
The hypdvips package
Hyperref extensions for use with dvips

Raimund Niedrist
raimund.niedrist@student.uibk.ac.at

2009/03/25 v1.06

Abstract

The hypdvips package fixes some problems when using hyperref with dvips. It also adds
support for breaking links, hyperlinked tablenotes, file attachments, embedded documents
and different types of GoTo-links. The cooperation of hyperref with cleveref is improved,
which in addition allows an enhanced back-referencing system.

Contents

1 Introduction 4

2 Usage 4

3 Command list 6

3.1 \attachfile . 6

3.2 \bmstyle . 8

3.3 Color commands . 8

3.4 \embedfile . 8

3.5 \evenboxesstring . 9

3.6 \file . 9

3.7 \goto . 10

3.8 \gotoparent . 12

3.9 \listofattachments . 13

3.10 \odest . 13

3.11 \openaction . 13

3.12 \pagelabel . 14

3.13 \runattachment . 14

mailto:raimund.niedrist@student.uibk.ac.at

Trademark Information

Adobe R©, Distiller R©, PostScript R© and Reader R© are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States and/or other countries.

Mac, Mac OS and QuickTime are trademarks of Apple Inc., registered in the U. S. and other
countries. The hypdvips package documentation is an independent publication and has not
been authorized, sponsored, or otherwise approved by Apple Inc.

Ghostscript R© is a registered trademark of Artifex Software, Inc.

JavaScriptTM is a trademark of Sun Microsystems, Inc. in the United States and other countries.

2

List of Figures

1 Open-message shown with the Adobe Reader 6 software 5

(a) standalone . 5

(b) in browser window . 5

2 Sample hypdvips log file output . 6

3 ID numbers of file attachments . 11

4 Link to a child . 11

5 Link to the parent . 11

6 Link to a sibling . 11

7 Link to an embedded file in an external document 12

8 Link from an embedded file to a normal file . 12

9 Link to a grandchild . 13

10 Link to a niece/nephew through the source’s parent 13

List of Tables

1 Package options for hypdvips . 5

2 Options for the \attachfile command . 7

3 Options for the \embedfile command . 9

4 Options for the \goto command . 11

List of File Attachments

1 The MD5 Message-Digest Algorithm
Options: Details, Attachments tab, Save a Copy. . . , Launch attachment -

2 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types
Options: Details, Attachments tab, Save a Copy. . . , Launch attachment -

3 Generate MD5 hashes of files (with progress indicator)
Options: Details, Attachments tab . 6

4 Draft copy of this documentation with enabled showdests option
Options: Details, Attachments tab . 6

5 Bibliography file for hypdvips.tex
Options: Details, Attachments tab, Save a Copy. . . , Launch attachment -

6 Source code of this documentation
Options: Details, Attachments tab . 9

3

1 Introduction

The hypdvips package is a collection of fixes for problems when using hyperref with dvips
as backend driver. As you may have noticed, the converted PostScript files created by the
standalone hyperref package have some features missing compared to the direct PDF output
of the pdflatex driver. The most severe deficit is probably the inability to break links. Another
problem is, for example, that footnote links point to the baseline of the note, thus placing
the footnote text itself outside of the reader window1. Another issue is the linking to floats
(e. g. a figure), where the link points to the baseline of the caption text, again leaving the figure
outside of the window. There is a package that particularly addresses this issue (hypcap), but
the original version doesn’t work with breaking links.

In fact, every time I encountered a problem when using the hyperref/dvips bundle, I tried to
fix it and put it into a collection. So, hypdvips has no specific purpose, I just thought it could
be useful to share.

To make it short, the main features of hypdvips are:

⊲ breaking links

⊲ support for backref, cleveref & threeparttable

⊲ file attachments

⊲ embedded documents

⊲ GoTo-, GoToR- & GoToE-links

⊲ custom pagelabels

⊲ document open-actions

2 Usage

The hypdvips package can be loaded using the following command:

\usepackage[options]{hypdvips}

Table 1 shows all possible package options. They can be specified using key/value pairs, e. g.

\usepackage[autotitle=true,JavaScript=false,Mac=true,showdests]{hypdvips}

If a boolean (true/false) option key is used without a specific value, it is assumed to be “true”
(like showdests in the example above).

There are some rules in which order packages should be loadad when using hypdvips: if used,
cleveref and threeparttable must be loaded before hypdvips. The hyperref package itself
is loaded implicitly by hypdvips, so there is no need to load it separately2.

PDF Reference links: This documentation often refers to the PDF Reference [1]. As the
electronic form of the PDF Reference is a rather huge file (approx. 31 MB), it is not in-
cluded in this documentation — but it is linked. To get these links to work, download the file
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf and put it into the
same folder as this documentation.

1 at least Adobe Reader software does so, but there may be other programs which put the link destination in
the center of the window — in this case it wouldn’t matter

2 under certain circumstances hyperref must be loaded before hypdvips, especially if a hyperref option is
used which can’t be changed later using \hypersetup

4

http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

Table 1 | Package options for hypdvips

Option Default Description

autoauthor false Automatically sets the hyperref option pdfauthor to the name given by the \author
command.

autotitle false Automatically sets the hyperref option pdftitle to the title given by the \title
command.

detailedpagebr true Only used in back-referencing: back-references that originally just point to the page
top are expanded to point to the real occurrence of the citation on the page.

evenboxes false Sets the height of links to a fixed value. See the description of the \evenboxesstring
command for further details.

fish true Only used when attaching files: Shows an animation on the console during calculation
of MD5-checksums.

flip false Flips all pages of the document.

fullbookmarks false Creates bookmark entries for starred sections (e. g. the “Contents” or “References”
sections).

german false Configures hypdvips to be used in german documents. This includes cleveref def-
initions and affects the List of File Attachments, the open-message and the back-
referencing systema.

hypertnotes true Only used with package threeparttable: Changes the \tnote command to create hy-
perlinks to the corresponding tablenote text. The \item command in the tablenotes

environment must use literally the same mark as the linking \tnote commands.

JavaScript true Only used when attaching files: Allows or denies the document to contain JavaScript
code. Most of the option buttons in the List of File Attachments won’t work anymore
when JavaScript=false.

loabr false Only used in back-referencing: Allows back-references to citations occurring in the
List of File Attachments (e. g. if a file attachment description contains a citation).

lofbr false Only used in back-referencing: Allows back-references to citations occurring in the
List of Figures (e. g. if a figure caption contains a citation).

lotbr false Only used in back-referencing: Allows back-references to citations occurring in the
List of Tables (e. g. if a table caption contains a citation).

Mac false Only used when attaching files: Includes the resource fork of Mac files.

mirror false Mirrors all pages of the document.

nlwarning true Creates warning messages for links which are discarded due to link nesting.

openmessage true Only used when attaching files: Shows a message concerning file attachments when
opening the PDF document with some older Adobe Reader software versions. It
instructs the user how to open the attached files (see fig. 1). The open-message is
implemented with JavaScript code, so it won’t work with JavaScript=false.

quadpoints true Only used for broken links: Uses a QuadPoints array to define the active link area.
With quadpoints=false, independent links are created on each line. See table 8.24
and figure 8.9 of the PDF Reference [1] for further details.

showdests false Indicates horizontal link destinations by red lines — useful for hyperlink check-
ing. Here you can see an embedded copy of this documentation compiled with
showdests=true.

smallfootnotes true Changes the size of frames around footnote marks: The default uses \@thefnmark
as boundary, whereas smallfootnotes=false uses the \@makefnmark command
(like hyperref does). If you experience problems with footnote links, use
smallfootnotes=false.

tocbr false Only used in back-referencing: Allows back-references to citations occurring in the
Table of Contents (e. g. if a section heading contains a citation).

a please contact me if you want to provide a translation into another language

(a) standalone (b) in browser window

Figure 1 | Open-message shown with the Adobe Reader 6 software

5

mailto:raimund.niedrist@student.uibk.ac.at

3 Command list

3.1 \attachfile[options]{filename}

Creates a PDF file attachment annotation, using data of the file referenced by filename. Table 2
shows all possible options. They are mostly similar to those of the \attachfile command of
the attachfile/attachfile2 packages.
By default, the embedded file specification includes the size, MD5-checksum and creation/modi-
fication dates3 of the attached file. Author and subject fields of the annotation are also auto-
matically filled in, if not otherwise specified by an option. For example, the command

\attachfile[author={Jem Berkes, SysDesign}, subject={MD5sums 1.2}, description={Generate
MD5 hashes of files (with progress indicator)}, mimetype=application/zip, modified=,

created=, color={0.2 0.65 1}, icon=tag]{c:/utils/md5sums-1.2.zip}

yields the following result4:

Another example (that creates the icon to the left):

\attachfile[description={Draft copy of this documentation with enabled {\ttfamily
showdests} option}, name=hypdvips\string_showdests.pdf, mimetype=application/pdf,

iconfilename=images/icon\string_draft.eps, rect={25 520 45 545}]{draft.pdf}

Filenames: Depending on the program used to convert the PostScript file to PDF, you have to
specify the full path to the file or not. Ghostscript e. g. allows relative paths, but needs to be
run with the -dNOSAFER command line argument if the attached file doesn’t reside in the same
directory as the PostScript file. The Adobe Distiller software always needs the full path, and
besides from that, it has to be run without the -F command line argument for versions below
8.1, but with the -F command line argument for newer versions5.

File sizes: The Size entry in the embedded file parameter dictionary is limited to the highest
supported integer number of the PDF creator program’s PostScript interpreter. The usual limit
of 32 bit-wide integers leads to a maximum size of 2,147,483,647 bytes (2 GB). At the begin-
ning of processing, hypdvips logs information about the PostScript interpreter to the standard
output file. There you can find whether 64 bit-wide integers are supported (see fig. 2).

Figure 2 | Sample hypdvips log file output

3 if possible (depending on the PDF creator application and operating system used)
4 appearance may vary depending on the viewer application used
5 http://www.adobe.com/devnet/acrobat/downloads/Acrobat_SDK_readme.html#Known_Issues

6

md5sums.exe

md5sums.txt

======================
 INTRODUCTION
======================

MD5sums is win32 command line software to generate MD5 hashes of files
(with progress indicator)

Author: Jem Berkes, SysDesign [http://www.sysdesign.ca/]

===============
 USAGE
===============

MD5sums 1.2 freeware for Win9x/ME/NT/2000/XP+
Copyright (C) 2001-2005 Jem Berkes - http://www.pc-tools.net/

Usage: md5sums [OPTION] filespec1 [filespec2 ...]

OPTION switches:
-B Base64 encoded output, instead of default hex format
-b Bare output, no path headers
-e Exit immediately; don't pause before returning
-n No percent done indicator
-p Pause before returning (incompatible with -e)
-s Display statistics at end (hashing speed)
-u Mimic output of UNIX md5 command (implies -b, -n)

Examples:
md5sums c:\temp
md5sums original.doc copy*.doc backup*.doc
md5sums -n -e d:\incoming > log

==================
 WARRANTY
==================

THIS FREE SOFTWARE COMES WITH ABSOLUTELY NO WARRANTY.
USE AT YOUR OWN RISK!

=========================
 VERSION HISTORY
=========================

Changes in version 1.2 [2005-01-31]
- UNIX compatible output fixed to match standard md5sum
- Added -B switch to get base64 encoded output (rather than default hex)
- Fixed percent indicator for files > 4 GB

Changes in version 1.1 [2002-08-03]
- Added many new command line switches
- Percent done indicator is now only updated once per second
- Executable is now UPX compressed [http://upx.sourceforge.net/]

==================
 FEATURES
==================

MD5sums has user-friendly output, including a percent done indicator
when processing large files. With its various command line switches
you can customize MD5sums for use in scripts.

