice in the TEX/LATEX community, we use the term “se-
mantic macro” for a macro whose expansion stands for a mathematical ob-
ject, and whose name takes up the name of the mathematical object. This
can range from simple definitions like \def\Reals{{\mathbb R}} for indivicual
mathematical objects to more complex (functional) ones object constructors like
\def\SmoothFunctionsOn#1{{\cal{C}}^\infty(#1)}. Semantic macros are tra-
ditionally used to make TEX/LATEX code more portable. However, the TEX/LATEX
scoping model (macro definitions are scoped either in the local group or until the
rest of the document), does not mirror mathematical practice, where notations
are scoped by mathematical environments like statements, theories, or such.

9 The User Interface

The main contributions of the modules package are the module environment, which
allows for lexical scoping of semantic macros with inheritance and the \symdef
macro for declaration of semantic macros that underly the module scoping.

9.1 Modules

The module environment takes an optional KeyVal argument. Currently, only themodule

id key is supported for specifying the identifier of a module (also called the module
name).

A module introduced by \begin{module}[id=foo] restricts the scope the se-\importmodule

mantic macros defined by the \symdef form to the end of this module given by
the corresponding \end{module}, and to any other module environments that
import them by a \importmodule{foo} directive. If the module foo contains
\importmodule directives of its own, these are also exported to the importing
module. Thus \importmodule induces the semantic inheritance relation and
usesqualified20 for macros imported with a prefix (this is used whenever weEdNote(20)
have conflicting names for macros inherited from different modules).

9.2 Semantic Macros

A call to the \symdef macro has the general form\symdef

\symdef[〈keys〉]{〈cseq〉}[〈args〉]{〈definiens〉}

where 〈cseq〉 is a control sequence (the name of the semantic macro) 〈args〉 is a
number between 0 and 9 for the number of arguments 〈definiens〉 is the token
sequence used in macro expansion for 〈cseq〉. Finally 〈keys〉 is a keyword list that
further specifies the semantic status of the defined macro.

A key local can be added to 〈keys〉 to specify that the symbol is local to
the module and is invisible outside. The key-value pair aliases=〈symname〉

20EdNote: do an importqualified as well

File : modules.dtx 30

specifies that the defined symbol 〈cseq〉 is a presentational variant of the sym-
bol 〈symname〉.

Finallly, the keys cmml, cattrs, and definitionURL can be used to specify
the Content-MathML encoding of the symbols. They key-value pair cmml=〈elt〉
specifies that the semantic macro corresponds to the Content-MathML element
with the name 〈elt〉, cattrs=〈attrtring〉 its argument string and definitionURL
allows to specify the definitionURL attribute on that element. The most common
case will be a symbol definition of the following form:

\symdef[cmml=csymbol,definitionURL=〈URI 〉]{〈cseq〉}[〈args〉]{〈definiens〉}

where 〈URI 〉 is the URI pointing to the location of the Xml file generated
from the current LATEX file.

The \abbrdef macro is a variant of \symdef that is only different in semantics,\abbrdef

not in presentation. An abbreviative macro is like a semantic macro, and underlies
the same scoping and inheritance rules, but it is just an abbreviation that is meant
to be expanded, it does not stand for an atomic mathematical object.

We will use a simple module for natural number arithmetics as a running
example. It defines exponentiation and summation as new concepts while drawing
on the basic operations like + and − from LATEX. In our example, we will define a
semantic macro for summation \Sumfromto, which will allow us to express an
expression like

∑
i = 1nxi as \Sumfromto{i}1n{2i-1} (see Example 7 for an

example). In this example we have also made use of a local semantic symbol
for n, which is treated as an arbitrary (but fixed) symbol.

\begin{module}[id=arith]

\symdef{Sumfromto}[4]{\sum_{#1=#2}^{#3}{#4}}

\symdef[local]{arbitraryn}{n}

What is the sum of the first \arbitraryn odd numbers, i.e.

$\Sumfromto{i}1\arbitraryn{2i-1}?$

\end{module}

is formatted by STEX to

What is the sum of the first n odd numbers, i.e.
∑n
i=1 2i− 1?

Example 7: Semantic Markup in a module context

9.3 Dealing with multiple Files

The infrastructure presented above works well if we are dealing with small files or
small collections of modules. In reality, collections of modules tend to grow, get re-
used, etc, making it much more difficult to keep everything in one file. This general
trend towards increasing enthropy is aggravated by the fact that modules are very
self-contiained objects that are ideal for re-used. Therefore in the absence of a
content management system for LATEX document (fragments), module collections
tend to develop towards the “one module one file” rule, which leads to situations
with lots and lots of little files.

File : modules.dtx 31

Moreover, most mathematical documents are not self-contained, i.e. they do
not build up the theory from scratch, but pre-suppose the knowledge (and nota-
tion) from other documents. In this case we want to make use of the semantic
macros from these prerequisite documents without including their text into the
current document. One way to do this would be to have LATEX read the prereq-
uisite documents without producing output. For efficiency reasons, STEX chooses
a different route. It comes with a utility sms (see Section 3) that exports the
modules and macros defined inside them from a particular document and stores
them inside .sms files. This way we can avoid overloading LaTeX with useless in-
formation, while retaining the important information which can then be imported
in a more efficient way.

