
The pstool package

Concept by Zebb Prime

Package by Will Robertson∗

v1.3 2009/07/17

Abstract

This package defines the \psfragfig user command for including
eps files that use psfrag features in a pdfLATEX document. The command
\pstool can be used to define other commands with similar behaviour.

Contents

I User documentation 1
1 Introduction 1
2 Getting started 2
3 Package options 3
4 Miscellaneous details 6
5 Package information 7

II Implementation 8
6 Macros 10
7 Command parsing 14
8 User commands 15
9 The figure processing 15
10 User commands 18

Part I

User documentation

1 Introduction

While directly producing pdf output with pdfLATEX is a great improvement
in many ways over the ‘old method’ of dvi→ps→pdf, it loses the ability to
interface with a generic PostScript workflow, used to great effect in numerous
packages, most notably PSTricks and psfrag.

Until now, the best way to use these packages while running pdfLATEX
has been to use the pst-pdf package, which processes the entire document

∗wspr81@gmail.com

1

through a filter, sending the relevant PostScript environments (only) through
a single pass of LATEX producing dvi→ps→pdf. The resulting pdf versions of
each graphic are then included into the pdfLATEX document in a subsequent
compilation. The auto-pst-pdf package provides a wrapper to perform all of
this automatically.

The disadvantage with this method is that for every document compila-
tion, every graphic must be re-processed. The pstool package uses a different
approach to allow each graphic to be processed only as needed, speeding up
and simplifying the typesetting of the main document.

At present this package is designed solely as a replacement for pst-pdf in
the rôle of supporting the psfrag package (which it loads) in pdfLATEX.

More flexible usage to provide a complete replacement for pst-pdf (e.g.,
supporting the \begin{postscript} environment) is planned for a later re-
lease. If you simply need to automatically convert plain eps files to pdf, I
recommend using the epstopdf package with the [update,prepend] package
options (epstopdf and pstool should be completely compatible).

2 Getting started

Processing pdfLATEX documents with pstool requires the ‘shell escape’ feature
of pdfTEX to be activated. This allows execution of auxiliary commands from
within LATEX, a feature which is often disabled by default for security reasons.
If shell escape is not enabled, a warning will be issued in console output when
the package is loaded. Depending how you compile your LATEX document,
shell escape is enabled in different ways.1

Load the package as usual; no package options are required by default, but
there are a few useful options described later in section 3. Note that you do not
need to load psfrag separately. You also do not need to load graphicx separately,
but if you do so, ensure that you do not include driver information (such as
[pdftex]); this will play havoc with pstool’s automatic processing stage.

The generic command provided by this package is
\pstool [⟨options⟩] {⟨filename⟩} {⟨input definitions⟩}

It converts the graphic ⟨filename⟩.eps to ⟨filename⟩.pdf through a unique
dvi→ps→pdf process for each graphic, using the preamble of the main docu-
ment. The resulting graphic is then inserted into the document, with ⟨options⟩
consisting of options for graphicx (e.g., angle, scale) or for pstool (as described
later in Section 3). Note that these optional arguments take effect in the pro-
cessing stage; if you change the ⟨options⟩, you must manually re-process the
figure. The third argument to \pstool allows arbitrary ⟨input definitions⟩ (such
as \psfrag directives) to be inserted before the figure as it is processed.

1On the command line, use the -shell-escape switch. Otherwise, you’re on your own.

2

The command \pstool can take an optional * or ! suffix to change the
behaviour of the command:

\pstool Process the graphic ⟨filename⟩.eps if ⟨filename⟩.pdf does not already
exist, or if the eps file is newer than the pdf;

\pstool* Always process this figure; and,
\pstool! Never process this figure.

The behaviour in these three cases can be overridden globally by the package
option [process] as described in section 3.1.

It is useful to define higher-level commands based on \pstool for including
specific types of eps graphics that take advantage of psfrag. As an example,
this package defines the following command, which also supports the * or !
suffixes described above.

