
PSfragX: one graphic in one file ∗

Pascal Kockaert

//

Abstract

\usepackage[options]{pfragx} inputs the packages psfrag and
graphicx, and adds essentially one LATEX command, which is \includegraphicx
(with an ’x´ at the end).

This command differs from \includegraphics in the fac that
it inputs \psfrag replacements contained into the included eps file
itself.

If the eps files contains those replacements at the right place,
\usepackage[sub]{psfragx} will substitute \includegraphicx to
\includegraphics automatically. At the same time, it is possible to
include overpic commands into the eps file, and they will be auto-
matically processed.

The eps file can be written by a matlab script, so that the user
needs only to call the script in order to print the matlab figure. No
additional work will be necessary.

Contents

 Warning

 Motivation

 How PSfragX works

. PSfrag, pfx, overpic and ovp
. Merging and separating the TEX and eps documents
. Input the right file at the right moment

 Usage

. Package options .
. Two new commands .
. Other new commands .

∗This file has version v.. It was processed on //.

 Configuration file

 Example of tagged EPS file

 Associated matlab scripts

 Credits

 Mise en œuvre

. Required packages and options
. Reading the eps file and writing pfx or ovp files

.. Copying seleced lines from the eps file
. Code that inputs the pfx and ovp files

.. Saving and providing commands of other packages
.. New commands to read and write files

. The main command of this package
.. Internal commands
.. External commands

. Overloading includegraphics and overpic
. Configuration file .

 Code of the matlab script

 Warning

Some options of this package allow to overwrite some files ending in .pfx
and in .ovp. Be sure to understand how these options work before using
them.

The text below assumes that you are used to \includegraphics from
the graphicx package, and also to \psfrag from the psfrag package. Read-
ing the documentation of overpic could also help to understand what fol-
lows.

 Motivation

Using graphics drawn by mathematical softwares is very convenient but
does not offer all the flexibility of TEX and LATEX when it comes to write
labels.

Some solutions exist, like the matlab laprint.m funcion (http://www.uni-
kassel.de/fb/rat/matlab/laprint/) to print from matlab(TM) into eps files
suited to be easily handled by psfrag. All the labels (including numbers
on the axis) are converted into strings like ‘x´ that should be replaced by
their values, like ‘.’.

Though the result is pleasant, it is mandatory to keep track of the
substitutions. This is why the laprint.m funcion takes care to write a TEX
file that contains all the \psfrag commands necessary to obtain the original
labels. This TEX file can be edited to modify the \psfrag commands. This
scheme works well, but has some limitations. You must obviously take care
to move the .tex and the .eps file together. But in addition, you must
input the graphic using an \input command. If you intend to modify its
size or change some \psfrag replacements, you need to open and modify
the original .tex file. If you want to use packages like overpic, you must
modify the .tex file output by laprint or copy all the psfrag replacements
that it contains to your main TEX file. In case you would choose to copy
the psfrag replacements into your main TEX file, you will end up with a lot
of lines like

\psfrag{x01}[B][B][1][0]{3.141}

\psfrag{x02}[B][B][1][0]{6.283}

\psfrag{x03}[B][B][1][0]{9.425}

\psfrag{x04}[B][B][1][0]{12.566}

into your LATEX document.
In fac, you do not need to see all these lines, and should never see

them, except, for example, if you want to replace them with

\psfrag{x01}[B][B][1][0]{π}

\psfrag{x02}[B][B][1][0]{$\2\,\pi$}

and so on.
What is said here about \psfrag commands can be transposed to the

overpic environment that allows to put picture objecs over a graphic.
The authors of psfrag have designed a mechanism that allows to em-

bed \psfrag commands into the eps file itself. Though this mechanism
can be convenient, it presents some drawbacks that are described into the
documentation of psfrag.

The package psfragX aims to circumvent these drawbacks, as well as
to introduce more flexibility into the automatic inclusion mechanism. For
example, psfragX allows to define different \psfrag replacements for dif-
ferent languages. If babel is used, replacements will be seleced according
to the current language of the document. It also allows to make use of
color commands that are ignored if the color package is not loaded.

This was kindly reminded to me by Michael C. Grant, one of the authors of psfrag,
that I would like to thank here.

 How PSfragX works

. PSfrag, PFX, overpic and OVP

The package psfragx allows to embed \psfrag commands into the eps

file, as well as picture objecs in overpic environments. In order to sim-
plify the description, we will refer only to \psfrag inclusions here below.
The overpic inclusion mechanism works in the same way and will not
be described. The differences between psfrag and overpic inclusions will
appear in the syntax of some commands. We use the three letters pfx to
prefix things that relate to psfrag and ovp to prefix things that relate to
overpic.

The psfragx mechanism can be divided into two parts that are described
separately.

. Merging and separating the TEX and EPS documents

We use the result of laprint.m as an example, but all the eps file could
be processed in the same way. laprint outputs Fig1.tex & Fig1.eps files
that can be converted into a single file that we call Figure.eps, which is a
copy of Fig.eps, with additional comments that contain all the interesting
lines of Fig.tex. At this stage, you can throw the original files Fig.tex and
Fig.eps. Be careful to make a backup!!!

The added comments are not read by the PostScript interpreter and
should not affec the resulting eps file. As far as I know, the com-
ments used conform to the Adobe(TM) Document Strucuring Conven-
tion (ADSC). These comments can be added by hand or using the matlab
script psfragx.m that should be accompanying this file. Their strucure
also conforms to the DocStrip convention (see docstrip.dtx): the part to
be copied starts with a comment %<*pfx> and ends with %</pfx>. All the
lines between these marks will be taken into account by psfragx.

%<*pfx>

%\psfrag{x01}[B][B][1][0]{3.141}

%\psfrag{x02}[B][B][1][0]{6.283}

%\psfrag{x03}[B][B][1][0]{9.425}

%\psfrag{x04}[B][B][1][0]{12.566}

%</pfx>

PSfragx looks for these lines into the eps file and outputs them into a file
with the same name, but a .pfx extension. In other words, Figure1.pfx is
created with the comments of Figure1.eps. This file is normally created
only once, though there is an option to overwrite it. This means that you
could edit it by hand without loosing your work next time you run LaTeX.