The UNIX compatibility switch (-u) makes the output look like that
from the Linux/BSD/UNIX md5 or md5sum commands.

Besides the normal command line usage (see examples above), MD5sums
can also be easily added to the windows shell. Use Windows Explorer
to access your user profile directory (one level up from the "Start
Menu" directory). Locate the "SendTo" folder and create a shortcut
inside it to "md5sums -p" (pause before returning).

If you have trouble locating your user profile directory, try this
at the command prompt: echo %userprofile%

After adding MD5sums to the SendTo folder, you can select one or
more files on the desktop (or in any other folder), and right-click
to "Send To" md5sums. Each selected file will be processed.

===============================
 ABOUT THE MD5 PROCESS
===============================

[Paraphrased and, in parts, quoted from RFC 1321]

The MD5 Message Digest Algorithm takes an input (in this case, a
file) and produces a 128-bit (or 16 byte) output, which can be
represented as a string of 32 hexadecimal values. This output is
a 'fingerprint' or 'message digest' for the file.

You will often find an MD5 value supplied along with files you
download off of the internet. By comparing the supplied MD5 value
to the actual value computed by the MD5sums utility, you can make
sure that the file has not been tampered with or modified.

"It is conjectured that it is computationally infeasible to
produce two messages having the same message digest, or to
produce any message having a given prespecified target message
digest."

In the context of this MD5sums utility, what this means is: if
you have a file and know what the MD5 value should be, and this
value matches the actual MD5 value obtained by using the MD5sums
utility, then the file is very likely the original file.

This is a good way to both verify that the file has not been
damaged during electronic transfers, and also to verify that the
file you are getting has not been tampered with.

For example, the MD5 value of md5sums.exe is:
da1e100dc9e7bebb810985e37875de38

Note that recent research has shown that MD5 computations are not
as immune to collisions as thought earlier. While MD5 hashes are
still excellent for file comparisons, for cryptographic strength
it is recommended that one uses a stronger hash such as SHA-1.

- Jem Berkes

Jem Berkes, SysDesign
MD5sums 1.2
Generate MD5 hashes of files (with progress indicator)

page.1

Doc-Start

The hypdvips package
Hyperref extensions for use with dvips

Raimund Niedrist
raimund.niedrist@student.uibk.ac.at

2009/03/25 v1.06

Abstract

The hypdvips package fixes some problems when using hyperref with dvips. It also adds
support for breaking links, hyperlinked tablenotes, file attachments, embedded documents
and different types of GoTo-links. The cooperation of hyperref with cleveref is improved,
which in addition allows an enhanced back-referencing system.

*.1

Contents

1 Introduction 4

2 Usage 4

3 Command list 6

3.1 \attachfile . 6

3.2 \bmstyle . 8

3.3 Color commands . 8

3.4 \embedfile . 8

3.5 \evenboxesstring . 9

3.6 \file . 9

3.7 \goto . 10

3.8 \gotoparent . 12

3.9 \listofattachments . 13

3.10 \odest . 13

3.11 \openaction . 13

3.12 \pagelabel . 14

3.13 \runattachment . 14

mailto:raimund.niedrist@student.uibk.ac.at

page.2

*.2

Trademark Information

Adobe R©, Distiller R©, PostScript R© and Reader R© are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States and/or other countries.

Mac, Mac OS and QuickTime are trademarks of Apple Inc., registered in the U. S. and other
countries. The hypdvips package documentation is an independent publication and has not
been authorized, sponsored, or otherwise approved by Apple Inc.

Ghostscript R© is a registered trademark of Artifex Software, Inc.

JavaScriptTM is a trademark of Sun Microsystems, Inc. in the United States and other countries.

2

page.3

*.3

List of Figures

1 Open-message shown with the Adobe Reader 6 software 5

(a) standalone . 5

(b) in browser window . 5

2 Sample hypdvips log file output . 6

3 ID numbers of file attachments . 11

4 Link to a child . 11

5 Link to the parent . 11

6 Link to a sibling . 11

7 Link to an embedded file in an external document 12

8 Link from an embedded file to a normal file . 12

9 Link to a grandchild . 13

10 Link to a niece/nephew through the source’s parent 13

*.4

List of Tables

1 Package options for hypdvips . 5

2 Options for the \attachfile command . 7

3 Options for the \embedfile command . 9

4 Options for the \goto command . 11

*.5

List of File Attachments

1 The MD5 Message-Digest Algorithm
Options: Details, Attachments tab, Save a Copy. . . , Launch attachment -

2 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types
Options: Details, Attachments tab, Save a Copy. . . , Launch attachment -

3 Generate MD5 hashes of files (with progress indicator)
Options: Details, Attachments tab . 6

4 Bibliography file for hypdvips.tex
Options: Details, Attachments tab, Save a Copy. . . , Launch attachment -

5 Source code of this documentation
Options: Details, Attachments tab . 9

3

page.4

section.1

1 Introduction

The hypdvips package is a collection of fixes for problems when using hyperref with dvips
as backend driver. As you may have noticed, the converted PostScript files created by the
standalone hyperref package have some features missing compared to the direct PDF output
of the pdflatex driver. The most severe deficit is probably the inability to break links. Another
problem is, for example, that footnote links point to the baseline of the note, thus placing
the footnote text itself outside of the reader window1. Another issue is the linking to floats
(e. g. a figure), where the link points to the baseline of the caption text, again leaving the figure
outside of the window. There is a package that particularly addresses this issue (hypcap), but
the original version doesn’t work with breaking links.

In fact, every time I encountered a problem when using the hyperref/dvips bundle, I tried to
fix it and put it into a collection. So, hypdvips has no specific purpose, I just thought it could
be useful to share.

To make it short, the main features of hypdvips are:

⊲ breaking links

⊲ support for backref, cleveref & threeparttable

⊲ file attachments

⊲ embedded documents

⊲ GoTo-, GoToR- & GoToE-links

⊲ custom pagelabels

⊲ document open-actions
section.2

2 Usage

The hypdvips package can be loaded using the following command:

\usepackage[options]{hypdvips}

Table 1 shows all possible package options. They can be specified using key/value pairs, e. g.

\usepackage[autotitle=true,JavaScript=false,Mac=true,showdests]{hypdvips}

If a boolean (true/false) option key is used without a specific value, it is assumed to be “true”
(like showdests in the example above).

There are some rules in which order packages should be loadad when using hypdvips: if used,
cleveref and threeparttable must be loaded before hypdvips. The hyperref package itself
is loaded implicitly by hypdvips, so there is no need to load it separately2.

PDF Reference links: This documentation often refers to the PDF Reference
backref.1

[1]. As the
electronic form of the PDF Reference is a rather huge file (approx. 31 MB), it is not in-
cluded in this documentation — but it is linked. To get these links to work, download the file
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf and put it into the
same folder as this documentation.

1Hfootnote.1

at least Adobe Reader software does so, but there may be other programs which put the link destination in
the center of the window — in this case it wouldn’t matter

2Hfootnote.2

under certain circumstances hyperref must be loaded before hypdvips, especially if a hyperref option is
used which can’t be changed later using \hypersetup

4

http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

page.5

table.1

Table 1 | Package options for hypdvips

Option Default Description

autoauthor false Automatically sets the hyperref option pdfauthor to the name given by the \author
command.

autotitle false Automatically sets the hyperref option pdftitle to the title given by the \title
command.

detailedpagebr true Only used in back-referencing: back-references that originally just point to the page
top are expanded to point to the real occurrence of the citation on the page.

evenboxes false Sets the height of links to a fixed value. See the description of the \evenboxesstring
command for further details.

fish true Only used when attaching files: Shows an animation on the console during calculation
of MD5-checksums.

flip false Flips all pages of the document.

fullbookmarks false Creates bookmark entries for starred sections (e. g. the “Contents” or “References”
sections).

german false Configures hypdvips to be used in german documents. This includes cleveref def-
initions and affects the List of File Attachments, the open-message and the back-
referencing systema.

hypertnotes true Only used with package threeparttable: Changes the \tnote command to create hy-
perlinks to the corresponding tablenote text. The \item command in the tablenotes

environment must use literally the same mark as the linking \tnote commands.

JavaScript true Only used when attaching files: Allows or denies the document to contain JavaScript
code. Most of the option buttons in the List of File Attachments won’t work anymore
when JavaScript=false.

loabr false Only used in back-referencing: Allows back-references to citations occurring in the
List of File Attachments (e. g. if a file attachment description contains a citation).

lofbr false Only used in back-referencing: Allows back-references to citations occurring in the
List of Figures (e. g. if a figure caption contains a citation).

lotbr false Only used in back-referencing: Allows back-references to citations occurring in the
List of Tables (e. g. if a table caption contains a citation).

Mac false Only used when attaching files: Includes the resource fork of Mac files.

mirror false Mirrors all pages of the document.

nlwarning true Creates warning messages for links which are discarded due to link nesting.

openmessage true Only used when attaching files: Shows a message concerning file attachments when
opening the PDF document with some older Adobe Reader software versions. It
instructs the user how to open the attached files (see fig. 1). The open-message is
implemented with JavaScript code, so it won’t work with JavaScript=false.

quadpoints true Only used for broken links: Uses a QuadPoints array to define the active link area.
With quadpoints=false, independent links are created on each line. See table 8.24
and figure 8.9 of the PDF Referencebackref.2 [1] for further details.

showdests false Indicates horizontal link destinations by red lines — useful for hyperlink checking.

smallfootnotes true Changes the size of frames around footnote marks: The default uses \@thefnmark
as boundary, whereas smallfootnotes=false uses the \@makefnmark command
(like hyperref does). If you experience problems with footnote links, use
smallfootnotes=false.

tocbr false Only used in back-referencing: Allows back-references to citations occurring in the
Table of Contents (e. g. if a section heading contains a citation).

table.1.note: "a" a please contact me if you want to provide a translation into another language

figure.1

subfigure.1.1

(a) standalone

subfigure.1.2

(b) in browser window

Figure 1 | Open-message shown with the Adobe Reader 6 software

5

mailto:raimund.niedrist@student.uibk.ac.at

page.6

section.3

3 Command list
subsection.3.1

3.1 \attachfile[options]{filename}
attachfilecmd

Creates a PDF file attachment annotation, using data of the file referenced by filename. Table 2
shows all possible options. They are mostly similar to those of the \attachfile command of
the attachfile/attachfile2 packages.
By default, the embedded file specification includes the size, MD5-checksum and creation/modi-
fication dates3 of the attached file. Author and subject fields of the annotation are also auto-
matically filled in, if not otherwise specified by an option. For example, the command

\attachfile[author={Jem Berkes, SysDesign}, subject={MD5sums 1.2}, description={Generate
MD5 hashes of files (with progress indicator)}, mimetype=application/zip, modified=,

created=, color={0.2 0.65 1}, icon=tag]{c:/utils/md5sums-1.2.zip}

yields the following result4:
attachment.3

Another example:

\attachfile[description={Draft copy of this documentation with enabled {\ttfamily
showdests} option}, name=hypdvips\string_showdests.pdf, mimetype=application/pdf,

iconfilename=images/icon\string_draft.eps, rect={25 520 45 545}]{draft.pdf}

Filenames: Depending on the program used to convert the PostScript file to PDF, you have to
specify the full path to the file or not. Ghostscript e. g. allows relative paths, but needs to be
run with the -dNOSAFER command line argument if the attached file doesn’t reside in the same
directory as the PostScript file. The Adobe Distiller software always needs the full path, and
besides from that, it has to be run without the -F command line argument for versions below
8.1, but with the -F command line argument for newer versions5.