\psfragfig[⟨opts⟩]{⟨filename⟩} This is the catch-all macro to support a wide
range of graphics naming schemes. It inserts an eps file named either
⟨filename⟩-psfrag.eps or ⟨filename⟩.eps (in that order of preference), and
uses psfrag definitions contained within either ⟨filename⟩-psfrag.tex or
⟨filename⟩.tex.

This command can be used to insert figures produced by the Mathemat-
ica package MathPSfrag or the Matlab package matlabfrag. \psfragfig also
accepts an optional braced argument:

\psfragfig[⟨opts⟩]{⟨filename⟩}{⟨input definitions⟩} As above, but inserts the
arbitrary code ⟨input definitions⟩, which will usually be used to define
new or override existing psfrag commands.

3 Package options

Package options can be set or overridden at any time with \pstoolsetup{⟨pstool
settings⟩}. As mentioned in the previous section, these options also may be
set in the optional argument to \pstool and \psfragfig, in which case they
apply to that figure alone.

3.1 Forcing/disabling graphics processing

While the suffixes * and ! can be used to force or disable (respectively) the
processing of each individual graphic, sometimes we want to do this on a
global level. The following package options override all pstool macros:

[process=auto] This is the default mode as described in the previous section,
in which graphics without suffixes are only (re-)processed if the eps file
is newer or the pdf file does not exist;

3

[process=all] Suffixes are ignored and all \pstool graphics are processed;
[process=none] Suffixes are ignored and no \pstool graphics are processed.2

3.2 Cropping graphics

The default option [crop=preview] selects the preview package to crop graphics
to the appropriate size for each auxiliary process.

However, when an inserted label protrudes from the natural bounding
box of the figure, or when the original bounding box of the figure is wrong,
the preview package will not always produce a good result (with parts of the
graphic trimmed off the edge). A robust method to solve this problem is to
use the pdfcrop program instead.3 This can be activated in pstool with the
[crop=pdfcrop] package option.

3.3 Temporary files & cleanup

Each figure that is processed spawns an auxiliary LATEX compilation through
dvi→ps→pdf. This process is named after the name of the figure with an ap-
pended string suffix; the default is [suffix={-pstool}]. All of these suffixed
files are “temporary” in that they may be deleted once they are no longer
needed.

As an example, if the figure is called ex.eps, the files that are created are
ex-pstool.tex, ex-pstool.dvi, The [cleanup] package option declares
via a list of filename suffixes which temporary files are to be deleted after
processing.

The default is [cleanup={.tex, .dvi, .ps, .pdf, .log, .aux}]. To delete
none of the temporary files, choose [cleanup={}] (useful for debugging).

3.4 Interaction mode of the auxiliary processes

Each graphic echoes the output of its auxiliary process to the console window;
unless you are trying to debug errors there is little interest in seeing this
information. The behaviour of these auxiliary processes are governed globally
by the [mode] package option, which takes the following parameters:

[mode=batch] hide almost all of the LATEX output (default);
[mode=nonstop] echo all LATEX output but continues right past any errors; and
[mode=errorstop] prompt for user input when errors in the source are en-

countered.
2If pstool is loaded in a LATEX document in dvi mode, this is the option that is used since no

external processing is required for these graphics.
3pdfcrop requires a Perl installation under Windows, freely available from http://www.

activestate.com/Products/activeperl/index.plex

4

http://www.activestate.com/Products/activeperl/index.plex
http://www.activestate.com/Products/activeperl/index.plex

These three package options correspond to the LATEX command line options
-interaction=batchmode, =nonstopmode, and =errorstopmode, respectively.
When [mode=batch] is activated, then dvips is also run in ‘quiet mode’.

3.5 Auxiliary processing command line options

The command line options passed to each program of the auxiliary processing
can be changed with the following package options:

[latex-options=...]
[dvips-options=...]
[ps2pdf-options=...] and,
[pdfcrop-options=...] (if applicable).