In the same manner, it is possible to include picure commands using

%<*ovp>

%\put(50,50){Middle of the graphic}

%</ovp>

These lines will go into the file Figure1.ovp.
The process of seeking for pfx and ovp environments stops as soon as

a line starting with %\endinput is found. Including such a line will speed
the things up.

. Input the right file at the right moment

Once the Figure1.pfx file exists, the command \includegraphicx in-
cludes it and uses the conventional \includegraphics from graphicx with
the same arguments. The result is that all the \psfrag replacements are
processed before the Figure1.eps file is included.

The \psfrag commands do not appear into the TEX file. The pfx

file could be deleted, and all the replacements would still be performed,
because the pfx file would be re-generated on the fly.

Now that all the labels on the axes are perfecly drawn, we could
still want to replace the value 3.141 by the tag π. This is why the
\includegraphicx command has a second facultative argument. Inside
this argument, you should issue all the \psfrag commands that you want
to perform after the inclusion of the pfx file.

\includegraphicx[width=\linewidth]

(\psfrag{x01}[B][B]{π}%

\psfrag{x02}[B][B]{$2\,\pi$})

{Figure1.eps}

The second optional argument is defined with () to avoid an inter-
acion between the brackets of the \psfrag command and those of the
\includegraphicx command.

All that is said about pfx files and psfrag replacements can be trans-
posed to ovp files and overpic picture commands.

If we want to add overpic commands before or after the inclu-
sion of the ovp file, we can use the two other optional arguments of
\includegraphicx:

\includegraphicx[width=\linewidth]

<\put(50,50){Foreground object}>

[\put(0,0){Background object}]

{Figure1.eps}

h!

Table : Meaning of the keys for \includegraphics and overpix

key acceptable values acion
graphicx keys usual values usual meanings

pfx true/false allows/disallows the inclusion of the pfx file
overwritepfx true/false allows/disallows to overwrite an existing pfx file

pfxadd psfrags \psfrag commands to be processed after the inclusion of the pfx file
ovp true/false allows/disallows the inclusion of the ovp file

overwriteovp true/false allows/disallows to overwrite an existing ovp file
ovpbgd picure commands picture commands to be processed before the inclusion of the ovp file
ovpfgd picure commands picture commands to be processed after the inclusion of the ovp file

 Usage

. Package options

The package is input by \usepackage[options]{psfragx}
The options are

sub, nosub substitute or do not substitute \includegraphicx to \includegraphics;

allcom,selcom copy all or only seleced MetaComments from the eps file
to the pfx file (if you do not understand what this means, you can
safely ignore it);

ovp, noovp makes use of overpic to (automatically) put picure objecs
over the graphics.

. Two new commands

\includegraphicx

overpix

• The command of the package is:

\includegraphicx [keys]
(psfrags)
<foreground overpic>
[background overpic]
{file.eps}

• The environment of the package is:

\begin{overpix} [keys]
<foreground overpic>
[background overpic]
{file.eps}

\end{overpix}

The meaning of the keys is explained in table .
The item denoted by psfrags should consist only in \psfrag{A}[b][c][d][e]{F}

commands, where A,b,c,d,e,F can be anything. In addition, the \psfrag

commands can be selecively included according to the current language
of the document (at the point of inclusion). Two commands are provided.
The commands \iflanguage is explained in the babel documentation. If
babel is not loaded, \iflanguage is redefined to match the definition of
babel, that is:
\iflanguage{languagename} {true case} {false case}. The configuration file
psfragxcfg given below, as an example, redefines the main commands of
the color package so that no error occurs if the psfrags contains color com-
mands and the package color is not loaded.

The item denoted by picure commands should consist only in com-
mands that are allowed in the usual picture environment of LATEX. You
can also make use of \iflanguage and color commands, provided that the
configuration file given below is used.

You cannot put blank lines, that is lines that would consist only in
one “%” sign. If you insert such lines, the “%” sign will be removed and
some space will be added in front of the included figure.

. Other new commands

Though they are not needed in a normal use of psfragx, the follow-
ing commands are available: \allmetacomments, \selectedmetacomments,
\copypfxfromto{<EPS file>}{<PFX file>}, \setpfxinput{<File>}, \setpfxoutput{<File>},
\copypfxlines, \pfxinput, \ovpinput. Their usage can be deduced from
the commented source code.

The other commands are internal and start with \pfx@ or \ovp@.

 Configuration file

The file psfragx.cfg will be input by psfrags, if it exists. This file can
contain new commands of general use, or commands that must appear
just before or just after the inclusion of the pfx/ovp file occurs. To this
aim, four commands can be defined. Their names are \Beforepfxinput,
\Afterpfxinput, \Beforeovpinput, and \Afterovpinput. They can be
used as in the example below.

 〈∗cfg〉
 % Example of configuration file for psfragx.sty

 % The macros \Beforepfxinput, \Afterpfxinput

 % \Beforeovpinput, and \Afterovpinput are executed

 % into a group. They should not define global commands to

 % avoid side effects.

 %

 %

 % The command \providecolorcommands defines commands that

 % take the same arguments as the mains commands of the

 % color package, in case this package is not loaded.