File sizes: The Size entry in the embedded file parameter dictionary is limited to the highest
supported integer number of the PDF creator program’s PostScript interpreter. The usual limit
of 32 bit-wide integers leads to a maximum size of 2,147,483,647 bytes (2 GB). At the begin-
ning of processing, hypdvips logs information about the PostScript interpreter to the standard
output file. There you can find whether 64 bit-wide integers are supported (see fig. 2).

figure.2

Figure 2 | Sample hypdvips log file output

3Hfootnote.3

if possible (depending on the PDF creator application and operating system used)
4Hfootnote.4

appearance may vary depending on the viewer application used
5Hfootnote.5

http://www.adobe.com/devnet/acrobat/downloads/Acrobat_SDK_readme.html#Known_Issues

6

md5sums.exe

md5sums.txt

======================
 INTRODUCTION
======================

MD5sums is win32 command line software to generate MD5 hashes of files
(with progress indicator)

Author: Jem Berkes, SysDesign [http://www.sysdesign.ca/]

===============
 USAGE
===============

MD5sums 1.2 freeware for Win9x/ME/NT/2000/XP+
Copyright (C) 2001-2005 Jem Berkes - http://www.pc-tools.net/

Usage: md5sums [OPTION] filespec1 [filespec2 ...]

OPTION switches:
-B Base64 encoded output, instead of default hex format
-b Bare output, no path headers
-e Exit immediately; don't pause before returning
-n No percent done indicator
-p Pause before returning (incompatible with -e)
-s Display statistics at end (hashing speed)
-u Mimic output of UNIX md5 command (implies -b, -n)

Examples:
md5sums c:\temp
md5sums original.doc copy*.doc backup*.doc
md5sums -n -e d:\incoming > log

==================
 WARRANTY
==================

THIS FREE SOFTWARE COMES WITH ABSOLUTELY NO WARRANTY.
USE AT YOUR OWN RISK!

=========================
 VERSION HISTORY
=========================

Changes in version 1.2 [2005-01-31]
- UNIX compatible output fixed to match standard md5sum
- Added -B switch to get base64 encoded output (rather than default hex)
- Fixed percent indicator for files > 4 GB

Changes in version 1.1 [2002-08-03]
- Added many new command line switches
- Percent done indicator is now only updated once per second
- Executable is now UPX compressed [http://upx.sourceforge.net/]

==================
 FEATURES
==================

MD5sums has user-friendly output, including a percent done indicator
when processing large files. With its various command line switches
you can customize MD5sums for use in scripts.

The UNIX compatibility switch (-u) makes the output look like that
from the Linux/BSD/UNIX md5 or md5sum commands.

Besides the normal command line usage (see examples above), MD5sums
can also be easily added to the windows shell. Use Windows Explorer
to access your user profile directory (one level up from the "Start
Menu" directory). Locate the "SendTo" folder and create a shortcut
inside it to "md5sums -p" (pause before returning).

If you have trouble locating your user profile directory, try this
at the command prompt: echo %userprofile%

After adding MD5sums to the SendTo folder, you can select one or
more files on the desktop (or in any other folder), and right-click
to "Send To" md5sums. Each selected file will be processed.

===============================
 ABOUT THE MD5 PROCESS
===============================

[Paraphrased and, in parts, quoted from RFC 1321]

The MD5 Message Digest Algorithm takes an input (in this case, a
file) and produces a 128-bit (or 16 byte) output, which can be
represented as a string of 32 hexadecimal values. This output is
a 'fingerprint' or 'message digest' for the file.

You will often find an MD5 value supplied along with files you
download off of the internet. By comparing the supplied MD5 value
to the actual value computed by the MD5sums utility, you can make
sure that the file has not been tampered with or modified.

"It is conjectured that it is computationally infeasible to
produce two messages having the same message digest, or to
produce any message having a given prespecified target message
digest."

In the context of this MD5sums utility, what this means is: if
you have a file and know what the MD5 value should be, and this
value matches the actual MD5 value obtained by using the MD5sums
utility, then the file is very likely the original file.

This is a good way to both verify that the file has not been
damaged during electronic transfers, and also to verify that the
file you are getting has not been tampered with.

For example, the MD5 value of md5sums.exe is:
da1e100dc9e7bebb810985e37875de38

Note that recent research has shown that MD5 computations are not
as immune to collisions as thought earlier. While MD5 hashes are
still excellent for file comparisons, for cryptographic strength
it is recommended that one uses a stronger hash such as SHA-1.

- Jem Berkes

Jem Berkes, SysDesign

MD5sums 1.2

Generate MD5 hashes of files (with progress indicator)

http://www.adobe.com/devnet/acrobat/downloads/Acrobat_SDK_readme.html#Known_Issues

page.7

table.2

Table 2 | Options for the \attachfile command

Option Default Description

anncreated (LATEX time) Creation date of the annotation (CreationDate in annotation dictionary)a.

annmodified (LATEX time) Modification date of the annotation (M in annotation dictionary)a.

author (value of hyperref

option pdfauthor)
Name for the author field of the annotation (T in annotation dictionary).

checksum (from file) MD5-checksum of the file, written in hexadecimal format (CheckSum in embedded
file parameter dictionary; use checksum= to omit this entry). The MD5 algorithm
is described in RFC 1321backref.3 [4].

color (color of \embedded
bordercolor)

Color of the annotation icon, specified by three numbers between 0 and 1 accord-
ing to the RGB color model (C in annotation dictionary).

created (from file) Creation date of the file (CreationDate in embedded file parameter dictionary)a.

creator (absent) Only used with the package option Mac: The 4-character Mac OS file creator sig-
nature (Creator in Mac OS file information dictionary). E. g. ogle for QuickTime
PictureViewer.

description (absent) Text for the description field of the annotation (Contents in annotation dictionary
and Desc in embedded file specification dictionary).

filetype (absent) Only used with the package option Mac: The 4-character Mac OS file type (Sub-
type in Mac OS file information dictionary). E. g. GIFf for a Graphics Interchange
Format (.GIF-)file.

flags 2#0000000100

(Print= true,
all others false)

Flags for the annotation, written as PostScript integer (F in annota-
tion dictionary). The default value e. g. can also be written decimal
as 4 or hexadecimal as 16#4. Bit positions are:b 1= Invisible, 2 =Hidden,
3 =Print, 4= NoZoom, 5 =NoRotate, 6= NoView, 7= ReadOnly, 8= Locked,
9 =ToggleNoView, 10 = LockedContents. See section 8.4.2 of the PDF Refer-
encebackref.4 [1] for detailed meanings of these flags.

icon paperclip Name of the annotation icon (Name in annotation dictionary). Allowed names
are: graph, pushpin, paperclip and tag. The actual appearance may
vary depending on the viewer application used to read the PDF document.

iconfilename (undefined,
i. e. use icon/text)

Filename of an Encapsulated PostScript (.EPS-)file which acts as the annotation
icon. This option must be paired with the rect option.

mimetype (absent) The MIME-type of the file (Subtype in embedded file stream dictionary; it can also
be specified by a PDF first-class name, see appendix E of the PDF Referencebackref.5 [1]
for details). MIME media types are specified in RFC 2046backref.6 [2]. An up-to-date list
can be found at http://www.iana.org/assignments/media-types/.

modified (from file) Modification date of the file (ModDate in embedded file parameter dictionary)a.

name filename (without
path)

The filename for the F & UF entries of the file specification dictionary, written
as PDF file specification string. Can be used to attach the file under a different
name. See table 3.40 in section 3.10.1 of the PDF Referencebackref.7 [1] for information
on how to write filenames of different operating systems.

opacity 1.0 The opacity of the annotation icon. Its value ranges from 0–1, where 0 means
transparent and 1 means opaque.

overprint false Only used with the option text: Overprints the annotation text, thus making the
annotation printable even if the “Print” flag is falsec. Does not work when option
rect ist used.

rect (rectangle at the
current point,
scaled to the
current font size)

Set of 4 numbers which act as coordinates of a rectangle defining the position
of the annotation icon/text. The first 2 numbers define the lower left, and the
second 2 numbers the upper right corner of the rectangle. The numbers are given
in default PDF coordinate space, where (0,0) is the lower left corner of the page
with increasing values to the right and to the top. The resolution is 72 dots per
inch.

resourcefork filename/..named

fork/rsrc

Only used with the package option Mac: Filename of a file which holds the data for
the resource fork of the embedded file stream (ResFork in Mac OS file information
dictionary; use resourcefork= to omit this entry)d.

size (from file) Size of the file, written as decimal number (Size in embedded file parameter
dictionary; use size= to omit this entry)

subject File attachment
“name”

Text for the subject field of the annotation (Subj in annotation dictionary).

text (undefined, i. e. use
icon/iconfilename)

Uses any LATEX text to define the clickable area of the annotation. Can be used
in conjunction with option rect to place the text anywhere on the page.

timezone (absent) The timezone offset which is appended to the LATEX time, written in the format
OHH’mm’a.

table.2.note: "a" a see remark Date format in this section for details on how to write PDF dates
table.2.note: "b" b bit position 1=LSB (least significant bit)
table.2.note: "c" c this is because Adobe Reader software seems to never print file attachment annotations, even if their “Print” flag is true
table.2.note: "d" d as I don’t own a Mac computer, I was unable to test whether the default value works to access the resource fork of the original file; this

probably also depends on the PDF creator program used, so feedback on that is welcome!

7

http://www.iana.org/assignments/media-types/

page.8

dateformat

Date format : PDF dates are written in the form D:YYYYMMDDHHmmSSOHH’mm’. YYYY is the year,
MM is the month, DD is the day, HH is the hour, mm is the minute, SS is the second and OHH’mm’

is the relationship of local time to Universal Time. O can be +, - or Z (= zero). The prefix D:

and the apostrophe ’ characters in OHH’mm’ are part of the syntax. See section 3.8.3 of the
PDF Reference

backref.8

[1] for more information on PDF date strings.

See section 8.4.5 of the PDF Reference
backref.9

[1] for further information on file attachment anno-
tations.

subsection.3.2

3.2 \bmstyle{level}{style}

Sets the appearance of a certain bookmark level. level can be a positive number or the char-
acter * (= bookmarks originating from starred sections). Valid style values are: italic, bold
and italic,bold. The styles are cumulative, i. e. if a certain bookmark level is defined as bold
and starred sections are defined as italic, then a starred section in this certain bookmark level
will be italic & bold. E. g. the commands used in this documentation are:

\bmstyle{1}{bold}

\bmstyle{*}{italic}

subsection.3.3

3.3 Color commands
colorcmd

There are two types of commands which change the color of links:

\backrefcolor{color} (Default: hyperref option citecolor)

\embeddedcolor{color} (Default: hyperref option runcolor)

\footnotecolor{color} (Default: hyperref option linkcolor)

\tablenotecolor{color} (Default: hyperref option linkcolor)

change the color of the link text and are only used with the hyperref option colorlinks=true.
The color must be known to the xcolor package, see section 2.5.2 of the xcolor package doc-
umentation

backref.10

[3] for an explanation of how to define colors.