For such situations, the \importmodule macro can be given an optional first\importmodule

argument that is a path to a file that contains a path to the module file, whose
module definition (the .sms file) is read. Note that the \importmodule macro can
be used to make module files truly self-contained. To arrive at a file-based content
management system, it is good practice to reuse the module identifiers as module
names and to prefix module files with corresponding \importmodule statements
that pre-load the corresponing module files.

\begin{module}[id=foo]

\importmodule[../other/bar]{bar}

\importmodule[../mycolleaguesmodules]{baz}

\importmodule[../other/bar]{foobar}

...

\end{module}

Example 8: Self-contained Modules via importmodule

In Example 8, we have shown the typical setup of a module file. The
\importmodule macro takes great care that files are only read once, as STEX
allows multiple inheritance and this setup would lead to an exponential (in the
module inheritance depth) number of file loads.

Note that the recursive (depth-first) nature of the file loads induced by this
setup is very natural, but can lead to problems with the depth of the file stack
in the TEX formatte (it is usually set to something like 15). Therefore, it may be
necessary to circumvent the recursive load pattern providing (logically spurious)
\importmodule commands. Consider for instance module bar in Example 8, say
that bar already has load deph 15, then we cannot naivedly import it in this way.
If module bar depended say on a module base on the critical load path, then
we could add a statement \requiremodules{../base} in the second line. This\requiremodules

would load the modules from ../base.sms in advance (uncritical, since it has load
depth 10), so that it would not have to be re-loaded in the critical path of the
module foo. Solving the load depth problem.

File : modules.dtx 32

9.4 Including Externally Defined Semantic Macros

In some cases, we use an existing LATEX macro package for typesetting objects
that have a conventionalized mathematical meaning. In this case, the macros are
“semantic” even though they have not been defined by a \symdef. This is no
problem, if we are only interested in the LATEX workflow. But if we want to e.g.
transform them to OMDoc via LaTeXML, the LaTeXML bindings will need
to contain references to an OMDoc theory that semantically correponds to the
LATEX package. In particular, this theory will have to be imported in the generated
OMDoc file to make it OMDoc-valid.

To deal with this situation, the modules package provides the \requirepackage\requirepackage

macro. It takes two arguments: a package name, and a URI of the corresponing
OMDoc theory. In the LATEX workflow this macro behaves like a \usepackage on
the first argument, except that it can — and should — be used outside the LATEX
preamble. In the LaTeXML workflow, this loads the LaTeXML bindings of
the package specified in the first argument and generates an appropriate imports
element using the URI in the second argument.

File : modules.dtx 33

statements.dtx

File : statements.dtx 34

10 Introduction

The motivation for the statemets package is very similar to that for semantic
macros in the modules package: We want to annotate the structural semantic
properties of statements in the source, but present them as usual in the formatted
documents. In contrast to the case for mathematical objects, the repertoire of
mathematical statements and their structure is more or less fixed.

This structure can be used by MKM systems for added-value services, either
directly from the STEX sources, or after translation. Even though it is part of the
STEX collection, it can be used independently, like it’s sister package sproofs.

STEX is a version of TEX/LATEX that allows to markup TEX/LATEX documents
semantically without leaving the document format, essentially turning TEX/LATEX
into a document format for mathematical knowledge management (MKM).

11 The User Interface

All the statements are marked up as envioronments, that take a KeyVal argu-
ment that allows to annotate semantic information. For instance, instead ofassertion

providing environments for “Theorem”, “Lemma”, “Proposition”,... we have a
single assertion environment that generalizes all of these, and takes a type key
that allows to specify the “type”. So instead of \begin{Lemma}we have to write
\begin{assertion}[type=Lemma](see Example 9 for an example).21EdNote(21)

\begin{assertion}[id=sum-over-odds,type=Lemma]

$\sum_{i=1}^n{2i-1}=n^2$

\end{assertion}

will lead to the result

Lemma:
∑n
i=1 2i− 1 = n2

Example 9: Semantic Markup for a Lemma in a module context

Whether we will see the keyword “Lemma” will depend on the value of the
optional display key. In all of the assertion environments, the presentation ex-
pectation is that the text will be presented in italic font. Generally, we distinguish
two forms of statements:

block statements have explicit discourse markers that delimit their content in
the surrounding text, e.g. the boldface word “Theorem:” as a start marker
and a little line-end box as an end marker of a proof.

flow statements do not have explicit markers, they are interspersed with the
surrounding text.

Since they have the same semantic status, they must both be marked up, but
styled differently. We distinguis between these two presentational forms with the

21EdNote: talk about package options here! Draft mode,...

File : statements.dtx 35

display key, which is allowed on all statement environments. If it has the value
block (the default), then the statement will be presented in a paragraph of its
own, have explicit discourse markers for its begin and end, possibly numbering,
etc. If it has the value flow, then no extra presentation will be added22 theEdNote(22)
semantic information is invisible to the reader.

Another key that is present on all statement environments in the id key it
allows to identify the statement with a name.

The axiom environment is similar to assertion, but the content has a differentaxiom

ontological status: axioms are assumed without (formal) justification, whereas
assertions are expeceted to be justified from other assertions, axioms or definitions.

The definition environment is used for marking up mathematical definitions.definition

Its peculiarity is that it defines (i.e. gives a meaning to) new mathematical con-
cepts or objects. Theseare identified by the definiendum macro, which takes two\definiendum

arguments. The first one is the system name of the symbol defined (for refer-
ence via \termin), the second one is the text that is to be emphasized in the
presentation. Note that the \definiendum macro can only be used inside the
definition environment. If you find yourself in a situation where you want to
use it outside, you will most likely want to wrap the apporpriate text fragment in
a \begin{definition}[display=flow] ... and \end{definition}.23EdNote(23)

If we have defined a concept with the \definiendum macro, then we can mark\termin

up other occurrences of the term as referring to this concept. Note that this process
cannot be fully automatized yet, since that would need advanced lanauge tech-
nology to get around problems of disambiguation, inflection, and non-contiguous
phrases9. Therefore, the \termin can be used to make this information explicit.