 %

 \newcommand{\providecolorcommands}

 {\def\pfx@gobble@two##1##2{\typeout{Some psfragx

 replacement would appear

 in color ##1{##2}

 if the color package was

 loaded!!!}}%

 \def\pfx@gobble@three@fbox##1##2##3{\typeout{Some psfragx

 replacement would

 appear

 in color ##1{##2}

 and others

 in color ##1{##3}

 if the color package

 was loaded!!!}%

 \fbox}%

 \def\pfx@fm@to@mm##1##2##{\csname ##1\endcsname{##2}}%

 \expandafter\ifx\csname textcolor\endcsname\relax

 \def\textcolor{\pfx@fm@to@mm{pfx@gobble@two}}\fi

 \expandafter\ifx\csname color\endcsname\relax

 \def\color{\pfx@fm@to@mm{pfx@gobble@two}}\fi

 \expandafter\ifx\csname colorbox\endcsname\relax

 \def\colorbox{\pfx@fm@to@mm{pfx@gobble@two}}\fi

 \expandafter\ifx\csname fcolorbox\endcsname\relax

 \def\fcolorbox{\pfx@fm@to@mm{pfx@gobble@three@fbox}}\fi

 }

 % The name of the next four commands are specific to psfragx

 \def\Beforepfxinput{\providecolorcommands}

 \def\Afterpfxinput{}

 \def\Beforeovpinput{\providecolorcommands}

 \def\Afterovpinput{}

 〈/cfg〉

 Example of tagged EPS file

We provide here below an example of eps that uses the language and color
features... According to the “Adobe Document Strucuring Convention”
(ADSC), comments starting with two percent signs have a special mean-
ing. You should therefore avoid to put exactly two percents signs at the
beginning of a line. If you respec this rule and avoid very long lines, you
should never broke your eps file.

 〈∗example〉
 %%!PSAdobe2.0 EPSF1.2

 %%Creator: Adobe Illustrator(TM) 1.2d4

 %%Title: tiger.eps

 %%CreationDate: 4/12/90 3:20 AM

 %%BoundingBox: 17 171 567 739

 %<*pfx>

 %\psfrag{T}[B][B]{\fcolorbox{white}{black}{\color{white}Title}}

 %\psfrag{t}[t][t]{time (s)}

 %\psfrag{I}[b][b]{I (W)}

 %\iflanguage{french}

 % {\psfrag{T}[B][B]{Title}%

 % \psfrag{t}[t][t]{temps (s)}}

 % {}

 %\psfrag{T}[B][B]{Title}

 %</pfx>

 %<*ovp>

 %\put(0,80){(a)}

 %</ovp>

 %\endinput

 %%EndComments

 %%

 %% [The code of the {\EPS} file should come HERE]

 %%

 %% End

 〈/example〉

Full examples should be provided with this package. They are not in-
cluded into psfrags.dtx.

 Associated matlab scripts

The script psfragx.m is written for matlab and can be used in conjuncion
with laprint.m (see URL above) in order to benefit from the advantages of
laprint.m and mix the resulting .tex and .eps files into a file that contains
all the information.

The scripts pfxprint.m can be used with the same syntax as laprint.m
(see documentation of laprint). This script invoques laprint with the
settings contained in the file laprpfx.mat, and immediately after, it merges
the generated eps and TEX files. Therefore, you should ensure that the
files laprint.m, laprpfx.mat, and psfragx.m are in a direcory searched by
matlab before using the pfxprint command.

At the time of writing, the current version of laprint is 3.16. This
version works well with pfxprint.m and psfragx.sty.

 Credits

All the code to extrac the comments from the eps file is inspired from
docstrip. The set of commands was reduced to its minimum, and a \pfx@

prefix was added to all the commands, in order to avoid any interacion
with other packages.

 Mise en œuvre

 〈∗package〉

Almost all the internal commands start with \pfx@, \ovp@, \ifpfx@, or
\ifovp@. Two exceptions are \@..@overpix and \@..@igx, where @..@ can
be @, @@, @@@ or @@@@.
. Required packages and options

We offer the option to substitute the new \includegraphicx command to
the usual \includegraphics, and optionally, the overpix environment to
the usual overpic one. This could broke things but allows to use psfragx

with existing documents almost transparently.

\pfx@subfalse

\pfx@subtrue \DeclareOption{sub}{\pfx@subtrue}

 \DeclareOption{nosub}{\pfx@subfalse}

The next option was of some help to debug this package. With allcom,
all the lines of the eps file starting with %% are copied to the pfx and ovp

files. Otherwise, these lines are not copied if they are out of a tagged
environment.
 \DeclareOption{allcom}{\allmetacomments}

 \DeclareOption{selcom}{\selectedmetacomments}

The next option specifies that the overpic environment will be used. There-
fore, the overpic package should be loaded.

\pfx@ovptrue

\pfx@ovpfalse \DeclareOption{ovp}{\pfx@ovptrue}

 \DeclareOption{noovp}{\pfx@ovpfalse}

We define the new commands needed to process the options.

\allmetacomments

\selectedmetacomments \newif\ifpfx@sub\pfx@subfalse

 \newif\ifpfx@ovp\pfx@ovptrue

 \newif\ifpfx@metacomments

 \pfx@metacommentsfalse

 \def\allmetacomments{\pfx@metacommentstrue}

 \def\selectedmetacomments{\pfx@metacommentsfalse}

Finally, default options are defined.
 \ExecuteOptions{sub,ovp,selcom}

 \ProcessOptions*

Now, we load the other packages.
 \RequirePackage{graphicx}

 \RequirePackage{psfrag}

The overpic package is not loaded if this was required by the user. Oth-
erwise, we load this package. To ensure proper placement of the objecs put
into the picure environment, we must always use the same option when
loading overpic. We choose this option to be percent.

 \ifpfx@ovp \RequirePackage[percent]{overpic} \fi

. Reading the EPS file and writing PFX or OVP files

The code that follows is highly inspired from that of docstrip.tex.

.. Copying selected lines from the EPS file

Below, we write the code to copy specific lines contained in the eps file
into an auxiliary file. Comments (single % sign) in front of these lines are
automatically removed.

First, we define a few macros of general use.

\pfx@gobble

\pfx@percent

\pfx@doublepercent

 \def\pfx@gobble#1{}

 {\catcode‘\%=12

 \gdef\pfx@percent{%}

 \gdef\pfx@doublepercent{%%}

 }

Here we define the extension of the auxiliary file, and the name of the
tag associated to this file. The metaprefix replaces double percent signs
found into the original eps file.

\pfx@ext

\pfx@tag

\pfx@metaprefix

 \let\pfx@metaprefix\pfx@doublepercent

 \def\pfx@tag{pfx}

 \def\pfx@ext{pfx}

 \def\pfx@tmp{}

We also need to define the string after which we will stop to scan the
eps file. This string must appear at the beginning of a line. If this string is
not present into the eps file, the file will be scanned up to the end. This
string is defined to be %\endinput.