The other ones

\backrefbordercolor{R G B} (Default: hyperref option citebordercolor)

\embeddedbordercolor{R G B} (Default: hyperref option runbordercolor)

\footnotebordercolor{R G B} (Default: hyperref option linkbordercolor)

\tablenotebordercolor{R G B} (Default: hyperref option linkbordercolor)

set the color of the link border according to the RGB color model. Values for R, G & B range
from 0–1 and are separated by spaces.

subsection.3.4

3.4 \embedfile[options]{filename}
embedfilecmd

Attachs the file referenced by the path filename as embedded file. Table 3 shows all possible
options. E. g. this is the command which embeds the bibliography of this documentation:

\embedfile[description={Bibliography file for {\ttfamily hypdvips.tex}},
mimetype=text/plain]{bibdat.bib}

8

page.9

table.3

Table 3 | Options for the \embedfile command

Option Default Description

checksum (from file) MD5-checksum of the file, written in hexadecimal format (CheckSum in embedded
file parameter dictionary; use checksum= to omit this entry). The MD5 algorithm
is described in RFC 1321backref.11 [4].

created (from file) Creation date of the file (CreationDate in embedded file parameter dictionary)a.

creator (absent) Only used with the package option Mac: The 4-character Mac OS file creator sig-
nature (Creator in Mac OS file information dictionary). E. g. ogle for QuickTime
PictureViewer.

description (absent) Descriptive text associated with the file (Desc in embedded file specification dic-
tionary).

filetype (absent) Only used with the package option Mac: The 4-character Mac OS file type (Sub-
type in Mac OS file information dictionary). E. g. GIFf for a Graphics Interchange
Format (.GIF-)file.

mimetype (absent) The MIME-type of the file (Subtype in embedded file stream dictionary; it can also
be specified by a PDF first-class name, see appendix E of the PDF Referencebackref.12 [1]
for details). MIME media types are specified in RFC 2046backref.13 [2]. An up-to-date list
can be found at http://www.iana.org/assignments/media-types/.

modified (from file) Modification date of the file (ModDate in embedded file parameter dictionary)a.

name filename (without
path)

The filename for the F & UF entries of the file specification dictionary, written
as PDF file specification string. Can be used to embed the file under a different
name. See table 3.40 in section 3.10.1 of the PDF Referencebackref.14 [1] for information
on how to write filenames of different operating systems.

resourcefork filename/..named

fork/rsrc

Only used with the package option Mac: Filename of a file which holds the data for
the resource fork of the embedded file stream (ResFork in Mac OS file information
dictionary; use resourcefork= to omit this entry)b.

size (from file) Size of the file, written as decimal number (Size in embedded file parameter
dictionary; use size= to omit this entry)

table.3.note: "a" a see remark Date format in section 3.1 for details on how to write PDF dates
table.3.note: "b" b as I don’t own a Mac computer, I was unable to test whether the default value works to access the resource fork of the original file; this

probably also depends on the PDF creator program used, so feedback on that is welcome!

subsection.3.5

3.5 \evenboxesstring{text}
ebs

Only used with the option evenboxes: Sets the height of links to the height of any text .
E. g. after the command

\evenboxesstring{X}

all links are as high as the character X. This command can be used in conjunction with the
hyperref option pdfborderstyle={/W 1 /S /U} to produce underlined links, where the line
is always at the same height.

The default value is a string containing all alphanumeric characters plus some parentheses and
a superscript, to be sure to not produce links which are too small in height (or depth).

subsection.3.6

3.6 \file{filename}{description}
filecmd

This is basically a shortcut of the \attachfile command. It attachs the file referenced by
the path filename using the given description, overprint=true with low opacity and default
options apart from that. E. g. the command

\file{c:/latex/documents/hypdvips.tex}{Source code of this documentation}

has the following result: hypdvips.tex
attachment.5

The annotation text color can be defined with the command \embeddedcolor.

9

http://www.iana.org/assignments/media-types/

%%
%% This is file `hypdvips.tex',
%% Copyright 2008-2009 Raimund Niedrist
%%
%% This work may be distributed and/or modified under the conditions
%% of the LaTeX Project Public License, either version 1.3 of this
%% license or (at your option) any later version.
%% The latest version of this license is in
%%
%% http://www.latex-project.org/lppl.txt
%%
%% and version 1.3 or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This work has the LPPL maintenance status `author-maintained'
%% and consists of all files listed in manifest.txt.
%% --
%%
\documentclass[english,twoside,paper=a4,abstract=true,fontsize=11pt,DIV18,BCOR20.00mm,pagesize=dvips,version=last]{scrartcl}

%\usepackage[draft]{graphicx}

\usepackage[ansinew]{inputenc}
\usepackage{babel, booktabs, graphicx, threeparttable}
\usepackage[sf,SF,bf,BF,scriptsize]{subfigure}
\usepackage[backref=section,unicode=true]{hyperref}
\usepackage{cleveref}
\usepackage[autotitle,evenboxes,fullbookmarks]{hypdvips}

\embedfile[modified=,created=D:199204,description={The MD5 Message-Digest Algorithm},mimetype=text/plain]{c:/documents/rfc/rfc1321.txt}
\embedfile[modified=,created=D:199611,description={Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types},mimetype=text/plain]{c:/documents/rfc/rfc2046.txt}

\newcommand{\blt}[1]{\renewcommand{\labelitemi}{$#1$}}
\newcommand{\typewriter}[1]{{\ttfamily#1}}
\newcommand{\ie}{i.\@\,e.\@~}
\newcommand{\egr}{e.\@\,g.\@~}
\newcommand{\Egr}{E.\@\,g.\@~}
\newcommand{\email}[1]{\href{mailto:#1}{\typewriter{\small#1}}}
\newcommand{\command}[1]{{\ttfamily\textbackslash#1}}
\newcommand{\optioncommand}[2]{\ttfamily\textbackslash#1[{\normalfont\textit{#2}}]}
\newcommand{\argument}[1]{\{{\ttfamily#1}\}}
\newcommand{\ph}[1]{{\normalfont\textit{#1}}}
\newcommand{\titlecommand}[1]{\bf{\textbackslash}\sffamily\bfseries#1}
\newcommand{\titleoptioncommand}[2]{\bf{\textbackslash}\sffamily\bfseries#1[{\normalfont\bfseries\textit{#2}}]}
\newcommand{\titleargument}[1]{\sffamily\bfseries\bf{\{{\normalfont\bfseries\textit{#1}}\}}}
\newcommand{\option}[1]{\typewriter{#1}}
\newcommand{\pkg}[1]{\typewriter{#1}}
\newcommand{\entry}[1]{{\sffamily\bfseries#1}}
\newcommand{\flag}[2]{{#1\,=\,#2}}
\newcommand{\icon}[1]{\raisebox{-2.5pt}{\hbox{\includegraphics[height=9pt]{images/#1}}}\,\typewriter{#1}}
\makeatletter
\newcommand{\ifelseshowdests}[2]{\ifpp@showdests#1\else#2\fi}
\newcommand{\link}[1]{%
 \let\oldborderstyle\@pdfborderstyle%
 \def\@pdfborderstyle{/W 1 /S /U}%
 \href{#1}{\ttfamily\textcolor{\@urlcolor}{#1}}%
 \let\@pdfborderstyle\oldborderstyle%
}
\newcommand{\spaceaftercommand}{\@ifnextchar.{}{\@ifnextchar,{}{\@ifnextchar:{}{\@ifnextchar;{}{\@ifnextchar){}{\space}}}}}}
\newlength{\symbol@offset}
\newcommand{\rsign}{%
 \setlength{\symbol@offset}{\f@size pt}%
 \setlength{\symbol@offset}{0.45\symbol@offset}%
 \raisebox{\symbol@offset}{\scalebox{0.4}{\textcircled{\scalebox{0.65}{R}}}}%
 \spaceaftercommand%
 }
\newcommand{\tmsign}{%
 \setlength{\symbol@offset}{\f@size pt}%
 \setlength{\symbol@offset}{0.45\symbol@offset}%
 \raisebox{\symbol@offset}{\scalebox{0.4}{TM}}%
 \spaceaftercommand%
}
\newenvironment{legal}
 {% before
 \section*{Trademark Information}%
 }
 {% after
 \endlist%
 }
\newcommand{\fig}[3]{% arguments: {filename}{width}{caption}
 \begin{figure}[htbp]%
 \capstart%
 \centering%
 \includegraphics[width=#2]{#1.eps}%
 \caption{#3}%
 \pp@strippathdef\labelname{#1}%
 \label{\labelname}%
 \end{figure}%
}
\makeatother
\newcommand{\disabletrademarksigns}{%
 \DeclareRobustCommand{\registered}{\spaceaftercommand}%
 \DeclareRobustCommand{\trademark}{\spaceaftercommand}%
}
\newcommand{\enabletrademarksigns}{%
 \DeclareRobustCommand{\registered}{\rsign}%
 \DeclareRobustCommand{\trademark}{\tmsign}%
}

\setkomafont{captionlabel}{\sffamily\bfseries\footnotesize}
\setkomafont{caption}{\sffamily\bfseries\footnotesize}
\renewcommand{\captionformat}{ $|$ }

\renewcommand{\floatpagefraction}{.8}
\renewcommand{\topfraction}{.85}
\renewcommand{\bottomfraction}{.2}
\setcounter{totalnumber}{10}

\hypersetup{
 pdfauthor={Niedrist, R.},
 pdfsubject={Hyperref extensions for use with dvips},
 pdfkeywords={LaTeX, hyperref, dvips},
 pdfdisplaydoctitle=true,
 pdfpagemode=UseOutlines,
 pdfduplex=DuplexFlipLongEdge,
 bookmarksnumbered=true,
 bookmarksopen=true,
 bookmarksopenlevel=2,
 pdfborderstyle={/W 1 /S /D /D [1 1]},
 citecolor=red,
 citebordercolor={1 0 0},
 filecolor=olive,
 filebordercolor={0 0.5 0.5},
 linkcolor=blue,
 linkbordercolor={0 0 1},
 menucolor=black,
 menubordercolor={1 0 0},
 urlcolor=blue,
 urlbordercolor={0 0 1},
 linktoc=page,
 colorlinks=true
 }
\ifelseshowdests{}{\hypersetup{pdfpagelayout=TwoPageRight}}
\definecolor{olive}{rgb}{0,.5,.5}
\backrefcolor{black}
\backrefbordercolor{1 0.4 0}
\embeddedcolor{magenta}
\embeddedbordercolor{1 0 1}
\footnotecolor{blue}
\footnotebordercolor{0 0 1}
\tablenotecolor{blue}
\tablenotebordercolor{0 0 1}
\openaction{/N/ShowHideFileAttachment/S/Named}
\bmstyle{1}{bold}
\bmstyle{*}{italic}
\creflabelformat{enumi}{#2#1.\@#3}

\author{Raimund Niedrist\\\email{raimund.niedrist@student.uibk.ac.at}}

\title{The \pkg{hypdvips} package}
\ifelseshowdests{\hypersetup{pdftitle={The hypdvips package (draft)}}}{}

\subtitle{Hyperref extensions for use with dvips}

\date{2009/03/25 v1.06}

\begin{document}
\let\TPTtagStyle\textit
\setlength{\heavyrulewidth}{1pt}
\setlength{\parindent}{0cm}
\hypersetup{pdfborderstyle={/W 1 /S /U}}
\maketitle
\hypersetup{pdfborderstyle={/W 1 /S /D /D [1 1]}}
\thispagestyle{empty}

\begin{abstract}
The \pkg{hypdvips} package fixes some problems when using \pkg{hyperref} with dvips. It also adds support for breaking links, hyperlinked tablenotes, file attachments, embedded documents and different types of GoTo-links. The cooperation of \pkg{hyperref} with \pkg{cleveref} is improved, which in addition allows an enhanced back-referencing system.
\end{abstract}

%Contents
\let\oldcontentsline\contentsline
\renewcommand{\contentsline}[4]{\oldcontentsline{#1}{#2}{#3}{#4}\vskip5pt}
\tableofcontents
\let\contentsline\oldcontentsline