For the most part these will be unnecessary, although passing the correct
options to ps2pdf can sometimes be a little obscure.4 For example, I use the
following for generating figures in my thesis:5

ps2pdf-options={"-dPDFSETTINGS=/prepress"}
This forces the ‘base fourteen’ fonts to be embedded within the individual

figure files, without which some printers and pdf viewers have trouble with
the textual labels. In fact, from v1.3 of pstool, this option is now the default.
Note that subsequent calls to [ps2pdf-options=...] will override the pstool
default; use ps2pdf-options={} to chose ps2pdf’s defaults if necessary.

3.6 Compression of bitmap data

In the conversion using ps2pdf, bitmap images are stored using either lossy
or lossless compression. The default behaviour for pstool is to force lossless
compression, because we believe that to be the most commonly desired use
case (you don’t want scientific graphics rendered with possible compression
artifacts). This behaviour can be adjusted using one of these options:

[bitmap=auto] do whatever ps2pdf does by default, which seems to be to use
lossy compression most, if not all, of the time;

[bitmap=lossy] bitmap images are compressed like jpg; this is only really
suitable for photographs;

[bitmap=lossless] bitmap images are compressed like png; this is suitable
for screenshots and generated data such as a surface plot within Matlab
(default).

4The manual is here: http://pages.cs.wisc.edu/~ghost/doc/cvs/Ps2pdf.htm
5Note that each ps2pdf option must be quoted in Windows, which is unnecessary but does no

harm in Linux and Mac OS X.

5

http://pages.cs.wisc.edu/~ghost/doc/cvs/Ps2pdf.htm

These are just special cases of the [ps2pdf-options=...] option, but using
[bitmap=...] is much more convenient since the ps2pdf options to effect this
behaviour are quite verbose. Note that the auto and lossy outputs differ in
quality; lossy is lower quality than auto even when the latter uses a lossy
compression scheme. Adjusting the quality for these options is only possible
with relatively complex Ghostscript options.

4 Miscellaneous details

4.1 The \EndPreamble command

At present, pstool scans the preamble of the main document by redefining
\begin{document}, but this is rather fragile because many classes and packages
do their own redefining which overwrites pstool’s attempt. In this case, place the
command \EndPreamble where-ever you’d like the preamble in the auxiliary
processing to end (although is must be placed before \begin{document} for
obvious reasons). This is also handy to bypass anything in the preamble that
will never be required for the figures but which will slow down or otherwise
conflict with the auxiliary processing.

4.2 Cross-reference limitations

The initial release of this package does not support cross-references within the
psfrag labels of the included graphics. (If, say, you wish to refer to an equation
number or a citation within a figure.)

4.3 A note on file paths

pstool tries to ensure that you can put image files in subdirectories of the main
document and the auxiliary processing will still function correctly. In order to
ensure this, the external pdflatex compilation uses the -output-directory
feature of pdfTEX. This command line option is definitely supported on all
platforms from TeX Live 2008 and MiKTeX 2.7 onwards, but earlier distributions
may not be supported.

One problem that pstool does not solve on its own is the inclusion of
images that do not exist in subdirectories of the main document. For exam-
ple, \pstool{../Figures/myfig} can not process by default because pdfTEX
usually does not have permission to write into folders that are higher in the
heirarchy than the main document. This can be worked around presently in
two different ways: (although maybe only for Mac OS X and Linux)

1. Give pdflatex permission to write anywhere with the command:
openout_any=a pdflatex ...

6

2. Create a symbolic link in the working directory to a point higher in
the path: ln -s ../../PhD ./PhD, for example, and then refer to the
graphics through this symbolic link.

5 Package information

The most recent publicly released version of pstool is available at ctan:
http://tug.ctan.org/pkg/pstool/. Historical and developmental versions
are available at GitHub: http://github.com/wspr/pstool/. While general
feedback via email is welcomed, specific bugs or feature requests should be
reported through the issue tracker: http://github.com/wspr/pstool/issues.

5.1 Licence

This package is freely modifiable and distributable under the terms and condi-
tions of the LATEX Project Public Licence, version 1.3c or greater (your choice).6

This work consists of the files pstool.tex and the derived files pstool.sty,
pstool.ins, and pstool.pdf. This work is maintained by Will Robertson.