The simpleDef environment is a statement environment for simple definitions,simpleDef

which introduce a new symbol that abbreviates another concept. The envioron-
ment takes an argument for the new concept

The example environment is a generic statement envionment, except that theexample

for key should be given to specify the identifier what this is an example for. The
example environment also expcets a type key to be specified, so that we know
whether this is an example or a counterexample24EdNote(24)

The \defemph macro is a configuration hook that allows to specify the style\defemph

of presentation of the definiendum. By default, it is set to \bf as a fallback,
since we can be sure that this is always available. It can be customized by re-
definition: For instance \renewcommand{\defemph}[1]{\emph{#1}}, changes the
default behavior to italics.

The \termenph macro does the same for the style for \termin, it is empty\termemph

by default. Note the term might carry an implicit hyperreference to the defining
occurrance and that the presentation engine might mark this up, changing this
behavior.

The \stDMemph macro does the same for the style for the markup of the dis-\stDMemph

22EdNote: in the flow case, the text should not be made italic; implement this!
23EdNote: need to leave hypertargets on the definiendum, so that we can crosslink
9We do have a program that helps annotate larger text collections spotting the easy cases;

see http://kwarc.info/projects/stex and look for the program termin.
24EdNote: think about this some more

File : statements.dtx 36

http://kwarc.info/projects/stex

course markers like “Theorem”. If it is not defined, it is set to \bf; that allows to
preset this in the class file.

File : statements.dtx 37

sproof.dtx

12 Introduction

The sproof (semantic proofs) package supplies macros and environment that allow
to annotate the structure of mathematical proofs in STEX files. This structure can
be used by MKM systems for added-value services, either directly from the STEX
sources, or after translation. Even though it is part of the STEX collection, it can
be used independently, like it’s sister package statements.

STEX is a version of TEX/LATEX that allows to markup TEX/LATEX documents
semantically without leaving the document format, essentially turning TEX/LATEX
into a document format for mathematical knowledge management (MKM).

We will go over the general intuition by way of our running example (see
Figure 10 for the source and Figure 11 for the formatted result).25EdNote(25)

13 The User Interface

13.1 Proofs and Proof steps

The proof environment is the main container for proofs. It takes an optionalsproof

KeyVal argument that allows to specify the id (identifier) and for (for which as-
sertion is this a proof) keys. The regular argument of the proof environment con-
tains an introductory comment, that may be used to announce the proof style. The
proof environment contains a sequence of \step, proofcomment, and pfcases en-
vironments that are used to markup the proof steps. The proof environment has
a variant Proof, which does not use the proof end marker. This is convenient, if
a proof ends in a case distinction, which brings it’s own proof end marker with
it. The Proof environment is a variant of proof that does not mark the end ofsProof

a proof with a little box; presumably, since one of the subproofs already has one
and then a box supplied by the outer proof would generate an otherwise empty
line. The \sproofidea macro allows to give a one-paragraph description of the\sproofidea

proof idea.
Regular proof steps are marked up with the step environment, which takes anspfstep

optional KeyVal argument for annotations. A proof step usually contains a local
assertion (the text of the step) together with some kind of evidence that this can
be derived from already established assertions.

Note that both \premise and \justarg can be used with an empty second
argument to mark up premises and arguments that are not explicitly mentioned
in the text.

13.2 Justifications

This evidence is marked up with the justification environment in the sproofjustification

25EdNote: talk a bit more about proofs and their structure,... maybe copy from OMDoc spec.

File : sproof.dtx 38

\begin{sproof}[id=simple-proof,for=sum-over-odds]

{We prove that $\sum_{i=1}^n{2i-1}=n^{2}$ by induction over n}

\begin{spfcases}{For the induction we have to consider the following cases:}

\begin{spfcase}{$n=1$}

\begin{spfstep}[display=flow] then we compute $1=1^2$\end{spfstep}

\end{spfcase}

\begin{spfcase}{$n=2$}

\begin{sproofcomment}[display=flow]

This case is not really necessary, but we do it for the

fun of it (and to get more intuition).

\end{sproofcomment}

\begin{spfstep}[display=flow] We compute $1+3=2^{2}=4$.\end{spfstep}

\end{spfcase}

\begin{spfcase}{$n>1$}

\begin{spfstep}[type=assumption,id=ind-hyp]

Now, we assume that the assertion is true for a certain $k\geq 1$,

i.e. $\sum_{i=1}^k{(2i-1)}=k^{2}$.

\end{spfstep}

\begin{sproofcomment}

We have to show that we can derive the assertion for $n=k+1$ from

this assumption, i.e. $\sum_{i=1}^{k+1}{(2i-1)}=(k+1)^{2}$.

\end{sproofcomment}

\begin{spfstep}

We obtain $\sum_{i=1}^{k+1}{2i-1}=\sum_{i=1}^k{2i-1}+2(k+1)-1$

\begin{justification}[method=arith:split-sum]

by splitting the sum.