\pfx@endinput

 \edef\pfx@endinput

 {\pfx@percent\expandafter\pfx@gobble\string\\endinput}

And now, we copy the needed code from docstrip, with some modific-
ations to throw the leading percent sign when we copy the lines that appear
between two tags <*pfx>...</pfx>.

We define a command to change catcodes,
 \def\pfx@makeother#1{\catcode‘#1=12\relax}

another to copy a given token,
 \def\pfx@iden#1{#1}

and a few boolean variables.
 \newif\ifpfx@continue

 \newif\ifpfx@outputtofile

The names of the input and output files are contained into the in-
ternal variables \pfx@infile and \pfx@outfile. These named can be ac-
cessed from the document through the two commands \setpfxinput and
\setpfxoutput.

\setpfxinput

\setpfxoutput \def\setpfxinput#1{\gdef\pfx@infile{#1}}

 \def\setpfxoutput#1{\gdef\pfx@outfile{#1}}

 \gdef\pfx@infile{} \gdef\pfx@outfile{}

Two streams are reserved by psfragx. I do not know if I should use
them locally rather than globally.

 \newread\pfx@in

 \newwrite\pfx@out

The macro \copypfsfromto does not check that the input file exists.

\copypfxfromto

 \def\copypfxfromto#1#2{%

 \setpfxinput{#1}%

 \setpfxoutput{#2}%

 \copypfxlines%

 }

The macro \copypfxlines does the real job. See docstrip to understand
how it works.

\copypfxlines

 \def\pfx@ignorespaces{\ignorespaces}%

 \def\copypfxlines{% input and output files are global names

 \immediate\openin\pfx@in\pfx@infile\relax \ifeof\pfx@in

 \errmessage{psfragx tried to read from a file that

 does not exist. This seems to be a bug!}%

 \else

 \immediate\openout\pfx@out=\pfx@outfile\relax

 \immediate\write\pfx@out{\pfx@ignorespaces}

 \ifeof\pfx@out

 \begingroup

 \pfx@makeother\ \pfx@makeother\\\pfx@makeother\$%

 \pfx@makeother\#\pfx@makeother\^\pfx@makeother\^^K%

 \pfx@makeother_\pfx@makeother\^^A\pfx@makeother\%%

 \pfx@makeother\~\pfx@makeother\{\pfx@makeother\}%

 \pfx@makeother\&\endlinechar1\relax

 \loop

 \read\pfx@in to \pfx@inline

 \ifx\pfx@inline\pfx@endinput

 \pfx@continuefalse

 \typeout{psfragx: \pfx@percent

 \expandafter\pfx@gobble

 \string\\endinput was

 found in \pfx@infile.}%

 \else

 \ifeof\pfx@in

 \pfx@continuefalse

 \typeout{psfragx: End of file

 \pfx@infile was reached.}%

 \else

 \pfx@continuetrue

 \expandafter\pfx@processline

 \pfx@inline\pfx@endline

 \fi%

 \fi%

 \ifpfx@continue

 \repeat

 \endgroup

 \else

 \errmessage{psfragx: output file already exists!}%

 \fi %\pfx@out

 \immediate\closeout\pfx@out

 \fi %\pfx@in

 \immediate\closein\pfx@in

 }

At this stage, all <pfx> and <*pfx>...</pfx> lines from \pfx@infile

should be in \pfx@outfile.

Each time a new line is found by the previous macro, the line is pro-
cessed using \pfx@processline. This macro scans the beginning of the line
and defers the treatment to the right macro. In the docstrip code, normal
lines are copied without change. In our code, the leading percent of copied
lines is removed.

\pfx@processline

 \def\pfx@normalline#1\pfx@endline{%

 \def\pfx@inline{#1}%

 \ifpfx@outputtofile%

 \immediate\write\pfx@out{\pfx@inline}%

 \fi%

 }

 %

 \def\pfx@removecomment#1\pfx@endline{%

 \def\pfx@inline{#1}%

 \ifpfx@outputtofile%

 \immediate\write\pfx@out{\pfx@inline}%

 \fi%

 }

 %

 \bgroup\catcode‘\%=12 \pfx@iden{\egroup

 \def\pfx@putmetacomment%}#1\pfx@endline{%

 \edef\pfx@inline{\pfx@metaprefix#1}%

 \ifpfx@metacomments

 \immediate\write\pfx@out{\pfx@inline}%

 \else

 \ifpfx@outputtofile

 \immediate\write\pfx@out{\pfx@inline}%

 \fi

 \fi

 }

 %

 \begingroup

 \catcode‘\%=12 \catcode‘*=14 \gdef\pfx@processline#1{*

 \ifx%#1*

 \expandafter\pfx@processlinex

 \else

 \expandafter\pfx@normalline

 \fi

 #1}

 \endgroup

 %

 \begingroup

 \catcode‘\%=12 \catcode‘*=14

 \gdef\pfx@processlinex%#1{*

 \ifcase\ifx%#10\else

 \ifx<#11\else2\fi\fi\relax

 \expandafter\pfx@putmetacomment\or

 \expandafter\pfx@checkoption\or

 \expandafter\pfx@removecomment\fi

 #1}

 \endgroup

 %

 \def\pfx@checkoption<#1{%

 \ifcase\ifx*#10\else

 \ifx/#11\else2\fi\fi\relax

 \expandafter\pfx@staroption\or

 \expandafter\pfx@slashoption\or

 \expandafter\pfx@tagoption\fi

 #1}

 %

 \def\pfx@staroption*#1>#2\pfx@endline{%

 \def\pfx@tmp{#1}%

 \ifx\pfx@tmp\pfx@tag

 \pfx@outputtofiletrue

 \fi

 }

 %

 \def\pfx@slashoption/#1>#2\pfx@endline{%

 \def\pfx@tmp{#1}%

 \ifx\pfx@tmp\pfx@tag\relax

 \pfx@outputtofilefalse

 \fi

 }

 %

 \def\pfx@tagoption#1>#2\pfx@endline{%

 \def\pfx@tmp{#1}%

 \ifx\pfx@tmp\pfx@tag\relax

 \def\pfx@inline{#2}%

 \immediate\write\pfx@out{\pfx@inline}%

 \fi

 }

This ends the code to read eps file and write pfx file. It is clear that only
\pfx@tag and \pfx@ext should be changed from pfxto ovp in order to
process overpic inclusions rather than psfrag replacements.