6http://www.latex-project.org/lppl.txt

7

http://tug.ctan.org/pkg/pstool/
http://github.com/wspr/pstool/
http://github.com/wspr/pstool/issues
http://www.latex-project.org/lppl.txt

Part II

Implementation
LaTeX2e file ‘pstool.sty’ generated by the ‘filecontents’ environment from
source ‘pstool’ on 2009/07/21.

1 \ProvidesPackage{pstool}[2009/07/17 v1.3
2 Wrapper for processing PostScript/psfrag figures]

External packages

3 \RequirePackage{%
4 catchfile,color,ifpdf,ifplatform,
5 graphicx,pdftexcmds,psfrag,suffix,xkeyval}

Allocations

6 \newif\if@pstool@pdfcrop@\if@pstool@pdfcrop@
7 \newif\if@pstool@verbose@\if@pstool@verbose@
8 \newwrite\pstool@out\pstool@out

These are cute

9 \providecommand\OnlyIfFileExists[2]{\IfFileExists{#1}{#2}{}}\OnlyIfFileExists
10 \providecommand\NotIfFileExists[2]{\IfFileExists{#1}{}{#2}}\NotIfFileExists

5.2 Package options

11 \define@choicekey*{pstool.sty}{crop}crop
12 [\@tempa\@tempb]{preview,pdfcrop}{%
13 \ifcase\@tempb\relax
14 \@pstool@pdfcrop@false
15 \or
16 \@pstool@pdfcrop@true
17 \or
18 \fi
19 }

20 \define@choicekey*{pstool.sty}{process}process
21 [\@tempa\pstool@process@choice]{all,none,auto}{}
22 \ExecuteOptionsX{process=auto}

8

23 \define@choicekey*{pstool.sty}{mode}mode
24 [\@tempa\@tempb]{errorstop,nonstop,batch}{%
25 \ifnum\@tempb=2\relax
26 \@pstool@verbose@false
27 \else
28 \@pstool@verbose@true
29 \fi
30 \edef\pstool@mode{\@tempa mode}%
31 }
32 \ExecuteOptionsX{mode=batch}

33 \DeclareOptionX{cleanup}{\def\pstool@rm@files{#1}}cleanup
\pstool@rm@files 34 \ExecuteOptionsX{cleanup={.tex,.dvi,.ps,.pdf,.log,.aux}}

35 \DeclareOptionX{suffix}{\def\pstool@suffix{#1}}suffix
\pstool@suffix 36 \ExecuteOptionsX{suffix={-pstool}}

There is an implicit \space after the bitmap options.

37 \define@choicekey*{pstool.sty}{bitmap}bitmap
38 [\@tempa\@tempb]{auto,lossless,lossy}{%
39 \ifcase\@tempb
40 \let\pstool@bitmap@opts\@empty
41 \or
42 \def\pstool@bitmap@opts{%\pstool@bitmap@opts
43 "-dAutoFilterColorImages=false"
44 "-dAutoFilterGrayImages=false"
45 "-dColorImageFilter=/FlateEncode"
46 "-dGrayImageFilter=/FlateEncode" % space
47 }
48 \or
49 \def\pstool@bitmap@opts{%\pstool@bitmap@opts
50 "-dAutoFilterColorImages=false"
51 "-dAutoFilterGrayImages=false"
52 "-dColorImageFilter=/DCTEncode"
53 "-dGrayImageFilter=/DCTEncode" % space
54 }
55 \fi
56 }
57 \ExecuteOptionsX{bitmap=lossless}

58 \DeclareOptionX{latex-options}{\def\pstool@latex@opts{#1}}latex-options
dvips-options

ps2pdf-options
pdfcrop-options 9

59 \DeclareOptionX{dvips-options}{\def\pstool@dvips@opts{#1}}
60 \DeclareOptionX{ps2pdf-options}{\def\pstool@pspdf@opts{#1}}
61 \DeclareOptionX{pdfcrop-options}{\def\pstool@pdfcrop@opts{#1}}
62 \ExecuteOptionsX{
63 latex-options={},
64 dvips-options={},
65 ps2pdf-options={"-dPDFSETTINGS=/prepress"},
66 pdfcrop-options={}
67 }

68 \ifpdf
69 \ifshellescape\else
70 \ExecuteOptionsX{process=none}
71 \PackageWarning{pstool}{^^J\space\space%
72 Package option [process=none] activated^^J\space\space
73 because -shell-escape is not enabled.^^J%
74 This warning occurred}
75 \fi
76 \fi

77 \ProcessOptionsX

A command to set pstool options after the package is loaded.