\end{justification}

\end{spfstep}

\begin{spfstep}

Thus we have $\sum_{i=1}^{k+1}{(2i-1)}=k^2+2k+1$

\begin{justification}[method=fertilize] by inductive hypothesis.\end{justification}

\end{spfstep}

\begin{spfstep}[type=conclusion]

We can \begin{justification}[method=simplify]simplify\end{justification}

the right-hand side to ${k+1}^2$, which proves the assertion.

\end{spfstep}

\end{spfcase}

\begin{spfstep}[type=conclusion]

We have considered all the cases, so we have proven the assertion.

\end{spfstep}

\end{spfcases}

\end{sproof}

Example 10: A very explicit proof, marked up semantically

File : sproof.dtx 39

Proof: We prove that
∑n
i=1 2i− 1 = n2 by induction over n

P.1 For the induction we have to consider the following cases:

P.1.1 n = 1: then we compute 1 = 12

P.1.2 n = 2: This case is not really necessary, but we do it for the fun of it (and
to get more intuition). We compute 1 + 3 = 22 = 4

P.1.3 n > 1:

P.1.3.1 Now, we assume that the assertion is true for a certain k ≥ 1, i.e.∑k
i=1 (2i− 1) = k2.

P.1.3.2 We have to show that we can derive the assertion for n = k+ 1 from this
assumption, i.e.

∑k+1
i=1 (2i− 1) = (k + 1)2.

P.1.3.3 We obtain
∑k+1
i=1 (2i− 1) =

∑k
i=1 (2i− 1) + 2(k+ 1)− 1 by splitting the

sum

P.1.3.4 Thus we have
∑k+1
i=1 (2i− 1) = k2 + 2k + 1 by inductive hypothesis.

P.1.3.5 We can simplify the right-hand side to k + 12, which proves the assertion.

P.1.4 We have considered all the cases, so we have proven the assertion.

Example 11: The formatted result of the proof in Figure 10

File : sproof.dtx 40

package. This environment totally invisible to the formatted result; it wraps the
text in the proof step that corresponds to the evidence. The environment takes
an optional KeyVal argument, which can have the method key, whose value is the
name of a proof method (this will only need to mean something to the application
that consumes the semantic annotations). Furthermore, the justification can con-
tain “premises” (specifications to assertions that were used justify the step) and
“arguments” (other information taken into account by the proof method).

The \premise macro allows to mark up part of the text as reference to an\premise

assertion that is used in the argumentation. In the example in Figure 10 we have
used the \premise macro to identify the inductive hypothesis.

The \justarg macro is very similar to \premise with the difference that it\justarg

is used to mark up arguments to the proof method. Therefore the content of the
first argument is interpreted as a mathematical object rather than as an identifier
as in the case of \premise. In our example, we specified that the simplification
should take place on the right hand side of the equation. Other examples include
proof methods that instantiate. Here we would indicate the substituted object in
a \justarg macro.

13.3 Proof Structure

The pfcases environment is used to mark up a proof by cases. This environ-spfcases

ment takes an optional KeyVal argument for semantic annotations and a second
argument that allows to specify an introductory comment (just like in the proof
environment).

The content of a pfcases environment are a sequence of case proofs marked upspfcase

in the pfcase environment, which takes an optional KeyVal argument for semantic
annotations. The second argument is used to specify the the description of the
case under considertation. The content of a pfcase environment is the same as
that of a proof, i.e. steps, proofcomments, and pfcases environments.

The proofcomment environment is much like a step, only that it does notsproofcomment

have an obejct-level assertion of its own. Rather than asserting some fact that
is relevant for the proof, it is used to explain where the proof is going, what we
are attempting to to, or what we have achieved so far. As such, it cannot be the
target of a \premise.

13.4 Proof End Markers

Traditionally, the end of a mathematical proof is marked with a little box at the
end of the last line of the proof (if there is space and on the end of the next line
if there isn’t), like so:

The sproof package provides the \sproofend macro for this. If a different\sproofend

symbol for the proof end is to be used (e.g. q.e.d), then this can be obtained by
specifying it using the \sProofEndSymbol configuration macro (e.g. by specifying\sProofEndSymbol

\sProofEndSymbol{q.e.d}).
Some of the proof structuring macros above will insert proof end symbols for

sub-proofs, in most cases, this is desirable to make the proof structure explicit, but

File : sproof.dtx 41

sometimes this wastes space (especially, if a proof ends in a case analysis which
will supply its own proof end marker). Therefore, all proof environments have the
noproofend keyword that suppresses the proof end markers for this element. Itnoproofend

can be specified on its own, and does not need a value (if one is specified, that is
completely ignored).

File : sproof.dtx 42

omdoc.dtx

File : omdoc.dtx 43

14 Introduction

The omdoc package supplies macros and environment that allow to label docu-
ment fragements and to reference them later in the same document or in other
documents. In essence, this enhances the docuent-as-trees model to documents-
as-directed-acyclic-graphs (DAG) model. This structure can be used by MKM
systems for added-value services, either directly from the STEX sources, or after
translation. Currently, trans-document referencing provided by this package can
conly be used in the STEX collection.

STEX is a version of TEX/LATEX that allows to markup TEX/LATEX documents
semantically without leaving the document format, essentially turning TEX/LATEX
into a document format for mathematical knowledge management (MKM).

DAG models of documents allow to replace the “Copy and Paste” in the source
document with a label-and-reference model where document are shared in the doc-
ument source and the formatter does the copying during document formatting/p-
resentation.262728EdNote(26)

EdNote(27)
EdNote(28)

15 The User Interface

15.1 Document Structure

The structure of the document is given by the omgroup environment just like inomgroup

OMDoc.