\newpage

%Legal notes
\section*{Trademark Information}
\enabletrademarksigns
Adobe\registered, Distiller\registered, PostScript\registered and Reader\registered are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.
\\\\
Mac, Mac~OS and QuickTime are trademarks of Apple Inc.\@, registered in the U.\@\,S.\@ and other countries. The \typewriter{hypdvips} package documentation is an independent publication and has not been authorized, sponsored, or otherwise approved by Apple Inc.
\\\\
Ghostscript\registered is a registered trademark of Artifex Software, Inc.
\\\\
JavaScript\trademark is a trademark of Sun Microsystems, Inc.\@ in the United States and other countries.
\disabletrademarksigns

\newpage

%List of Figures
\setcounter{lofdepth}{2}
\makeatletter
\let\oldautodot\autodot
\def\autodot{}
\let\olddottedtocline\@dottedtocline
\renewcommand{\@dottedtocline}[5]{\olddottedtocline{#1}{#2}{#3}{#4}{#5}\vskip5pt}
\listoffigures
\let\@dottedtocline\olddottedtocline
\let\autodot\oldautodot
\makeatother

%List of Tables
\makeatletter
\let\oldautodot\autodot
\def\autodot{}
\let\olddottedtocline\@dottedtocline
\renewcommand{\@dottedtocline}[5]{\olddottedtocline{#1}{#2}{#3}{#4}{#5}\vskip5pt}
\listoftables
\let\@dottedtocline\olddottedtocline
\let\autodot\oldautodot
\makeatother

%List of File Attachments
\let\oldautodot\autodot
\def\autodot{}
\let\oldcontentsline\contentsline
\renewcommand{\contentsline}[4]{\oldcontentsline{#1}{#2}{#3}{#4}\vskip10pt}
\listofattachments
\let\contentsline\oldcontentsline
\let\autodot\oldautodot

\newpage

\section{Introduction}
The \pkg{hypdvips} package is a collection of fixes for problems when using \pkg{hyperref} with dvips as backend driver.
As you may have noticed, the converted PostScript\registered files created by the standalone \pkg{hyperref} package have some features missing compared to the direct PDF output of the pdflatex driver. The most severe deficit is probably the inability to break links. Another problem is, for example, that footnote links point to the baseline of the note, thus placing the footnote text itself outside of the reader window\footnote{ at least Adobe\registered Reader\registered software does so, but there may be other programs which put the link destination in the center of the window --- in this case it wouldn't matter}. Another issue is the linking to floats (\egr a figure), where the link points to the baseline of the caption text, again leaving the figure outside of the window. There is a package that particularly addresses this issue (\pkg{hypcap}), but the original version doesn't work with breaking links.
\\\\
In fact, every time I encountered a problem when using the \pkg{hyperref}/dvips bundle, I tried to fix it and put it into a collection. So, \pkg{hypdvips} has no specific purpose, I just thought it could be useful to share.
\\\\
To make it short, the main features of \pkg{hypdvips} are:

\begin{itemize}
\blt{\triangleright}
\item breaking links
\item support for \pkg{backref}, \pkg{cleveref} \& \pkg{threeparttable}
\item file attachments
\item embedded documents
\item GoTo-, GoToR- \& GoToE-links
\item custom pagelabels
\item document open-actions
\end{itemize}

\section{Usage}
The \pkg{hypdvips} package can be loaded using the following command:

\begin{quote}
\footnotesize
\optioncommand{usepackage}{options}\argument{hypdvips}
\end{quote}

\Autoref{packageoptions} shows all possible package \ph{options}. They can be specified using key/value pairs, \egr

\begin{quote}
\footnotesize
\command{usepackage}\typewriter{[autotitle=true,JavaScript=false,Mac=true,showdests]}\argument{hypdvips}
\end{quote}

If a boolean (true/false) option key is used without a specific value, it is assumed to be ``true'' (like \option{showdests} in the example above).
\\\\
There are some rules in which order packages should be loadad when using \pkg{hypdvips}: if used, \pkg{cleveref} and \pkg{threeparttable} must be loaded \textbf{before} \pkg{hypdvips}. The \pkg{hyperref} package itself is loaded implicitly by \pkg{hypdvips}, so there is no need to load it separately\footnote{ under certain circumstances \pkg{hyperref} must be loaded \textbf{before} \pkg{hypdvips}, especially if a \pkg{hyperref} option is used which can't be changed later using \command{hypersetup}}.
\\\\
\emph{PDF Reference links}: This documentation often refers to the PDF Reference \cite{pdfref}. As the electronic form of the PDF Reference is a rather huge file (approx. 31\,MB), it is not included in this documentation --- but it is linked. To get these links to work, download the file \link{http://www.adobe.com/devnet/acrobat/pdfs/pdf\string_reference\string_1-7.pdf} and put it into the same folder as this documentation.

\bookmark[bold=false,italic=false,rellevel=1,dest=table.1]{Package options}
\begin{table}[htbp]
\renewcommand{\arraystretch}{1.3}
\scriptsize
\capstart
\begin{center}
\begin{threeparttable}
\caption{Package options for \pkg{hypdvips}}
\label{packageoptions}
\begin{tabular}{r p{1cm} p{11cm}}
\toprule
\textbf{Option} & \textbf{Default} & \textbf{Description}\\
\midrule
\option{autoauthor} & \typewriter{false} & Automatically sets the \pkg{hyperref} option \option{pdfauthor} to the name given by the \command{author} command.\\
\option{autotitle} & \typewriter{false} & Automatically sets the \pkg{hyperref} option \option{pdftitle} to the title given by the \command{title} command.\\
\option{detailedpagebr} & \typewriter{true} & Only used in back-referencing: back-references that originally just point to the page top are expanded to point to the real occurrence of the citation on the page.\\
\option{evenboxes} & \typewriter{false} & Sets the height of links to a fixed value. See the description of the \goto[dest=ebs]{\command{evenboxesstring}} command for further details.\\
\option{fish} & \typewriter{true} & Only used when attaching files: Shows an animation on the console during calculation of MD5-checksums.\\
\option{flip} & \typewriter{false} & Flips all pages of the document.\\
\option{fullbookmarks} & \typewriter{false} & Creates bookmark entries for starred sections (\egr the ``Contents'' or ``References'' sections).\\
\option{german} & \typewriter{false} & Configures \pkg{hypdvips} to be used in german documents. This includes \pkg{cleveref} definitions and affects the List of File Attachments, the open-message and the back-referencing system\tnote{a}.\\
\option{hypertnotes} & \typewriter{true} & Only used with package \pkg{threeparttable}: Changes the \command{tnote} command to create hyperlinks to the corresponding tablenote text. The \command{item} command in the \typewriter{tablenotes} environment must use literally the same mark as the linking \command{tnote} commands.\\
\option{JavaScript} & \typewriter{true} & Only used when attaching files: Allows or denies the document to contain JavaScript\trademark code. Most of the option buttons in the List of File Attachments won't work anymore when \typewriter{JavaScript=false}.\\
\option{loabr} & \typewriter{false} & Only used in back-referencing: Allows back-references to citations occurring in the List of File Attachments (\egr if a file attachment description contains a citation).\\
\option{lofbr} & \typewriter{false} & Only used in back-referencing: Allows back-references to citations occurring in the List of Figures (\egr if a figure caption contains a citation).\\
\option{lotbr} & \typewriter{false} & Only used in back-referencing: Allows back-references to citations occurring in the List of Tables (\egr if a table caption contains a citation).\\
\option{Mac} & \typewriter{false} & Only used when attaching files: Includes the resource fork of Mac\registered files.\\
\option{mirror} & \typewriter{false} & Mirrors all pages of the document.\\
\option{nlwarning} & \typewriter{true} & Creates warning messages for links which are discarded due to link nesting.\\
\option{openmessage} & \typewriter{true} & Only used when attaching files: Shows a message concerning file attachments when opening the PDF document with some older Adobe\registered Reader\registered software versions. It instructs the user how to open the attached files (see \autoref{openmsg}). The open-message is implemented with JavaScript\trademark code, so it won't work with \typewriter{JavaScript=false}.\\
\option{quadpoints} & \typewriter{true} & Only used for broken links: Uses a \entry{QuadPoints} array to define the active link area. With \typewriter{quadpoints=false}, independent links are created on each line. See table \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.24509.Table.caption.wide.Table721.Additional.entries.specific.to.a.link.annotation)]{8.\@24} and figure \goto[newwindow,filename=pdf_reference_1-7.pdf,dest={[633 /FitH 350]}]{8.\@9} of the PDF Reference~\cite{pdfref} for further details.\\
\option{showdests} & \typewriter{false} & Indicates horizontal link destinations by red lines --- useful for hyperlink checking.
\ifelseshowdests{}{\goto[newwindow,id=4]{Here} you can see an embedded copy of this documentation compiled with \typewriter{showdests=true}.}\\
\option{smallfootnotes} & \typewriter{true} & Changes the size of frames around footnote marks: The default uses \command{@thefnmark} as boundary, whereas \typewriter{smallfootnotes=false} uses the \command{@makefnmark} command (like \pkg{hyperref} does). If you experience problems with footnote links, use \typewriter{smallfootnotes=false}.\\
\option{tocbr} & \typewriter{false} & Only used in back-referencing: Allows back-references to citations occurring in the Table of Contents (\egr if a section heading contains a citation).\\
\bottomrule
\end{tabular}
\begin{tablenotes}
\tiny
\item [a] please \href{mailto:raimund.niedrist@student.uibk.ac.at}{contact me} if you want to provide a translation into another language
\end{tablenotes}
\end{threeparttable}
\end{center}
\end{table}

\begin{figure}[htbp]
\capstart
\centering
\subfigure[standalone]{\includegraphics[scale=0.42]{images/openmsg_six.eps}}
\hskip1cm
\subfigure[in browser window]{\includegraphics[scale=0.42]{images/openmsg_sixinbrowser.eps}}
\caption{Open-message shown with the Adobe\registered Reader\registered 6 software}
\label{openmsg}
\end{figure}

\section{Command list}

\subsection[\command{attachfile}]{\titleoptioncommand{attachfile}{options}\titleargument{filename}}\odest{attachfilecmd}{30pt}\label{afcommand}