78 \newcommand\pstoolsetup{%\pstoolsetup
79 \setkeys{pstool.sty}%
80 }

6 Macros

Used to echo information to the console output. Can’t use \typeout because
it’s asynchronous with any \immediate\write18 processes (for some reason).

81 \def\pstool@echo#1{%\pstool@echo
82 \if@pstool@verbose@
83 \pstool@echo@verbose{#1}%
84 \fi
85 }

86 \def\pstool@echo@verbose#1{%\pstool@echo@verbose
87 \immediate\write18{echo "#1"}%
88 }

10

89 \let\pstool@includegraphics\includegraphics

Command line abstractions between platforms:

90 \edef\pstool@cmdsep{\ifwindows\string&\else\string;\fi\space}
91 \edef\pstool@rm@cmd{\ifwindows del \else rm -- \fi}

Delete a file if it exists:
#1: path
#2: filename

92 \newcommand\pstool@rm[2]{%\pstool@rm
93 \OnlyIfFileExists{#1#2}{%
94 \immediate\write18{%
95 cd "#1"\pstool@cmdsep\pstool@rm@cmd "#2"
96 }%
97 }%
98 }

Generic function to execute a command on the shell and pass its exit status back
into LATEX. Any number of \pstool@exe statements can be made consecutively
followed by \pstool@endprocess, which also takes an argument. If any of the
shell calls failed, then the execution immediately skips to the end and expands
\pstool@error instead of the argument to \pstool@endprocess.
#1: ‘name’ of process
#2: relative path where to execute the command
#3: the command itself

99 \newcommand\pstool@exe[3]{%\pstool@exe
100 \pstool@echo{^^J=== pstool: #1 ===}%
101 \pstool@shellexecute{#2}{#3}%
102 \pstool@retrievestatus{#2}%
103 \ifnum\pstool@status > \z@
104 \PackageWarning{pstool}{Execution failed during

process:^^J\space\space#3^^JThis warning occurred}%
105 \expandafter\pstool@abort
106 \fi
107 }

Edit this definition to print something else when graphic processing fails.

108 \def\pstool@error{%\pstool@error
109 \fbox{%

11

110 \parbox{0.8\linewidth}{%
111 \color{red}\raggedright\ttfamily\scshape\small
112 An error occured processing graphic
113 \upshape‘\pstool@path\pstool@filestub’%
114 }%
115 }%
116 }

117 \def\pstool@abort#1\pstool@endprocess{\pstool@error\@gobble}\pstool@abort
118 \let\pstool@endprocess\@firstofone

It is necessary while executing commands on the shell to write the exit status
to a temporary file to test for failures in processing. (If all versions of pdflatex
supported input pipes, things might be different.)

119 \def\pstool@shellexecute#1#2{%\pstool@shellexecute
120 \immediate\write18{%
121 cd "#1" \pstool@cmdsep
122 #2 \pstool@cmdsep
123 \ifwindows
124 call echo
125 \string^\@percentchar ERRORLEVEL\string^\@percentchar
126 \else
127 echo \detokenize{$?}
128 \fi
129 > \pstool@statusfile}%

That’s the execution; now we need to flush the write buffer to the status file.
This ensures the file is written to disk properly (allowing it to be read by
\CatchFileEdef). Not necessary on Windows, whose file writing is evidently
more crude/immediate.