15.2 Providing IDs for OMDoc Elements

Some of the OMDoc elements need IDs to function corrrectly. The general strat-
egy here is to equip the STEX macros with keys, so that the author can specify
meaningful ones, but to let the transformation give default ones if the author did
not.

15.3 Mathematical Text

The omtext environment is used for any text fragment that has a contribution to aomtext

text that needs to be marked up. It can have a title, which can be specified via the
title key. Often it is also helpful to annotate the type key. The standard relations
from rhethorical structure theory abstract, introduction, conclusion, thesis,
comment, antithesis, elaboration, motivation, evidence, transition, note,
annote are recommended. Note that some of them are unary relations like
introduction, which calls for a target. In this case, a target using the for
key should be specified. The transition relation is special in that it is binary (a

26EdNote: talk about the advantages and give an example.
27EdNote: is there a way to load documents at URIs in LaTeX?
28EdNote: integrate with latexml’s XMRef in the Math mode.

File : omdoc.dtx 44

“transition between two statements”), so additionally, a source should be specified
using the from key.29EdNote(29)

15.4 Structure Sharing

The \STRlabel macro takes two arguments: a label and the content and stores the\STRlabel

\STRcopy the content for later use by \STRcopy{label}, which expands to the previously
stored content.

The \STRlabel macro has a variant \STRsemantics, where the label argument\STRsemantics

is optional, and which takes a third argument, which is ignored in LATEX. This
allows to specify the meaning of the content (whatever that may mean) in cases,
where the source document is not formatted for presentation, but is transformed
into some content markup format. 30EdNote(30)

15.5 Phrase-Level Markup

The phrase enviornment allows to mark up phrases with semantic information.phrase

It takes an optional KeyVal argument with the keys

29EdNote: describe the keys more fully
30EdNote: make an example

File : omdoc.dtx 45

presentation.dtx

Contents

File : presentation.dtx 46

16 Introduction

The presentation package supplies an infrastructure that allows to specify the
presentation of semantic macros, including preference-based bracket elision. This
allows to markup the functional structure of mathematical formulae without hav-
ing to lose high-quality human-oriented presentation in LATEX. Moreover, the
notation definitions can be used by MKM systems for added-value services, either
directly from the STEX sources, or after translation.

STEX is a version of TEX/LATEX that allows to markup TEX/LATEX documents
semantically without leaving the document format, essentially turning TEX/LATEX
into a document format for mathematical knowledge management (MKM).

The setup for semantic macros described in the STEX modules package works
well for simple mathematical functions: we make use of the macro application
syntax in TEX to express function application. For a simple function called “foo”,
we would just declare \symdef{foo}[1]{foo(#1)} and have the concise and intu-
itive syntax \foo{x} for foo(x). But mathematical notation is much more varied
and interesting than just this.

17 The User Interface

In this package we will follow the STEX approach and assume that there are four
basic types of mathematical expressions: symbols, variables, applications and
binders. Presentation of the variables is relatively straightforward, so we will
not concern ourselves with that. The application of functions in mathematics
is mostly presented in the form f(a1, . . . , an), where f is the function and the
ai are the arguments. However, many commonly-used functions from this pre-
sentational scheme: for instance binomial coefficients:

(
n
k

)
, pairs: 〈a, b〉, sets:

{x ∈ S |x2 6= 0}, or even simple addition: 3 + 5 + 7. Note that in all these cases,
the presentation is determined by the (functional) head of the expression, so we
will bind the presentational infrastructure to the operator.

17.1 Mixfix Notations

For the presentation of ordinary operators, we will follow the approach used by
the Isabelle theorem prover. There, the presentation of an n-ary function (i.e. one
that takes n arguments) is specified as 〈pre〉〈arg0〉〈mid1〉· · ·〈midn〉〈argn〉〈post〉,
where the 〈argi〉 are the arguments and 〈pre〉, 〈post〉, and the 〈midi〉 are presen-
tational material. For instance, in infix operators like the binary subset opera-
tor, 〈pre〉 and 〈post〉 are empty, and 〈mid1〉 is ⊆. For the ternary conditional
operator in a programming language, we might have the presentation pattern
if〈arg1〉then〈arg2〉else〈arg3〉fi that utilizes all presentation positions.

The presentation package provides mixfix declaration macros \mixfixi,\mixfix*

\mixfixii, and \mixfixiii for unary, binary, and ternary functions. This covers
most of the cases, larger arities would need a different argument pattern.10 The

10If you really need larger arities, contact the author!

File : presentation.dtx 47

call pattern of these macros is just the presentation pattern above. In general,
the mixfix declaration of arity i has 2n+ 1 arguments, where the even-numbered
ones are for the arguments of the functions and the odd-numbered ones are for
presentation material. For instance, to define a semantic macro for the subset
relation and the conditional, we would use the markup in Figure 12.

\symdef{sseteq}[2]{\mixfixii{}{#1}{\subseteq}{#2}{}}

\symdef{sseteq}[2]{\infix\subseteq{#1}{#2}}

\symdef{ite}[2]{\mixfixiii{{\tt{if}}\;}{#1}

{\;{\tt{then}}\;}{#2}

{\;{\tt{else}}\;}{#3}{\;{\tt{fi}}}}

source presentation
\sseteq{S}T (S ⊆ T)
\ite{x<0}{-x}x ifx < 0 then − x elsex fi

Example 12: Declaration of mixfix operators

For certain common cases, the presentation package provides shortcuts
for the mixfix declarations. The \prefix macro allows to specify a prefix\prefix

presentation for a function (the usual presentation in mathematics). Note
that it is better to specify \symdef{uminus}[1]{\prefix{-}{#1}} than just
\symdef{uminus}[1]{-#1}, since we can specify the bracketing behavior in the
former (see Section 17.3).