. Code that inputs the PFX and OVP files

This code will add commands to input the pfx and ovp files if they exist.
If they do not, they will be created on the fly and read just after. An option
allows to ignore existing files and generate pfx and ovp files from the eps

file each time the eps file is included.
At first, we define commands related to pfx files. Later on, we will

adapt them to ovp files.

.. Saving and providing commands of other packages

We save the commands that could be redefined later
 \let\pfx@includegraphics=\includegraphics

 \let\pfx@overpic=\overpic

 \let\pfx@endoverpic=\endoverpic

Even if overpic is not loaded, the overpic environment should exist.
In this case, the ovp files will not be processed, and no picture element
should be put over the graphics. Nonetheless, \includegraphicx is defined
to always use the overpic environment.

Therefore, we provide a definition of the overpic environment that is
partially copied from overpic.sty. We have removed all the code that makes
computations about the size and the position of the grid.

\pfx@overpic

\pfx@endoverpic \@ifundefined{pfx@overpic}{%

 \newcommand*{\pfx@overpic}[2][]

 {\sbox{\z@}{\includegraphics[#1]{#2}}%

 \settodepth{\@tempcnta}{\usebox{\z@}}%

 \settoheight{\@tempcntb}{\usebox{\z@}}%

 \advance\@tempcntb\@tempcnta%

 \settowidth{\@tempcnta}{\usebox{\z@}}%

 \begin{picture}(\@tempcnta,\@tempcntb)%

 \put(0,0){\makebox(0,0)[bl]{\usebox{\z@}}}}%

 }{}

 \@ifundefined{pfx@endoverpic}{\def\pfx@endoverpic{\end{input}}}{}

We also have to provide \iflanguage command, in case babel is not\iflanguage

loaded. We could have simplified the code, because \pfx@iflanguage

should always expand to \@secondoftwo if babel is not loaded. Because
this code was also copied from the babel package with some changes, we
use it even if babel is loaded. This could cause problems if the internal
command l@language of babel was redefined. Though we redefine a babel

command, this should cause no major problem, because the command
\iflanguage will be provided only at time of the file inclusion. This means
that \psfrag replacements should contain no reference to \iflanguage as
these commands will be evaluated after the file is read. The command
\iflanguage should be evaluated at time of inclusion, in order to decide
which psfrag or picture commands are to be taken into account.

In order to simplify the writing of multilingual eps files, we also provide\onlylanguage

\endonlylanguage the command \onlylanguage {language}... \endonlylanguage, which ar-
gument is read only if the current language of the document is language.

In order to simplify the writing of multilingual eps files, we also provide
the command \onlylanguage {language}... \endonlylanguage, which ar-
gument is read only if the current language of the document is language.

\pfx@iflanguage

\iflanguage

\onlylanguage

\endonlylanguage

\pfx@save@iflanguage

\pfx@restore@iflanguage

\pfx@firstoftwo

\pfx@secondoftwo

 \long\def\pfx@firstoftwo#1#2{#1\ignorespaces}%

 \long\def\pfx@secondoftwo#1#2{#2\ignorespaces}%

 \def\pfx@iflanguage#1{%

 \ifnum\csname l@#1\endcsname=\language

 \expandafter\pfx@firstoftwo

 \else

 \expandafter\pfx@secondoftwo

 \fi}

 \long\def\onlylanguage#1#2\endonlylanguage{\pfx@iflanguage{#1}{#2}{}\ignorespaces}

 \def\pfx@save@iflanguage{\let\save@pfx@iflanguage=\iflanguage%

 \let\iflanguage=\pfx@iflanguage}

 \def\pfx@restore@iflanguage{\let\iflanguage=\save@pfx@iflanguage}

The two commands \pfx@save@iflanguage and \pfx@restore@iflanguage

will be called just before and after the inclusion of the pfx file.

.. New commands to read and write files

We start with some declarations (new commands and new if) The names
of the ifGin series are chosen to be easily processed through the keyval

package mechanism. Gin is the prefix used by the graphicx package.

\ifpfx@generate

\ifovp@generate

\pfx@add

\ovp@add@bgd

\ovp@add@fgd

\ifGin@pfx

\ifGin@overwritepfx

\ifGin@ovp

\ifGin@overwriteovp

 \newif\ifpfx@generate

 \newif\ifovp@generate

 \newcommand*\pfx@add{}

 \newcommand*\ovp@add@bgd{}

 \newcommand*\ovp@add@fgd{}

 \newif\ifGin@pfx

 \newif\ifGin@overwritepfx

 \newif\ifGin@ovp

 \newif\ifGin@overwriteovp

As the names indicate, these macros are attached to pfx or ovp inclusions.
They allow to save information to know if a pfx/ovp file is to be generated,
if the pfx/ovp automatic inclusion mechanism is to be used and if existing
pfx/ovp files should be overwritten. Finally, three commands will contain
the \psfrag commands (\pfx@add) to be issued after the inclusion of the
pfx file, as well as picture commands to be issued before (\ovp@add@bgd)
and after (\ovp@add@fgd) the ovp file inclusion.

The new keys will be available through the optional arguments of
\includegraphicx. This is why they are defined as belonging to the same
group as the graphicx keys: Gin.

The role that we have described for the previous commands is assigned
here below. As is common, the boolean keys are set to be true if they are
invoked without argument.