\begin{table}[htbp]
\renewcommand{\arraystretch}{1.3}
\scriptsize
\capstart
\begin{center}
\begin{threeparttable}
\caption{Options for the \goto[dest=attachfilecmd]{\command{attachfile}} command}
\label{attachfileoptions}
\begin{tabular}{r p{2.5cm} p{10.5cm}}
\toprule
\textbf{Option} & \textbf{Default} & \textbf{Description}\\
\midrule
\option{anncreated} & (\LaTeX~time) & Creation date of the annotation (\entry{CreationDate} in annotation dictionary)\tnote{a}.\\
\option{annmodified} & (\LaTeX~time) & Modification date of the annotation (\entry{M} in annotation dictionary)\tnote{a}.\\
\option{author} & (value of~\pkg{hyperref} option \option{pdfauthor}) & Name for the author field of the annotation (\entry{T} in annotation dictionary).\\
\option{checksum} & (from file) & MD5-checksum of the file, written in hexadecimal format (\entry{CheckSum} in embedded file parameter dictionary; use \typewriter{checksum=} to omit this entry). The MD5 algorithm is described in \runattachment{1}{RFC 1321} \cite{rfc1321}.\\
\option{color} & (color of \goto[dest=colorcmd]{\command{embedded} \typewriter{bordercolor}}) & Color of the annotation icon, specified by three numbers between 0 and 1 according to the RGB color model (\entry{C} in annotation dictionary).\\
\option{created} & (from file) & Creation date of the file (\entry{CreationDate} in embedded file parameter dictionary)\tnote{a}.\\
\option{creator} & (absent) & Only used with the package option \option{Mac}: The 4-character Mac~OS\registered file creator signature (\entry{Creator} in Mac~OS\registered file information dictionary). \Egr \typewriter{ogle} for QuickTime\registered PictureViewer.\\
\option{description} & (absent) & Text for the description field of the annotation (\entry{Contents} in annotation dictionary and \entry{Desc} in embedded file specification dictionary).\\
\option{filetype} & (absent) & Only used with the package option \option{Mac}: The 4-character Mac~OS\registered file type (\entry{Subtype} in Mac~OS\registered file information dictionary). \Egr \typewriter{GIFf} for a Graphics Interchange Format (.GIF-)file.\\
\option{flags} & \typewriter{2\#0000000100} (\flag{Print}{true}, all~others~false)& Flags for the annotation, written as PostScript\registered integer (\entry{F} in annotation dictionary). The default value \egr can also be written decimal as~\typewriter{4} or hexadecimal as \typewriter{16\#4}. Bit positions are:\tnote{b} \flag{1}{Invisible}, \flag{2}{Hidden}, \flag{3}{Print}, \flag{4}{NoZoom}, \flag{5}{NoRotate}, \flag{6}{NoView}, \flag{7}{ReadOnly}, \flag{8}{Locked}, \flag{9}{ToggleNoView}, \flag{10}{LockedContents}. See section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.19657.2Heading.742.Annotation.Flags)]{8.\@4.\@2} of the PDF~Reference~\cite{pdfref} for detailed meanings of these flags.\\
\option{icon} & \typewriter{paperclip} & Name of the annotation icon (\entry{Name} in annotation dictionary). Allowed names are: \icon{graph}, \icon{pushpin}, \icon{paperclip} and \icon{tag}. The actual appearance may vary depending on the viewer application used to read the PDF document.\\
\option{iconfilename} & (undefined, \ie use~\option{icon}/\option{text}) & Filename of an Encapsulated PostScript\registered (.EPS-)file which acts as the annotation icon. This option must be paired with the \option{rect} option.\\
\option{mimetype} & (absent) & The MIME-type of the file (\entry{Subtype} in embedded file stream dictionary; it can also be specified by a PDF first-class name, see appendix \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M20.9.30647.Appendix.title.F.Registration.Information)]{E} of the PDF~Reference~\cite{pdfref} for details). MIME media types are specified in \runattachment{2}{RFC 2046} \cite{rfc2046}. An up-to-date list can be found at \link{http://www.iana.org/assignments/media-types/}.\\
\option{modified} & (from file) & Modification date of the file (\entry{ModDate} in embedded file parameter dictionary)\tnote{a}.\\
\option{name} & \ph{filename} (without path) & The filename for the \entry{F} \& \entry{UF} entries of the file specification dictionary, written as PDF file specification string. Can be used to attach the file under a different name. See table \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.30439.Table.caption.narrow.Table317.Examples.of.file.specifications)]{3.\@40} in section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.35094.2Heading.361.File.Specification.Strings)]{3.\@10.\@1} of the PDF Reference \cite{pdfref} for information on how to write filenames of different operating systems.\\
\option{opacity} & \typewriter{1.0} & The opacity of the annotation icon. Its value ranges from 0--1, where 0 means transparent and 1 means opaque.\\
\option{overprint} & \typewriter{false} & Only used with the option \option{text}: Overprints the annotation text, thus making the annotation printable even if the ``Print'' flag is false\tnote{c}. Does not work when option \option{rect} ist used.\\
\option{rect} & (rectangle at the current point, scaled to the current font size) & Set of 4 numbers which act as coordinates of a rectangle defining the position of the annotation icon/text. The first 2 numbers define the lower left, and the second 2 numbers the upper right corner of the rectangle. The numbers are given in default PDF coordinate space, where (0,0) is the lower left corner of the page with increasing values to the right and to the top. The resolution is 72 dots per inch.\\
\option{resourcefork} & \ph{filename}\typewriter{/..named} \typewriter{fork/rsrc} & Only used with the package option \option{Mac}: Filename of a file which holds the data for the resource fork of the embedded file stream (\entry{ResFork} in Mac~OS\registered file information dictionary; use \typewriter{resourcefork=} to omit this entry)\tnote{d}.\\
\option{size} & (from file) & Size of the file, written as decimal number (\entry{Size} in embedded file parameter dictionary; use \typewriter{size=} to omit this entry)\\
\option{subject} & File attachment ``\option{name}'' & Text for the subject field of the annotation (\entry{Subj} in annotation dictionary).\\
\option{text} & (undefined, \ie use \option{icon}/\option{iconfilename}) & Uses any \LaTeX~text to define the clickable area of the annotation. Can be used in conjunction with option \option{rect} to place the text anywhere on the page.\\
\option{timezone} & (absent) & The timezone offset which is appended to the \LaTeX~time, written in the format \typewriter{OHH'mm'}\tnote{a}.\\
\bottomrule
\end{tabular}
\begin{tablenotes}
\tiny
\item [a] see remark \goto[dest=dateformat]{\emph{Date format}} in this section for details on how to write PDF dates
\item [b] bit position \flag{1}{LSB} (least significant bit)
\item [c] this is because Adobe\registered Reader\registered software seems to never print file attachment annotations, even if their ``Print'' flag is true
\item [d] as I don't own a Mac\registered computer, I was unable to test whether the default value works to access the resource fork of the original file; this probably also depends on the PDF creator program used, so feedback on that is welcome!
\end{tablenotes}
\end{threeparttable}
\end{center}
\end{table}

Creates a PDF file attachment annotation, using data of the file referenced by \ph{filename}. \Autoref{attachfileoptions} shows all possible options. They are mostly similar to those of the \command{attachfile} command of the \pkg{attachfile}/\pkg{attachfile2} packages.\\
By default, the embedded file specification includes the size, MD5-checksum and creation/modi-fication dates\footnote{ if possible (depending on the PDF creator application and operating system used)} of the attached file. Author and subject fields of the annotation are also automatically filled in, if not otherwise specified by an option. For example, the command

\begin{quote}
\footnotesize
\command{attachfile}{\ttfamily\string[author=\{Jem Berkes, SysDesign\}, subject=\{MD5sums 1.2\}, description=\{Generate MD5 hashes of files (with progress indicator)\}, mimetype=application/zip, modified=, created=, color=\{0.2 0.65 1\}, icon=tag\string]}\argument{c:/utils/md5sums-1.2.zip}
\end{quote}

yields the following result\footnote{ appearance may vary depending on the viewer application used}:
\attachfile[author={Jem Berkes, SysDesign},subject={MD5sums 1.2},description={Generate MD5 hashes of files (with progress indicator)},mimetype=application/zip,modified=,created=,color={0.2 0.65 1},icon=tag]{c:/utils/md5sums-1.2.zip}
\\\\
Another example\ifelseshowdests{}{ (that creates the icon to the left)}:
\ifelseshowdests{}{\attachfile[description={Draft copy of this documentation with enabled {\ttfamily showdests} option},name=hypdvips\string_showdests.pdf,mimetype=application/pdf,iconfilename={images/icon\string_draft.eps},rect={25 520 45 545}]{draft.pdf}}

\begin{quote}
\footnotesize
\command{attachfile}{\ttfamily\string[description=\{Draft copy of this documentation with enabled \{\command{ttfamily}\\
showdests\} option\}, name=hypdvips\command{string}\string_showdests.pdf, mimetype=application/pdf,\\
iconfilename=images/icon\command{string}\string_draft.eps, rect=\{25 520 45 545\}\string]}\argument{draft.pdf}
\end{quote}

\emph{Filenames}: Depending on the program used to convert the PostScript\registered file to PDF, you have to specify the full path to the file or not. Ghostscript\registered \egr allows relative paths, but needs to be run with the \typewriter{-dNOSAFER} command line argument if the attached file doesn't reside in the same directory as the PostScript\registered file. The Adobe\registered Distiller\registered software always needs the full path, and besides from that, it has to be run without the \typewriter{-F} command line argument for versions below 8.\@1, but \textbf{with} the \typewriter{-F} command line argument for newer versions\footnote{ \link{http://www.adobe.com/devnet/acrobat/downloads/Acrobat\string_SDK\string_readme.html\#Known\string_Issues}}.
\\\\
\emph{File sizes}: The \entry{Size} entry in the embedded file parameter dictionary is limited to the highest supported integer number of the PDF creator program's PostScript\registered interpreter. The usual limit of 32\,bit-wide integers leads to a maximum size of 2,147,483,647 bytes (2\,GB). At the beginning of processing, \pkg{hypdvips} logs information about the PostScript\registered interpreter to the standard output file. There you can find whether 64\,bit-wide integers are supported (see \autoref{logfile}).
\fig{images/logfile}{14cm}{Sample \pkg{hypdvips} log file output}

\odest{dateformat}{10pt}
\emph{Date format}: PDF dates are written in the form \typewriter{D:YYYYMMDDHHmmSSOHH'mm'}. \typewriter{YYYY} is the year, \typewriter{MM} is the month, \typewriter{DD} is the day, \typewriter{HH} is the hour, \typewriter{mm} is the minute, \typewriter{SS} is the second and \typewriter{OHH'mm'} is the relationship of local time to Universal Time. \typewriter{O}~can be \typewriter{+}, \typewriter{-} or \typewriter{Z} (=\,zero). The prefix \typewriter{D:} and the apostrophe \typewriter{'} characters in \typewriter{OHH'mm'} are part of the syntax. See section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.28430.2Heading.332.Dates.PDF.72)]{3.\@8.\@3} of the PDF Reference \cite{pdfref} for more information on PDF date strings.
\\\\
See section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.14731.3Heading.File.Attachment.Annotations)]{8.\@4.\@5} of the PDF Reference \cite{pdfref} for further information on file attachment annotations.

\subsection[\command{bmstyle}]{\titlecommand{bmstyle}\titleargument{level}\titleargument{style}}

Sets the appearance of a certain bookmark level. \ph{level} can be a positive number or the character~\typewriter{*} (=\,bookmarks originating from starred sections). Valid \ph{style} values are: \typewriter{italic}, \typewriter{bold} and \typewriter{italic,bold}. The styles are cumulative, \ie if a certain bookmark level is defined as bold and starred sections are defined as italic, then a starred section in this certain bookmark level will be italic \& bold. \Egr the commands used in this documentation are:

\begin{quote}
\footnotesize
\command{bmstyle}\argument{1}\argument{bold}
\\\\
\command{bmstyle}\argument{*}\argument{italic}
\end{quote}

\subsection{Color commands}\odest{colorcmd}{30pt}

There are two types of commands which change the color of links:

\begin{itemize}
\blt{}
\footnotesize
\item \command{backrefcolor}\argument{\ph{color}} \quad (Default: \pkg{hyperref} option \option{citecolor})
\item \command{embeddedcolor}\argument{\ph{color}} \quad (Default: \pkg{hyperref} option \option{runcolor})
\item \command{footnotecolor}\argument{\ph{color}} \quad (Default: \pkg{hyperref} option \option{linkcolor})
\item \command{tablenotecolor}\argument{\ph{color}} \quad (Default: \pkg{hyperref} option \option{linkcolor})
\end{itemize}

change the color of the link \textbf{text} and are only used with the \pkg{hyperref} option \typewriter{colorlinks=true}. The \ph{color} must be known to the \pkg{xcolor} package, see section 2.\@5.\@2 of the \pkg{xcolor} package documentation \cite{xcolor} for an explanation of how to define colors.
\\\\
The other ones

\begin{itemize}
\blt{}
\footnotesize
\item \command{backrefbordercolor}\argument{\ph{R}~\ph{G}~\ph{B}} \quad (Default: \pkg{hyperref} option \option{citebordercolor})
\item \command{embeddedbordercolor}\argument{\ph{R}~\ph{G}~\ph{B}} \quad (Default: \pkg{hyperref} option \option{runbordercolor})
\item \command{footnotebordercolor}\argument{\ph{R}~\ph{G}~\ph{B}} \quad (Default: \pkg{hyperref} option \option{linkbordercolor})
\item \command{tablenotebordercolor}\argument{\ph{R}~\ph{G}~\ph{B}} \quad (Default: \pkg{hyperref} option \option{linkbordercolor})
\end{itemize}

set the color of the link \textbf{border} according to the RGB color model. Values for \ph{R}, \ph{G}~\&~\ph{B} range from 0--1 and are separated by spaces.