The \postfix macro is similar, only that the function is presented after the\postfix

argument as for e.g. the factorial function: 5! stands for the result of applying the
factorial function to the number 5. Note that the function is still the first argument
to the \postfix macro: we would specify the presentation for the factorial function
with \symdef{factorial}[1]{\postfix{!}{#1}}.

Finally, we provide the \infix macro for binary operators that are written\infix

between their arguments (see Figure 12).

17.2 n-ary Associative Operators

Take for instance the operator for set union: formally, it is a binary function
on sets that is associative (i.e. (S1 ∪ S2) ∪ S3 = S1 ∪ (S2 ∪ S3)), therefore the
brackets are often elided, and we write S1 ∪ S2 ∪ S3 instead (once we have proven
associativity). Some authors even go so far to introduce set union as a n-ary
operator, i.e. a function that takes an arbitrary (positive) number of arguments.
We will call such operators n-ary associative.

Specifying the presentation31 of n-ary associative operators in \symdef formsEdNote(31)
is not straightforward, so we provide some infrastructure for that. As we can-
not predict the number of arguments for n-ary operators, we have to give them
all at once, if we want to maintain our use of TEX macro application to specify

31EdNote: introduce the notion of presentation above

File : presentation.dtx 48

function application. So a semantic macro for an n-ary operator will be applied
as \nunion{〈a1〉,. . . ,〈an〉}, where the sequence of n logical arguments 〈ai〉 are
supplied as one TEX argument which contains a comma-separated list. We pro-
vide variants of the mixfix declarations presented in section 17.1 which deal with
associative arguments. For instance, the variant \mixfixa allows to specify n-ary\mixfixa

associative operators. \mixfixa{〈pre〉}{〈arg〉}{〈post〉}{〈op〉} specifies a presen-
tation, where 〈arg〉 is the associative argument and 〈op〉 is the corresponding
operator that is mapped over the argument list; as above, 〈pre〉, 〈post〉, are prefix
and postfix presentational material. For instance, the finite set constructor could
be constructed as

\newcommand{\fset}[1]{\mixfixa[p=0]{\{}{#1}{\}}{,}}

The \assoc macro is a convenient abbreviation of a \mixfixa that can be\assoc

used in cases, where 〈pre〉 and 〈post〉 are empty (i.e. in the majority of cases).
It takes two arguments: the presentation of a binary operator, and a comma-
separated list of arguments, it replaces the commas in the second argument with
the operator in the first one. For instance \assoc\cup{S_1,S_2,S_3} will be
formatted to S1 ∪ S2 ∪ S3. Thus we can use \def\nunion#1{\assoc\cup{#1}}
or even \def\nunion{\assoc\cup}, to define the n-ary operator for set union in
TEX. For the definition of a semantic macro in STEX, we use the second form,
since we are more conscious of the right number of arguments and would declare
\symdef{nunion}[1]{\assoc\cup{#1}}.32EdNote(32)

These macros \prefix and \postfix have n-ary variants \prefixa and\prefixa

\postfixa that take an arbitrary number of arguments (mathematically; syntacti-\postfixa

cally grouped into one TEX argument). These take an extra separator argument.33EdNote(33)
The \mixfixii macro has variants \mixfixia, \mixfixai, and \mixfixaa,\mixfixia

\mixfixai

\mixfixaa

which allow to make one or two arguments in a binary function associative11. A
use case for the second macro is an nary function type operator \fntype, which
can be defined via

\def\fntype#1#2{\mixfixai{}{#1}\rightarrow{#2}{}\times}

and which will format \fntype{\alpha,\beta,\gamma}\delta as α×β× γ → δ.

17.3 Precedence-Based Bracket Elision

With the infrastructure supplied by the \assoc macro we could now try to combine
set union and set intersection in one formula. Then, writing

\nunion{\ninters{a,b},\ninters{c,d}} (2)

would yield ((a∩ b)∪ (c∩ d)), and not a∩ b∪ c∩ d as we would like, since ∩ binds
stronger than ∪. Dropping outer brackets in the presentations of the presentation

32EdNote: think about big operators for ACI functions
33EdNote: think of a good example!
11If you really need larger arities with associative arguments, contact the package author!

File : presentation.dtx 49

of the operators will not help in general: it would give the desired form for (2) but
a ∩ b ∪ c ∩ d for (3), where we would have liked (a ∪ b) ∩ (c ∪ d)

\ninters{\nunion{a,b},\nunion{c,d}} (3)

In mathematics, brackets are elided, whenever the author anticipates that the
reader can understand the formula without them, and would be overwhelmed with
them. To achieve this, there are set of common conventions that govern bracket
elision. The most common is to assign precedences to all operators, and elide
brackets, if the precedence of the operator is lower than that of the context it
is presented in. In our example above, we would assign ∩ a lower precedence
than ∪ (and both a lower precedence than the initial precedence). To compute
the presentation of (3) we start out with the \ninters, elide its brackets (since
the precedence n of ∪ is lower than the initial precedence i), and set the context
precedence for the arguments to n. When we present the arguments, we present
the brackets, since the precedence of nunion is lower than the context precedence
n.