 \define@key{Gin}{pfx}[true]%

 {\lowercase{\Gin@boolkey{#1}}{pfx}}

 \define@key{Gin}{overwritepfx}[true]%

 {\lowercase{\Gin@boolkey{#1}}{overwritepfx}}

 \define@key{Gin}{pfxadd}[]%

 {\def\pfx@add{#1}}

 \define@key{Gin}{ovp}[true]%

 {\lowercase{\Gin@boolkey{#1}}{ovp}}

 \define@key{Gin}{overwriteovp}[true]%

 {\lowercase{\Gin@boolkey{#1}}{overwriteovp}}

 \define@key{Gin}{ovpbgd}[]%

 {\def\ovp@add@bgd{#1}}

 \define@key{Gin}{ovpfgd}[]%

 {\def\ovp@add@fgd{#1}}

We will define a handy syntax for the \includegraphicx command. This
command will mainly convert some of its optional arguments to keys
pfxadd={argument}, ovpbgd={argument}, and ovpfgd={argument}.

It is now time to define the commands that will test for the existence
of the input and output files and decide if an output file is to be generated.
This command makes use of values defined previously for pfx files. This is
why we prefix the command with \pfx. To understand the code below, it
is important to know that the command \filename@parse{} defines three
commands that are \filename@area, \filename@base and \filename@ext.

\pfxinput

 \newcommand*{\pfxinput}[1]{%

 \filename@parse{#1}%

 \IfFileExists{\filename@base.\pfx@ext}

 {\pfx@generatefalse}

 {\pfx@generatetrue}%

 \ifGin@overwritepfx\pfx@generatetrue\fi

 \IfFileExists{#1}{}{\pfx@generatefalse}%

 \ifpfx@generate%

 \copypfxfromto{\filename@area\filename@base.\filename@ext}

 {\filename@base.\pfx@ext}%

 \fi%

 \pfx@save@iflanguage

 \csname Before\pfx@tag input\endcsname

 \InputIfFileExists{\filename@base.\pfx@ext}

 {\typeout{psfragx: reading commands from

 \filename@base.\pfx@ext}}

 {\typeout{psfragx: I was not able to read psfrag

 definitions from

 \filename@base.\pfx@ext}}%

 \csname After\pfx@tag input\endcsname

 \pfx@restore@iflanguage

 }

As was announced, we determine if the output file exists. In case this file
exists we decide not to generate the output file. If the user required that the
output file be overwritten, we ask to generate the output file in any case.
Then we test if the input file exists. If not, we cannot generate the ouptut
file.

Now that the existence of the input file has been checked, we can call
the low level command \copypfxfromto. This completes the first step.

The second step is to input the pfx file if it exists. The file is input
inside a \pfx@save@iflanguage \pfx@restore@iflanguage pair. In addi-
tion, the commands \Beforepfxinput and \Afterpfxinput are issued if
they exist. Otherwise, they expand to \relax. These commands should be
defined into the psfragx.cfg file in order to customise the behaviour of
psfragx.

Now, we define variations of \pfx@ commands in order to work with
the overpic environment rather than with psfrag replacements.

We redefine the tag and the extension, copy the overwrite permission
and call \pfxinput.

\ovpinput

 \newcommand*{\ovpinput}[1]{%

 \begingroup

 \def\pfx@ext{ovp}%

 \def\pfx@tag{ovp}%

 \ifGin@overwriteovp\Gin@overwritepfxtrue

 \else\Gin@overwritepfxfalse\fi

 \pfxinput{#1}%

 \endgroup}

. The main command of this package

Here comes the definition of the main command of this package, as seen
by the user : \includegraphicx. This new command will make use of the
new environment called overpix, in order to include the graphics.

.. Internal commands

First, we define two internal commands that perform the required task.
Then we define external commands with optional arguments.

\pfx@includegraphicx The macro \pfx@includegraphics is just a shortcut to acces the overpix

environment. We do not call \begin{pfx@overpix}... \end{pfx@overpix},
in order to save time.
 \def\pfx@includegraphicx#1#2{%

 \mbox{\pfx@overpix{#1}{#2}\endpfx@overpix}}

\ovp@box@tmp In what follows, we need a temporary box. This is called \ovp@box@tmp.
 \newbox{\ovp@box@tmp}%

\pfx@overpix

\endpfx@overpix

The environment overpix has the same syntax as the overpic one. You
can notice that the original version of \includegraphics is used. This
is important if we decide, later, to let \includegraphics be equivalent to
\includegraphicx. The \psfrag commands and the picture commands
are processed inside this environment. To avoid side effecs of command
redefinitions inside the included files, we enclose the contents of overpix
inside a \begingroup \endgroup pair.

The graphic is included via the original or the lightened version of the
overpic environment.

All we do is to evaluate the keys of the first argument, then input the
pfx file, and process the contents of \pfx@add. Thereafter, we call the
original or lightened version of the overpic environment. We read the
keys again and add the background layer of the picure environment, then
the layer contained into the ovp file.

When the \pfx@overpix command is issued, we end up into a picture

environment that constitutes yet another layer. Finally, the picture envir-
onment should be closed by an \endpfx@overpix command. Before doing
so, the foreground layer of the picure environment is drawn.

It is mandatory to take care that not spurious space is added at the end
of the lines. A percent sign should appear each time the line is ending with
something else than a command name.

 \def\pfx@overpix#1#2{%

 \begingroup%

 \begin{lrbox}{\ovp@box@tmp}%

 \let\includegraphics=\pfx@includegraphics%

 \Gin@pfxtrue%

 \Gin@overwritepfxfalse%

 \def\pfx@add{}%

 \setkeys{Gin}{#1}%

 \ifGin@pfx%

 \pfxinput{#2}%

 \fi%

 \pfx@add

 \pfx@overpic[#1]{#2}

 \Gin@ovptrue

 \Gin@overwriteovpfalse

 \def\ovp@add@bgd{}%

 \def\ovp@add@fgd{}%

 \setkeys{Gin}{#1}%

 \ovp@add@bgd

 \ifGin@ovp

 \ovpinput{#2}%

 \fi

 }% \pfx@overpix

 %

 \def\endpfx@overpix{%

 \ovp@add@fgd%

 \pfx@endoverpic

 \end{lrbox}%

 \usebox{\ovp@box@tmp}%

 \endgroup%

 }%

.. External commands

The definitions here below ensure that the optional arguments are op-
tional.

\overpix

\endoverpix

The syntax of overpix is as follows.