130 \ifwindows\else
131 \immediate\write18{%
132 touch #1\pstool@statusfile}%
133 \fi
134 }
135 \def\pstool@statusfile{pstool-statusfile.txt}\pstool@statusfile

Read the exit status from the temporary file and delete it.
#1 is the path
Status is recorded in \pstool@status.

12

136 \def\pstool@retrievestatus#1{%\pstool@retrievestatus
137 \CatchFileEdef{\pstool@status}{#1\pstool@statusfile}{}%
138 \pstool@rm{#1}{\pstool@statusfile}%
139 \ifx\pstool@status\pstool@statusfail
140 \PackageWarning{pstool}{%
141 Status of process unable to be determined:^^J #1^^J%
142 Trying to proceed... }%
143 \def\pstool@status{0}%\pstool@status
144 \fi
145 }
146 \def\pstool@statusfail{\par }% what results when TEX reads an empty\pstool@statusfail

file

6.1 File age detection

147 \def\pstool@IfnewerEPS{%\pstool@IfnewerEPS
148 \ifnum\pdf@strcmp{\pdf@filemoddate{\pstool@path%

\pstool@filestub.pdf}}
149 {\pdf@filemoddate{\pstool@path%

\pstool@filestub.eps}}
150 < \z@
151 \expandafter\@firstoftwo
152 \else
153 \expandafter\@secondoftwo
154 \fi
155 }

Grab filename and filepath. Always need a relative path to a filename even if
it’s in the same directory.

156 \def\pstool@getpaths#1{%\pstool@getpaths
157 \filename@parse{#1}%
158 \ifx\filename@area\@empty
159 \def\pstool@path{./}%\pstool@path
160 \else
161 \let\pstool@path\filename@area
162 \fi
163 \let\pstool@filestub\filename@base
164 }

13

7 Command parsing

User input is \pstool (with optional * or ! suffix) which turns into one of the
following three macros depending on the mode.

165 \newcommand\pstool@alwaysprocess[3][]{%\pstool@alwaysprocess
166 \pstool@getpaths{#2}%
167 \pstool@process{#1}{#3}%
168 }

169 \ifpdf
170 \newcommand\pstool@neverprocess[3][]{%\pstool@neverprocess
171 \pstool@includegraphics{#2}%
172 }
173 \else
174 \newcommand\pstool@neverprocess[3][]{%\pstool@neverprocess
175 \begingroup
176 \setkeys*{pstool.sty}{#1}%
177 #3%
178 \expandafter\pstool@includegraphics\expandafter[%

\XKV@rm]{#2}%
179 \endgroup
180 }
181 \fi

For regular operation, which processes the figure only if the command is
starred, or the PDF doesn’t exist.

182 \newcommand\pstool@maybeprocess[3][]{%\pstool@maybeprocess
183 \pstool@getpaths{#2}%
184 \IfFileExists{#2.pdf}{%
185 \pstool@IfnewerEPS{% needs info from \pstool@getpaths
186 \pstool@process{#1}{#3}%
187 }{%
188 \pstool@includegraphics{#2}%
189 }%
190 }{%
191 \pstool@process{#1}{#3}%
192 }%
193 }

14

8 User commands

Finally, define \pstool as appropriate for the mode: (all, none, auto, respec-
tively)

194 \ifpdf
195 \newcommand\pstool{%\pstool
196 \ifcase\pstool@process@choice\relax
197 \expandafter \pstool@alwaysprocess \or
198 \expandafter \pstool@neverprocess \or
199 \expandafter \pstool@maybeprocess
200 \fi
201 }
202 \WithSuffix\def\pstool!{%\pstool
203 \ifcase\pstool@process@choice\relax
204 \expandafter \pstool@alwaysprocess \or
205 \expandafter \pstool@neverprocess \or
206 \expandafter \pstool@neverprocess
207 \fi
208 }
209 \WithSuffix\def\pstool*{%\pstool*
210 \ifcase\pstool@process@choice\relax
211 \expandafter \pstool@alwaysprocess \or
212 \expandafter \pstool@neverprocess \or
213 \expandafter \pstool@alwaysprocess
214 \fi
215 }
216 \else
217 \let\pstool\pstool@neverprocess
218 \WithSuffix\def\pstool!{\pstool@neverprocess}\pstool
219 \WithSuffix\def\pstool*{\pstool@neverprocess}\pstool*
220 \fi

9 The figure processing

\pstool@filestub is the filename of the figure stripped of its path (if any)

221 \def\pstool@jobname{\pstool@filestub\pstool@suffix}\pstool@jobname

And this is the main macro.