\subsection[\command{embedfile}]{\titleoptioncommand{embedfile}{options}\titleargument{filename}}\odest{embedfilecmd}{30pt}

\begin{table}[htbp]
\renewcommand{\arraystretch}{1.3}
\scriptsize
\capstart
\begin{center}
\caption{Options for the \goto[dest=embedfilecmd]{\command{embedfile}} command}
\label{embedfileoptions}
\begin{threeparttable}
\begin{tabular}{r p{2.5cm} p{10.5cm}}
\toprule
\textbf{Option} & \textbf{Default} & \textbf{Description}\\
\midrule
\option{checksum} & (from file) & MD5-checksum of the file, written in hexadecimal format (\entry{CheckSum} in embedded file parameter dictionary; use \typewriter{checksum=} to omit this entry). The MD5 algorithm is described in \runattachment{1}{RFC 1321} \cite{rfc1321}.\\
\option{created} & (from file) & Creation date of the file (\entry{CreationDate} in embedded file parameter dictionary)\tnote{a}.\\
\option{creator} & (absent) & Only used with the package option \option{Mac}: The 4-character Mac~OS\registered file creator signature (\entry{Creator} in Mac~OS\registered file information dictionary). \Egr \typewriter{ogle} for QuickTime\registered PictureViewer.\\
\option{description} & (absent) & Descriptive text associated with the file (\entry{Desc} in embedded file specification dictionary).\\
\option{filetype} & (absent) & Only used with the package option \option{Mac}: The 4-character Mac~OS\registered file type (\entry{Subtype} in Mac~OS\registered file information dictionary). \Egr \typewriter{GIFf} for a Graphics Interchange Format (.GIF-)file.\\
\option{mimetype} & (absent) & The MIME-type of the file (\entry{Subtype} in embedded file stream dictionary; it can also be specified by a PDF first-class name, see appendix \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M20.9.30647.Appendix.title.F.Registration.Information)]{E} of the PDF~Reference~\cite{pdfref} for details). MIME media types are specified in \runattachment{2}{RFC 2046} \cite{rfc2046}. An up-to-date list can be found at \link{http://www.iana.org/assignments/media-types/}.\\
\option{modified} & (from file) & Modification date of the file (\entry{ModDate} in embedded file parameter dictionary)\tnote{a}.\\
\option{name} & \ph{filename} (without path) & The filename for the \entry{F} \& \entry{UF} entries of the file specification dictionary, written as PDF file specification string. Can be used to embed the file under a different name. See table \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.30439.Table.caption.narrow.Table317.Examples.of.file.specifications)]{3.\@40} in section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.35094.2Heading.361.File.Specification.Strings)]{3.\@10.\@1} of the PDF Reference \cite{pdfref} for information on how to write filenames of different operating systems.\\
\option{resourcefork} & \ph{filename}\typewriter{/..named} \typewriter{fork/rsrc} & Only used with the package option \option{Mac}: Filename of a file which holds the data for the resource fork of the embedded file stream (\entry{ResFork} in Mac~OS\registered file information dictionary; use \typewriter{resourcefork=} to omit this entry)\tnote{b}.\\
\option{size} & (from file) & Size of the file, written as decimal number (\entry{Size} in embedded file parameter dictionary; use \typewriter{size=} to omit this entry)\\
\bottomrule
\end{tabular}
\begin{tablenotes}
\tiny
\item [a] see remark \goto[dest=dateformat]{\emph{Date format}} in \autoref*{afcommand} for details on how to write PDF dates
\item [b] as I don't own a Mac\registered computer, I was unable to test whether the default value works to access the resource fork of the original file; this probably also depends on the PDF creator program used, so feedback on that is welcome!
\end{tablenotes}
\end{threeparttable}
\end{center}
\end{table}

Attachs the file referenced by the path \ph{filename} as embedded file. \Autoref{embedfileoptions} shows all possible options. \Egr this is the command which embeds the bibliography of this documentation:

\begin{quote}
\footnotesize
\command{embedfile}{\ttfamily[description=\{Bibliography file for \{\command{ttfamily} hypdvips.tex\}\},\\mimetype=text/plain]}\argument{bibdat.bib}
\end{quote}
\embedfile[description={Bibliography file for {\ttfamily hypdvips.tex}},mimetype=text/plain]
{bibdat.bib}

\subsection[\command{evenboxesstring}]{\titlecommand{evenboxesstring}\titleargument{text}}\odest{ebs}{30pt}

Only used with the option \option{evenboxes}: Sets the height of links to the height of any \ph{text}. \Egr after the command

\begin{quote}
\footnotesize
\command{evenboxesstring}\argument{X}
\evenboxesstring{X}
\end{quote}

all links are \goto[dest=ebs]{as} \goto[dest=ebs]{high} \goto[dest=ebs]{as} \goto[dest=ebs]{the} \goto[dest=ebs]{character} \goto[dest=ebs]{X}.
\hypersetup{pdfborderstyle={/W 1 /S /U}}
This command can be used in conjunction with the \pkg{hyperref} option \option{pdfborderstyle=\{/W 1 /S /U\}} to produce underlined links, where the line is \goto[dest=ebs]{always} \goto[dest=ebs]{at} \goto[dest=ebs]{the} \goto[dest=ebs]{same} \goto[dest=ebs]{height}.
\hypersetup{pdfborderstyle={/W 1 /S /D /D [1 1]}}

The default value is a string containing all alphanumeric characters plus some parentheses and a superscript, to be sure to not produce links which are too small in height (or depth).

\evenboxesstring{[(0123456789)]The quick brown fox jumps over the lazy dog!0}

\subsection[\command{file}]{\titlecommand{file}\titleargument{filename}\titleargument{description}}\odest{filecmd}{30pt}

This is basically a shortcut of the \goto[dest=attachfilecmd]{\command{attachfile}} command. It attachs the file referenced by the path \ph{filename} using the given \ph{description}, \typewriter{overprint=true} with low opacity and default options apart from that. \Egr the command

\begin{quote}
\footnotesize
\command{file}\argument{c:/latex/documents/hypdvips.tex}\argument{Source code of this documentation}
\end{quote}

has the following result: \file{c:/latex/documents/hypdvips.tex}{Source code of this documentation}
\\\\
The annotation text color can be defined with the command \goto[dest=colorcmd]{\command{embeddedcolor}}.

\subsection[\command{goto}]{\titleoptioncommand{goto}{options}\titleargument{text}}\odest{gotocmd}{30pt}

This command is used to create links inside or between PDF documents. It features the capabilities of the

\begin{itemize}
\blt{\triangleright}
\item \command{hyperlink}\argument{\ph{name}}\argument{\ph{text}}
\item \command{href}\argument{\typewriter{file:}\ph{filename}}\argument{\ph{text}}
\item \command{href}\argument{\typewriter{gotoe:}\ph{options}}\argument{\ph{text}}
\end{itemize}

commands, but offers an uniform and easy-to-use interface. You just have to specify the destination, and \command{goto} decides which type of GoTo-link is created, depending on the \ph{options} used. Links inside a document are called GoTo-links, links to external documents are GoToR-links and links to or between embedded files are called GoToE-links. \Autoref{gotooptions} shows all possible \ph{options} of the \command{goto} command. \Egr the command

\begin{quote}
\footnotesize
\command{goto}{\typewriter{[dest=section.3]}}\argument{This is a link to the section ``Command list''}
\begin{center}
\goto[dest=section.3]{This is a link to the section ``Command list''}
\end{center}
\end{quote}

makes a GoTo-link to the name object\footnote{ this is the PostScript\registered type of destinations created by \pkg{hyperref}, though some PDF creator applications convert them to byte strings when writing to PDF} \typewriter{/section.3}. You can also specify explicit destinations:

\begin{quote}
\footnotesize
\command{goto}{\typewriter{[dest=\{[0 /FitR 100 530 520 620]\}]}}\argument{This is a link which centers on the abstract}
\begin{center}
\goto[dest={[0 /FitR 100 530 520 620]}]{This is a link which centers on the abstract}
\end{center}
\end{quote}

When linking to external documents, you may have to use byte strings as named destinations:

\begin{quote}
\footnotesize
\command{goto}{\ttfamily[dest=(M13.9.20535.3Heading.Named.Destinations), filename=pdf\textbackslash\string_reference\textbackslash\string_1-7.pdf, newwindow]}\argument{This is a link to the section ``Named Destinations'' in the PDF Reference \command{cite}\argument{pdfref}}
\begin{center}
\goto[dest=(M13.9.20535.3Heading.Named.Destinations),filename=pdf_reference_1-7.pdf,newwindow]{This is a link to the section ``Named Destinations'' in the PDF Reference \cite{pdfref}}
\end{center}
\end{quote}

Note that the destination in this example includes parentheses \typewriter{(} and \typewriter{)}, to distinguish the named destination \textbf{byte string} from a named destination \textbf{name object}. See section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.39147.2Heading.712.Destinations.PDF.73)]{8.\@2.\@1} of the PDF Reference \cite{pdfref} for more information on PDF destinations. As you also may have noticed, the border color of the external link is different than in the two examples before. External links have the color of \pkg{hyperref} options \option{filecolor} and \option{filebordercolor}, whereas local links use the \option{linkcolor}/\option{linkbordercolor}. Links to embedded files have the color defined by \goto[dest=colorcmd]{\command{embeddedcolor}} \& \goto[dest=colorcmd]{\command{embeddedbordercolor}}.\\

\begin{table}[htbp]
\renewcommand{\arraystretch}{1.3}
\scriptsize
\capstart
\begin{center}
\begin{threeparttable}
\caption{Options for the \goto[dest=gotocmd]{\command{goto}} command}
\label{gotooptions}
\begin{tabular}{r p{3cm} p{10cm}}
\toprule
\textbf{Option} & \textbf{Default} & \textbf{Description}\\
\midrule
\option{dest} & \typewriter{[0 /Fit]} & The destination to jump to in the target. It can be either a named destination (specified by a name object or a byte string) or an explicit destination. Explicit destinations are written with squared brackets; see table \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.38139.Table.caption.wide.Table72.Destination.syntax)]{8.\@2} of the PDF Reference for the syntax. Byte strings are written with parentheses. Name objects have a preceding slash \typewriter{/} character. If \option{dest} neither represents a valid explicit destination nor is enclosed by parentheses or preceded by a slash, then it will be converted to a name object (if possible) or to a byte string\tnote{a}.\\
\option{filename} & (absent, \ie use current document as target document) & Path to an external file which acts as target document for the link. See table \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.30439.Table.caption.narrow.Table317.Examples.of.file.specifications)]{3.\@40} in section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.35094.2Heading.361.File.Specification.Strings)]{3.\@10.\@1} of the PDF Reference \cite{pdfref} for information on how to write filenames of different operating systems. This option cannot be used with the \option{id} option.\\
\option{id} & (absent, \ie use current document as target document) & The ID of an attached file which acts as target document for the link. This ID can be found in the List of File Attachments: it is the number to the left of the file description (see \autoref{ids}). ID's are only valid within the current document, thus this option cannot be paired with the \option{filename} option.\\
\option{newwindow} & \typewriter{false} & Specifies whether the viewer application should use a new window to display the destination.\\
\option{target} & (absent, \ie target document is the final target which holds the destination) & The content of a target dictionary which specifies the final target of the link \textbf{relative} to the target document (given by the \option{id} or \option{filename} option). See table \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.92889.Table.title.wide.Table846.Entries.specific.to.a.target.dictionary)]{8.\@52} and example \goto[newwindow,filename=pdf_reference_1-7.pdf,dest={[657 /FitH 600]}]{8.\@12} in the PDF Reference \cite{pdfref} for entries in a target dictionary.\\
\bottomrule
\end{tabular}
\begin{tablenotes}
\tiny
\item [a] Ghostscript\registered seems to convert the byte strings of GoTo-links to name objects when writing to PDF --- weird, but the links work anyway (at least with Adobe\registered Reader\registered software)
\end{tablenotes}
\end{threeparttable}
\end{center}
\end{table}