\overpix [keys]
<foreground layer>
[background layer]
{file.eps}

 \def\overpix{\@ifnextchar[{\@overpix}%

 {\@overpix[]}}%

 \def\@overpix[#1]{\@ifnextchar<{\@@overpix[#1]}%

 {\@@overpix[#1]<>}}%

 \def\@@overpix[#1]<#2>%

 {\@ifnextchar[{\@@@overpix[#1]<#2>}%

 {\@@@overpix[#1]<#2>[]}}%

 \def\@@@overpix[#1]<#2>[#3]#4%

 {\pfx@overpix{#1,ovpfgd={#2},ovpbgd={#3}}{#4}}

 \def\endoverpix{\endpfx@overpix}

This set of commands converts the optional arguments into keys.

\includegraphicx The syntax of \includegraphicx is as follows.
\includegraphicx [keys]

(psfrag replacements)
<foreground layer>
[background layer]
{file.eps}

 \def\includegraphicx{\@ifnextchar[{\@igx}%

 {\@igx[]}}%

 \def\@igx[#1]{\@ifnextchar({\@@igx[#1]}%

 {\@@igx[#1]()}}%

 \def\@@igx[#1](#2){\@ifnextchar<{\@@@igx[#1](#2)}%

 {\@@@igx[#1](#2)<>}}%

 \def\@@@igx[#1](#2)<#3>{\@ifnextchar[{\@@@@igx[#1](#2)<#3>}%

 {\@@@@igx[#1](#2)<#3>[]}}%

 \def\@@@@igx[#1](#2)<#3>[#4]#5%

 {\pfx@includegraphicx{#1,pfxadd={#2},ovpfgd={#3},ovpbgd={#4}}{#5}}

This set of commands converts the optional arguments into keys.

. Overloading includegraphics and overpic

If the user requires so, we let \includegraphics and the overpic environ-
ment ac as their counterparts ending in x. Though this substitution was
tested, it could broke things and should be used with care.

\includegraphics

\overpic

\endoverpic

 \ifpfx@sub

 \let\includegraphics=\includegraphicx

 \ifpfx@ovp

 \let\overpic=\overpix

 \let\endoverpic=\endoverpix

 \fi

 \fi

. Configuration file

Finally, we input the configuration file if it exists.
 \InputIfFileExists{psfragx.cfg}{}{}

This ends the code of psfragx.sty.
 〈/package〉

 Code of the matlab script

Note that the lines containing the rm and mv commands should be replaced
by their equivalents on the operating system on wich matlab is running.
For example, under dos and its successors the replacements are del and
ren.

 〈∗matlab〉
 % psfragx.m %%% [* Matlab *]

 %

 % function psfragx(NomTeX,NomEPS)

 % nargin=1 > NomTeX=NomEPS

 %

 % Copy lines of NomTeX.tex

 % starting with

 % \psfrag

 % and

 % %<pfx>

 % to the file NomEPS.eps, as a comment following the

 % %%BoundigBox

 % line.

 function psfragx(TeXname,EPSname,Outname)

 TMPname=’psfragx_tmp’;

 if nargin<2, EPSname=TeXname; end

 if nargin<3, Outname=EPSname; end

 if Outname==EPSname,

 eval([’!rm ’,TMPname,’.eps’])

 eval([’!mv ’,EPSname,’.eps ’,TMPname,’.eps’])

 EPSname=TMPname;

 end

 TeXName=([TeXname,’.tex’]);

 EPSName=([EPSname,’.eps’]);

 OutName=([Outname,’.eps’]);

 BeginInput =’%%BoundingBox:’;

 BeginPSFRAG=’%<pfx>\pfxbegin[1.0]{laprint}%’;

 EndPSFRAG =’%<pfx>\pfxend’;

 StartPFX =’%<*pfx> Inserted where \begin{psfrags}% occured’;

 StopPFX =’%</pfx> Inserted where \end{psfrags}% occured’;

 EndInput =’%\endinput’;

 EndOfFile =’%%EOF’;

 ResizeBox =’%<pfx>\def\naturalwidth’;

 StopOn ={’\psfrag{’,’<pfx>’,’\begin{psfrags}’,’\end{psfrags}’,’\resizebox’};

 TeXFile=fopen(TeXName,’r’);

 if (TeXFile==1)

 error([’I was not able to open ’,TeXName,’!’]);

 end

 EPSFile=fopen(EPSName,’r’);

 if (EPSFile==1)

 error([’I was not able to open ’,EPSName,’!’]);

 end

 OutFile=fopen(OutName,’w’);

 if (OutFile==1)

 error([’I was not able to open ’,OutName,’!’]);

 end

 [sEPS,llEPS,iEPS]=CopyUntil(EPSFile,OutFile,{BeginInput});

 if sEPS~=1, error([’No line contains ’,BeginInput]);

 else

 fprintf(OutFile,’%s\n’,llEPS);

 end

 %%%

 %%% Write preamble

 %%%

 fprintf(OutFile,’%%<*pfx> Begin Preamble\n’);

 fprintf(OutFile,’%%\\providecommand*{\\pfxbegin}[2][]{}%%\n’);

 fprintf(OutFile,’%%\\providecommand{\\pfxend}{}%%\n’);

 fprintf(OutFile,’%%</pfx> End Preamble\n’);

 %%%

 %%% Copy interesting lines

 %%%

 while 1

 [sTeX,llTeX,iTeX]=ReadUntil(TeXFile,StopOn);

 if sTeX~=1, break; end

 switch iTeX

 case 1, % \psfrag

 fprintf(OutFile,’%%%s\n’,llTeX);

 case 2, % %<pfx>

 fprintf(OutFile,’%s\n’,llTeX);

 case 3, % \begin{psfrags}

 fprintf(OutFile,’%s\n’,BeginPSFRAG);

 fprintf(OutFile,’%s\n’,StartPFX);

 case 4, % \end{psfrags}

 fprintf(OutFile,’%s\n’,StopPFX);

 fprintf(OutFile,’%s\n’,EndPSFRAG);

 case 5, % \resizebox

 tmpbeg=findstr(llTeX,’{’);

 tmpend=findstr(llTeX,’}’);

 if (length(tmpbeg)>0)&(length(tmpend)>0)

 if (tmpbeg(1)<tmpend(1))

 fprintf(OutFile,’%s%s%%\n’,ResizeBox,llTeX(tmpbeg(1):tmpend(1)));

 end

 end

 otherwise

 error(’Otherwise should never happen !’)