222 \newcommand\pstool@process[2]{%\pstool@process

15

223 \begingroup
224 \setkeys*{pstool.sty}{#1}%
225 \pstool@echo@verbose{%
226 ^^J^^J=== pstool: begin processing ===}%
227 \pstool@write@processfile{#1}
228 {\pstool@path\pstool@filestub}{#2}%
229 \pstool@exe{auxiliary process: \pstool@filestub\space}
230 {./}{latex
231 -shell-escape
232 -output-format=dvi
233 -output-directory="\pstool@path"
234 -interaction=\pstool@mode\space
235 \pstool@latex@opts\space
236 "\pstool@jobname.tex"}%

Execute dvips in quiet mode if latex is not run in (non/error)stop mode:

237 \pstool@exe{dvips}{\pstool@path}{%
238 dvips \if@pstool@verbose@\else -q \fi -Ppdf
239 \pstool@dvips@opts\space "\pstool@jobname.dvi"}%
240 \if@pstool@pdfcrop@
241 \pstool@exe{ps2pdf}{\pstool@path}{%
242 ps2pdf \pstool@bitmap@opts \pstool@pspdf@opts \space
243 "\pstool@jobname.ps" "\pstool@jobname.pdf"}%
244 \pstool@exe{pdfcrop}{\pstool@path}{%
245 pdfcrop \pstool@pdfcrop@opts\space
246 "\pstool@jobname.pdf" "\pstool@filestub.pdf"}%
247 \else
248 \pstool@exe{ps2pdf}{\pstool@path}{%
249 ps2pdf \pstool@bitmap@opts \pstool@pspdf@opts \space
250 "\pstool@jobname.ps" "\pstool@filestub.pdf"}%
251 \fi
252 \pstool@endprocess{%
253 \pstool@cleanup
254 \pstool@includegraphics{%
255 \pstool@path\pstool@filestub}%
256 }%
257 \pstool@echo@verbose{^^J=== pstool: end processing ===^^J}%
258 \endgroup
259 }

16

The file that is written for processing is set up to read the preamble of the
original document and set the graphic on an empty page (cropping to size is
done either here with preview or later with pdfcrop).

260 \def\pstool@write@processfile#1#2#3{%\pstool@write@processfile
261 \immediate\openout\pstool@out #2\pstool@suffix.tex\relax
262 \immediate\write\pstool@out{%

Input the main document; redefine the document environment so only the
preamble is read:

263 \unexpanded{%
264 \pdfoutput=0^^J% force DVI mode if not already
265 \let\origdocument\document^^J%
266 \let\EndPreamble\endinput^^J%
267 \def\document{\endgroup\endinput}^^J%\document
268 }%
269 \noexpand\input{\jobname}^^J%

Now the preamble of the process file: (restoring document’s original meaning;
empty \pagestyle removes the page number)

270 \if@pstool@pdfcrop@\else
271 \noexpand\usepackage[active,tightpage]{preview}^^J%
272 \fi
273 \unexpanded{%
274 \let\document\origdocument^^J%
275 \pagestyle{empty}^^J%
276 }%

And the document body to place the graphic on a page of its own:

277 \unexpanded{%
278 \begin{document}^^J%
279 \centering\null\vfill^^J%
280 }%
281 \if@pstool@pdfcrop@\else
282 \noexpand\begin{preview}^^J%
283 \fi
284 \unexpanded{#3^^J}% this is the "psfrag" material
285 \noexpand\includegraphics
286 [\unexpanded\expandafter{\XKV@rm}]