This algorithm, which we call precedence-based bracket elision goes a
long way towards approximating mathematical practice. Note that full bracket
elision in mathematical practice is a reader-oriented process, it cannot be fully
mechanical, e.g. in (a∩ b∩ c∩ d∩ e∩ f ∩ g)∪h we better put the brackets around
the septary intersection to help the reader even thoug they could have been elided
by our algorithm. Therefore, the author has to retain full control over bracketing
in a bracket elision architecture (otherwise it would become impossible to explain
the concept of associativity).34.EdNote(34)

Precedence Operators Comment
200 +,- unary
200 ˆ exponentiation
400 ∗,∧,∩ multiplicative
500 +,−,∨,∪ additive
600 / fraction
700 =, 6=,≤, <,>,≥ relation

Figure 1: Common Operator Precedences

In STEX we supply an optional keyval arguments to the mixfix declarations and
their abbreviations that allow to specify precedences: The key p key is used top

specify the operator precedence, and the keys p〈i〉 can be used to specify thepi

pii

piii

argument precedences. The latter will set the precedence level while process-
ing the arguments, while the operator precedence invokes brackets, if it is larger
than the current precedence level — which is set by the appropriate argument
precedence by the dominating operators or the outer precedence.

34EdNote: think about how to implement that

File : presentation.dtx 50

If none of the precedences is specified, then the defaults are assumed. The op-
erator precedence is set to the default operator precedence, which defaults to 1000
and can be set by \setDefaultPrecedence{〈prec〉} where 〈prec〉 is an integer.\setDefaultPrecedence

The argument precedences default to the operator precedence.
Figure 1 gives an overview over commonly used precedences. Note that most

operators have precedences lower than the default precedence of 1000, otherwise
the brackets would not be elided. For our examples above, we would define

\newcommand{\nunion}[1]{\assoc[p=500]{\cup}{#1}}

\newcommand{\ninters}[1]{\assoc[p=400]{\cap}{#1}}

to get the desired behavior.
Note that the presentation macros uses round brackets for grouping by

default. We can specify other brackets via two more keywords: lbracklbrack

and rbrack. Just as above, we can also reset the default brackets withrbrack

\setDefaultLeftBracket{〈lb〉}and \setDefaultRightBracket{〈rb〉} where 〈lb〉\setDefaultLeftBracket

\setDefaultRightBracket and 〈rb〉 expand to the desired brackets. Note that formula parts that look like
brackets usually are not. For instance, we should not define the finite set con-
structor via

\newcommand{\fset}[1]{\assoc[lbrack=\{,rbrack=\}]{,}{#1}}

where the curly braces are used as brackets, but as presented in section 17.2
even though both would format \fset{a,b,c} as {a, b, c}. In the encoding here,
an operator with suitably high operator precedence would be able to make the
brackets disappear.

17.4 Flexible Elision

There are several situations in which it is desirable to display only some parts of
the presentation:

• We have alreday seen the case of redundant brackets above

• Arguments that are strictly necessary are omitted to simplify the notation,
and the reader is trusted to fill them in from the context.

• Arguments are omitted because they have default values. For example
log10 x is often written as log x.

• Arguments whose values can be inferred from the other arguments are usu-
ally omitted. For example, matrix multiplication formally takes five argu-
ments, namely the dimensions of the multiplied matrices and the matrices
themselves, but only the latter two are displayed.

Typically, these elisions are confusing for readers who are getting acquainted
with a topic, but become more and more helpful as the reader advances. For ex-
perienced readers more is elided to focus on relevant material, for beginners repre-
sentations are more explicit. In the process of writing a mathematical document

File : presentation.dtx 51

for traditional (print) media, an author has to decide on the intended audience
and design the level of elision (which need not be constant over the document
though). With electronic media we have new possibilities: we can make elisions
flexible. The author still chooses the elision level for the initial presentation, but
the reader can adapt it to her level of competence and comfort, making details
more or less explicit.

To provide this functionality, the presentation package provides the \elide\elide

macro allows to asociate a text with an integer visibility level and group them
into elision groups. High levels mean high elidability.

Elision can take various forms in print and digital media. In static media like
traditional print on paper or the PostScript format, we have to fix the elision
level, and can decide at presentation time which elidable tokens will be printed
and which will not. In this case, the presentation algorithm will take visibility
thresholds Tg for every elidability group g as a user parameter and then elide
(i.e. not print) all tokens in visibility group g with level l > Tg. We specify this\setelevel

threshold for via the \setelevel macro. For instance in the example below, we
have a two type annotations par for type parameters and typ for type annotations
themselves.

$\mathbf{I}\elide{par}{500}{^\alpha}\elide{typ}{100}{_{\alpha\to\alpha}}

:=\lambda{X\elide{ty}{500}{_\alpha}}.X$

The visibility levels in the example encode how redundant the author thinks
the elided parts of the formula are: low values show high redundancy. In our
example the intuition is that the type paraemter on the I cominator and the type
annotation on the bound variable X in the λ expression are of the same obvious-
ness to the reader. So in a document that contains \setegroup{typ}{1000} and
\setegroup{an}{1000} will show I := λX.X eliding all redundant information. If
we have both values at 400, then we will see Iα := λXα.X and only if the threshold
for typ dips below 100, then we see the full information: Iαα→α := λXα.X.