 end

 end

 %%%

 %%% Write postamble

 %%%

 fprintf(OutFile,’%s\n’,EndInput);

 %%%

 %%% Copy to the end of file

 %%%

 [sEPS,llEPS,iEPS]=CopyUntil(EPSFile,OutFile,{’’});

 %%%

 %%% Close files

 %%%

 fclose(OutFile);

 fclose(TeXFile);

 fclose(EPSFile);

 return

 function [OK,lastline,elt]=CopyUntil(fidIn,fidOut,linebeg);

 sl=length(linebeg);

 if sl==0, OK=2; return, end

 llb=zeros(sl);

 for ii=1:sl

 llb(ii)=length(linebeg{ii});

 end

 lastline=’’;

 OK=0;

 elt=0;

 while 1

 Line=fgetl(fidIn);

 if ~isstr(Line),

 OK=1;

 return,

 end %EndOfFile

 for ii=1:sl

 %%% fprintf(’Seeking for line starting with %s.\n’,linebeg{ii});

 if llb==0, %%% Copying to the end of file

 else

 if length(Line)>=llb(ii)

 %%% fprintf(’This line counts more than %i chars.\n’,llb(ii));

 if Line(1:llb(ii))==linebeg{ii},

 OK=1;

 elt=ii;

 lastline=Line;

 break

 end

 end

 end

 end %%% No matching string

 if OK==1, break, end

 if ~isempty(fidOut)

 fprintf(fidOut,’%s\n’,Line);

 end

 end

 return

 function [OK,lastline,elt]=ReadUntil(fidIn,linebeg);

 [OK,lastline,elt]=CopyUntil(fidIn,[],linebeg);

 return

 〈/matlab〉
 〈∗pfxprint〉
 %%% pfxprint [* Matlab *] Timestamp: <20040812 18:20:57 Pascal Kockaert>

 %%%

 % function pfxprint(fig,name,’optA’,’valA’,’optB’,’valB’,...)

 %

 % TO USE THIS FUNCTION, THE FILE laprpfx.mat SHOULD BE IN THE MATLAB PATH

 %

 % This function is to be used like laprint.m

 % The EPS and TeX files resulting from the call to laprint with the given arguments

 % are automatically merged into one EPS file that contains the

 % psfrags replacements as comments.

 % These comments can be automatically used in LaTeX, with the help of the psfragx package.

 %

 % This file is subject to the LPPL licence (see other files in the source archive or www.ctan.org)

 % Copyright 2004, Pascal Kockaert

 %

 function pfxprint(fig,name,varargin)

 deftxtint=get(0,’DefaultTextInterpreter’);

 set(0,’DefaultTextInterpreter’,’none’);

 laprint(fig,name,’options’,’laprpfx’,varargin{:});

 psfragx(name);

 set(0,’DefaultTextInterpreter’,deftxtint)

 % Default options are

 % LAPRINTOPT =

 % figno: 2

 % filename: ’laprint’

 % width: 12

 % factor: 0.8

 % scalefonts: 1

 % keepfontprops: 0

 % asonscreen: 0

 % keepticklabels: 0

 % mathticklabels: 0

 % head: 0

 % comment: ’Test de laprint’

 % caption: ’’

 % extrapicture: 0

 % nzeros: 3

 % verbose: ’off’

 % figcopy: 1

 % printcmd: ’print(’f<figurenumber>’,’depsc2’,’<filename.eps>’)’

 % package: ’graphicx’

 % color: 0

 % createview: 0

 % viewfilename: ’unnamed_’

 % processview: 0

 % cmd1: ’latex haltonerror interaction nonstopmode <viewfile>.tex’

 % cmd2: ’dvips D600 E* o<viewfile>.eps <viewfile>.dvi’

 % cmd3: ’epstool bbox copy output <filename>_final.eps <viewfile>.eps’

 % cmd4: ’rm <viewfile>.eps <viewfile>.dvi <viewfile>.aux <viewfile>.log <viewfile>.pfg’

 % cmd5: ’ghostview <filename>_final.eps&’

 % cmd6: ’’

 % cmd7: ’’

 % cmd8: ’’

 〈/pfxprint〉

Index

Numbers written in italic refer to the page where the corresponding entry
is described; numbers underlined refer to the code line of the definition;
numbers in roman refer to the code lines where the entry is used.

A
\allmetacomments .

C
\copypfxfromto . .
\copypfxlines . . .

E
\endonlylanguage .

. ,

\endoverpic

\endoverpix

\endpfx@overpix . .
environments:

overpix

I
\ifGin@overwriteovp

.

\ifGin@overwritepfx

.

\ifGin@ovp

\ifGin@pfx

\iflanguage . . ,

\ifovp@generate .

\ifpfx@generate .

\includegraphics

\includegraphicx ,

O
\onlylanguage ,

\overpic

\overpix

overpix (environ-
ment)

\ovp@add@bgd . . .

\ovp@add@fgd . . .

\ovp@box@tmp

\ovpinput

P
\pfx@add

\pfx@doublepercent

\pfx@endinput . . .

\pfx@endoverpic .

\pfx@ext

\pfx@firstoftwo .

\pfx@gobble
\pfx@iflanguage .
\pfx@includegraphicx

.

\pfx@metaprefix . .

\pfx@overpic . . .

\pfx@overpix

\pfx@ovpfalse . . .

\pfx@ovptrue

\pfx@percent
\pfx@processline .

\pfx@restore@iflanguage

.
\pfx@save@iflanguage

.

\pfx@secondoftwo

\pfx@subfalse . . .

\pfx@subtrue

\pfx@tag

\pfxinput

S
\selectedmetacomments

.

\setpfxinput . . .

\setpfxoutput . .