17

287 {\pstool@filestub}^^J%
288 \if@pstool@pdfcrop@\else
289 \noexpand\end{preview}^^J%
290 \fi
291 \unexpanded{\vfill\end{document}}^^J%
292 }%
293 \immediate\closeout\pstool@out
294 }

295 \def\pstool@cleanup{%\pstool@cleanup
296 \@for\@ii:=\pstool@rm@files\do{%
297 \pstool@rm{\pstool@path}{\pstool@jobname\@ii}%
298 }%
299 }

300 \providecommand\EndPreamble{}\EndPreamble

10 User commands

These all support the suffixes * and !, so each user command is defined as a
wrapper to \pstool.

for EPS figures with psfrag:

301 \newcommand\psfragfig[2][]{\pstool@psfragfig{#1}{#2}{}}\psfragfig
302 \WithSuffix\newcommand\psfragfig*[2][]{%\psfragfig*
303 \pstool@psfragfig{#1}{#2}{*}%
304 }
305 \WithSuffix\newcommand\psfragfig![2][]{%\psfragfig
306 \pstool@psfragfig{#1}{#2}{!}%
307 }

Parse optional ⟨input definitions⟩

308 \newcommand\pstool@psfragfig[3]{%\pstool@psfragfig
309 \@ifnextchar\bgroup{%
310 \pstool@@psfragfig{#1}{#2}{#3}%
311 }{%
312 \pstool@@psfragfig{#1}{#2}{#3}{}%
313 }%
314 }

18

Search for both ⟨filename⟩ and ⟨filename⟩-psfrag inputs.
#1: possible graphicx options
#2: graphic name (possibly with path)
#3: \pstool suffix (i.e., ! or * or ⟨empty⟩)
#4: possible psfrag (or other) macros

315 \newcommand\pstool@@psfragfig[4]{%\pstool@@psfragfig

Find the .eps file to use.

316 \IfFileExists{#2-psfrag.eps}{%
317 \edef\pstool@eps{#2-psfrag}%
318 \OnlyIfFileExists{#2.eps}{%
319 \PackageWarning{pstool}{Graphic "#2.eps" exists but

"#2-psfrag.eps" is being used}%
320 }%
321 }{%
322 \IfFileExists{#2.eps}{%
323 \edef\pstool@eps{#2}%
324 }{%
325 \PackageError{pstool}{%
326 No graphic "#2.eps" or "#2-psfrag.eps" found%
327 }{%
328 Check the path and whether the file exists.%
329 }%
330 }%
331 }%

Find the .tex file to use.

332 \IfFileExists{#2-psfrag.tex}{%
333 \edef\pstool@tex{#2-psfrag.tex}%
334 \OnlyIfFileExists{#2.tex}{%
335 \PackageWarning{pstool}{%
336 File "#2.tex" exists that may contain macros
337 for "\pstool@eps.eps"^^J%
338 But file "#2-psfrag.tex" is being used instead.%
339 }%
340 }%
341 }{%
342 \IfFileExists{#2.tex}{%
343 \edef\pstool@tex{#2.tex}%

19

344 }{%
345 \let\pstool@tex\@empty
346 \PackageWarning{pstool}{%
347 No file "#2.tex" or "#2-psfrag.tex" can be found
348 that may contain macros for "\pstool@eps.eps"%
349 }%
350 }%
351 }%
352 \ifx\pstool@tex\@empty
353 \pstool#3[#1]{\pstool@eps}{#4}%
354 \else
355 \expandafter\pstool@@@psfragfig
356 \expandafter{\pstool@tex}{#3[#1]}{#4}%
357 \fi
358 }

Break out the separate function in order to expand \pstool@tex before writing
it.

359 \newcommand\pstool@@@psfragfig[3]{%\pstool@@@psfragfig
360 \pstool#2{\pstool@eps}{%
361 \csname @input\endcsname{#1}%
362 #3%
363 }%
364 }

That’s it.

⟨eof ⟩

20

	I User documentation
	Introduction
	Getting started
	Package options
	Miscellaneous details
	Package information

	II Implementation
	Macros
	Command parsing
	User commands
	The figure processing
	User commands