In an output format that is capable of interactively changing its appearance,
e.g. dynamic XHTML+MathML (i.e. XHTML with embedded Presentation
MathML formulas, which can be manipulated via JavaScript in browsers), an
application can export the information about elision groups and levels to the tar-
get format, and can then dynamically change the visibility thresholds by user
interaction. Here the visibility threshold would also be used, but here it only
determines the default rendering; a user can then fine-tune the document dy-
namically to reveal elided material to support understanding or to elide more to
increase conciseness.

The price the author has to pay for this enhanced user experience is that she has
to specify elided parts of a formula that would have been left out in conventional
LATEX. Some of this can be alleviated by good coding practices. Let us consider
the log base case. This is elided in mathematics, since the reader is expected
to pick it up from context. Using semantic macros, we can mimic this behavior:
defining two semantic macros: \logC which picks up the log base from the context

File : presentation.dtx 52

via the \logbase macro and \logB which takes it as a (first) argument.

\provideEdefault{logbase}{10}

\symdef{logB}[2]{\prefix{\mathrm{log}\elide{base}{100}{_{#1}}}{#2}}

\abbrdef{logC}[1]{\logB{\fromEcontext{logbase}}{#1}}

Here we use the \provideEdefault macor to initialize a LATEX token register\provideEdefault

for the logbase default, which we can pick up from the elision context using
\fromEcontext in the definition of \logC. Thus \logC{x} would render as log10(x)\fromEcontext

with a threshold of 50 for base and as log2, if the local TEX group e.g. given by
the assertion environment contains a \setEdefault{logbase}{2}.setEdefault

17.5 Hyperlinking
35EdNote(35)

17.6 Variable Names
36EdNote(36)

\vname identifies a token sequence as a name, and provides an ASCII (Xml-\vname

compatible) identifier for it. The optional argument is the identifier, and the sec-
ond one the LaTeX representation. The identifier can also be used with \vnameref
for copy and paste.37EdNote(37)

35EdNote: describe what we want to do here
36EdNote: what is the problem?
37EdNote: does this really work

File : presentation.dtx 53

References

[ABC+03] Ron Ausbrooks, Stephen Buswell, David Carlisle, Stéphane Dalmas,
Stan Devitt, Angel Diaz, Max Froumentin, Roger Hunter, Patrick
Ion, Michael Kohlhase, Robert Miner, Nico Poppelier, Bruce Smith,
Neil Soiffer, Robert Sutor, and Stephen Watt. Mathematical Markup
Language (MathML) version 2.0 (second edition). W3C recommen-
dation, World Wide Web Consortium, 2003. Available at http:
//www.w3.org/TR/MathML2.

[BCC+04] Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. Dewar,
Marc Gaetano, and Michael Kohlhase. The Open Math standard,
version 2.0. Technical report, The Open Math Society, 2004. http:
//www.openmath.org/standard/om20.

[Ber89] J. A. Bergstra. Algebraic specification. ACM Press, 1989.

[Dea99] Stephen Deach. Extensible stylesheet language (xsl) specification.
W3c working draft, W3C, 1999. Available at http://www.w3.org/
TR/WD-xsl.

[Kay00] Michael Kay. XSLT Programmers Reference. Wrox, 2000.

[Knu84] Donald E. Knuth. The TEXbook. Addison Wesley, 1984.

[Koh05] Michael Kohlhase. Semantic markup for TEX/LATEX. Manuscript,
available at http://kwarc.info/software/stex, 2005.

[Koh06] Michael Kohlhase. OMDoc – an open markup format for mathemat-
ical documents [version 1.2], 2006.

[Lam94] Leslie Lamport. LaTeX: A Document Preparation System, 2/e. Addi-
son Wesley, 1994.

[MBA+01] E. Melis, J. Buedenbender, E. Andres, Adrian Frischauf, G. Goguadze,
P. Libbrecht, M. Pollet, and C. Ullrich. The activemath learning
environment. Artificial Intelligence and Education, 12(4), 2001.

[Mil07] Bruce Miller. LaTeXML: A LATEX to xml converter. Web Manual at
http://dlmf.nist.gov/LaTeXML/, seen September2007.

[MKM07] Meetings and Conferences on Mathematical Knowledge
Management. Project homepage at http://www.mkm-ig.org/
meetings/, seen March 2007.

[RV01] Alan Robinson and Andrei Voronkov, editors. Handbook of Automated
Reasoning, volume I and II. Elsevier Science and MIT Press, 2001.

File : presentation.dtx 54

http://www.w3.org/TR/MathML2
http://www.w3.org/TR/MathML2
http://www.openmath.org/standard/om20
http://www.openmath.org/standard/om20
http://www.w3.org/TR/WD-xsl
http://www.w3.org/TR/WD-xsl
http://kwarc.info/software/stex
http://dlmf.nist.gov/LaTeXML/
http://www.mkm-ig.org/meetings/
http://www.mkm-ig.org/meetings/

	The sTeX Collection
	Introduction
	The Packages of the sTeX Collection
	Utilities
	cnx.dtx
	Introduction
	The User Interface

	cmathml.dtx
	Introduction
	The User Interface

	modules.dtx
	Introduction
	The User Interface

	statements.dtx
	Introduction
	The User Interface

	sproof.dtx
	Introduction
	The User Interface

	omdoc.dtx
	Introduction
	The User Interface

	presentation.dtx
	Introduction
	The User Interface
	Mixfix Notations
	n-ary Associative Operators
	Precedence-Based Bracket Elision
	Flexible Elision
	Hyperlinking
	Variable Names