\fig{images/ids}{10cm}{ID numbers of file attachments}

\begin{figure}[htbp]
\begin{minipage}[t]{5cm}
\capstart
\centerline{\includegraphics[width=4cm]{images/ex1}}
\caption{Link to a child}
\end{minipage}
\hfill
\begin{minipage}[t]{5cm}
\capstart
\centerline{\includegraphics[width=4cm]{images/ex2}}
\caption{Link to the parent}
\end{minipage}
\hfill
\begin{minipage}[t]{5cm}
\capstart
\centerline{\includegraphics[width=4cm]{images/ex3}}
\caption{Link to a sibling}
\end{minipage}
\end{figure}

Links to embedded documents can be accomplished with the \option{id} or \option{target} option. \option{id} is used when linking to embedded documents which have been attached with the \goto[dest=attachfilecmd]{\command{attachfile}}, \goto[dest=filecmd]{\command{file}} or \goto[dest=embedfilecmd]{\command{embedfile}} commands in the the current \LaTeX~document, whereas the option \option{target} can go farther. The following examples are orientated on example \goto[newwindow,filename=pdf_reference_1-7.pdf,dest={[657 /FitH 600]}]{8.\@12} of the PDF Reference \cite{pdfref}:

\begin{enumerate}
\footnotesize
\item\label{i1} \command{goto}{\typewriter{[dest=\{(Chapter 1)\}, id=1]}}\argument{Link to a child}
\item \command{goto}{\typewriter{[dest=\{(Chapter 1)\}, target=/R/P]}}\argument{Link to the parent}
\item \command{goto}{\typewriter{[dest=\{(Chapter 1)\}, target=\{/R /P /T << /R /C /N (Attachment 2) >>\}]}}\argument{Link to a\\ sibling}
\newpage
\item \command{goto}{\typewriter{[dest=\{(Chapter 1)\}, filename=someFile.pdf, target=\{/R /C /N (Attachment 1)\}]}}\argument{Link\\ to an embedded file in an external document}
\item \command{goto}{\typewriter{[dest=\{(Chapter 1)\}, filename=someFile.pdf]}}\argument{Link from an embedded file to a normal\\ file}
\item \command{goto}{\typewriter{[dest=\{(Chapter 1)\}, id=1, target=\{/R /C /P 2 /A (Attachment 1)]}}\argument{Link to a\\grandchild}
\item \command{goto}{\ttfamily[dest=(destination), target=\{/R /P /T << /R /C /N (Attachment 2) /T << /R /C \\
/P 3 /A (Attachment 1) >> >>\}]}\argument{Link to a niece/nephew through the source's parent}
\end{enumerate}

\fig{images/ex4}{11cm}{Link to an embedded file in an external document}
\fig{images/ex5}{11cm}{Link from an embedded file to a normal file}
\begin{figure}[htbp]
\begin{minipage}[t]{7.5cm}
\capstart
\centerline{\includegraphics[width=6.5cm]{images/ex6}}
\caption{Link to a grandchild}
\end{minipage}
\hfill
\begin{minipage}[t]{7.5cm}
\capstart
\centerline{\includegraphics[width=6.5cm]{images/ex7}}
\caption{Link to a niece/nephew through the source's parent}
\end{minipage}
\end{figure}
\vspace{0.5cm}

As the \option{id} option is just a shortcut, \autoref{i1} could also be written as

\begin{quote}
\footnotesize
\command{goto}{\typewriter{[dest=\{(Chapter 1)\}, target=\{/R /C /N (Attachment 1)\}]}}\argument{Link to a child}
\end{quote}

or

\begin{quote}
\footnotesize
\command{goto}{\typewriter{[dest=\{(Chapter 1)\}, target=\{/R /C /P \ph{page} /A (Attachment 1)\}]}}\argument{Link to a child}
\end{quote}

depending on the type of the child (either embedded file or file attachment annotation).

\subsection[\command{gotoparent}]{\titlecommand{gotoparent}\titleargument{destination}\titleargument{text}}

This is a shortcut of the \goto[dest=gotocmd]{\command{goto}} command. It lets the given \ph{text} point to a \ph{destination} in the parent document.

\subsection[\command{listofattachments}]{\titlecommand{listofattachments}}

Creates a list of file attachments, analogous to the \command{listoffigures} or \command{listoftables} commands. The lines in this list are formatted by \command{loaformat}, which can be changed to customize the appearance of the list:

\begin{quote}
\footnotesize
\command{renewcommand}\argument{\command{loaformat}}\ttfamily[4]\argument{\ph{\LaTeX-code\dots}}
\end{quote}

The \command{loaformat} command has 4 arguments:

\begin{itemize}
\footnotesize
\blt{}
\item \typewriter{\#1} = Attachment ID
\item \typewriter{\#2} = Attachment type (either \typewriter{FileAttachment} or \typewriter{EmbeddedFile})
\item \typewriter{\#3} = \ph{filename} from the corresponding \goto[dest=attachfilecmd]{\command{attachfile}} or \goto[dest=embedfilecmd]{\command{embedfile}} command
\item \typewriter{\#4} = all \ph{options} that were given to the corresponding \goto[dest=attachfilecmd]{\command{attachfile}} or \goto[dest=embedfilecmd]{\command{embedfile}} command
\end{itemize}

\subsection[\command{odest}]{\titlecommand{odest}\titleargument{name}\titleargument{offset}}

Creates the named destination \typewriter{/}\ph{name} located with a vertical \ph{offset} relative to the current point\ifelseshowdests{ (denoted by the red X)}{}. The \ph{offset} can be given in any \LaTeX~dimension. \Egr the command

\begin{quote}
\footnotesize
\hskip0pt\ifelseshowdests{\point}{}\odest{odestexample}{1.5cm}\hskip5pt\command{odest}\argument{odestexample}\argument{1.5cm}
\end{quote}

creates the destination \typewriter{/odestexample} 1.5\,cm above the \command{odest} command.
\ifelseshowdests{}{In the \goto[dest=subsection.3.10,id=4]{draft copy with \typewriter{showdests=true}} you can see the newly created destination.}
The \command{hyperlink} command can be used to \hyperlink{odestexample}{link to that destination}.
\ifelseshowdests{Use this link to come back to the \gotoparent{subsection.3.10}{parent document}.}{}

\subsection[\command{openaction}]{\titlecommand{openaction}\titleargument{action}}

Sets the PDF document's open-action. \ph{action} is the content of an action dictionary. \Egr this documentation uses an open-action to show the attachments tab:

\begin{quote}
\footnotesize
\command{openaction}\argument{/N/ShowHideFileAttachment/S/Named}
\end{quote}

See section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.34523.1Heading.74.Actions.PDF.68)]{8.\@5} of the PDF Reference \cite{pdfref} for information on PDF actions and action dictionaries.

\subsection[\command{pagelabel}]{\titleoptioncommand{pagelabel}{page}\titleargument{pagelabel}}

Sets the PDF \ph{pagelabel} for the specified \ph{page}. The page number is optional --- it defaults to the current page. \Egr the following command

\begin{quote}
\footnotesize
\command{pagelabel}\argument{- \command{Roman}\argument{page}\command{space}-}
\end{quote}
\pagelabel{- \Roman{page}\space-}

uses the current page number in Roman format enclosed by dashes \typewriter{-} as pagelabel for the current page.
\\\\
\emph{Unnumbered pages}: \pkg{hypdvips} modifies the \command{pagestyle} \& \command{thispagestyle} commands to produce empty pagelabels when the pagestyle is set to \typewriter{empty}, as seen on the \goto{title page} of this documentation.

\subsection[\command{runattachment}]{\titlecommand{runattachment}\titleargument{ID}\titleargument{text}}

Creates a link from any \ph{text} which launches the embedded file with the given \ph{ID}. The color of the link can be defined with \goto[dest=colorcmd]{\command{embeddedcolor}} \& \goto[dest=colorcmd]{\command{embeddedbordercolor}}. For example:

\begin{quote}
\footnotesize
\command{runattachment}\argument{1}\argument{Click here to open RFC 1321 \command{cite}\argument{rfc1321}}
\begin{center}
\runattachment{1}{Click here to open RFC 1321 \cite{rfc1321}}
\end{center}
\end{quote}

Currently, the PDF JavaScript\trademark API only allows to export embedded files. Files in file attachment annotations can only be exported via the PDF viewer application. Note that with \typewriter{JavaScript=false} the \command{runattachment} command just produces the \ph{text} without link.

\vfill
\hypersetup{pdfborderstyle={/W 1 /S /U}}
\enabletrademarksigns
\bibliography{bibdat}
\bibliographystyle{plain}

\end{document}

Niedrist, R.

File attachment "hypdvips.tex"

Source code of this documentation

page.10

subsection.3.7

3.7 \goto[options]{text}
gotocmd

This command is used to create links inside or between PDF documents. It features the
capabilities of the

⊲ \hyperlink{name}{text}

⊲ \href{file:filename}{text}

⊲ \href{gotoe:options}{text}

commands, but offers an uniform and easy-to-use interface. You just have to specify the
destination, and \goto decides which type of GoTo-link is created, depending on the options
used. Links inside a document are called GoTo-links, links to external documents are GoToR-
links and links to or between embedded files are called GoToE-links. Table 4 shows all possible
options of the \goto command. E. g. the command

\goto[dest=section.3]{This is a link to the section ‘‘Command list’’}

This is a link to the section “Command list”

makes a GoTo-link to the name object6 /section.3. You can also specify explicit destinations:

\goto[dest={[0 /FitR 100 530 520 620]}]{This is a link which centers on the abstract}

This is a link which centers on the abstract

When linking to external documents, you may have to use byte strings as named destinations:

\goto[dest=(M13.9.20535.3Heading.Named.Destinations), filename=pdf_reference_1-7.pdf,
newwindow]{This is a link to the section ‘‘Named Destinations’’ in the PDF Reference

\cite{pdfref}}

This is a link to the section “Named Destinations” in the PDF Reference
backref.15

[1]

Note that the destination in this example includes parentheses (and), to distinguish the
named destination byte string from a named destination name object. See section 8.2.1
of the PDF Reference

backref.16

[1] for more information on PDF destinations. As you also may have
noticed, the border color of the external link is different than in the two examples before. Exter-
nal links have the color of hyperref options filecolor and filebordercolor, whereas local
links use the linkcolor/linkbordercolor. Links to embedded files have the color defined by
\embeddedcolor & \embeddedbordercolor.

Links to embedded documents can be accomplished with the id or target option. id is used
when linking to embedded documents which have been attached with the \attachfile, \file
or \embedfile commands in the the current LATEX document, whereas the option target can
go farther. The following examples are orientated on example 8.12 of the PDF Reference

backref.19

[1]:
Item.1

1. \goto[dest={(Chapter 1)}, id=1]{Link to a child}
Item.2

2. \goto[dest={(Chapter 1)}, target=/R/P]{Link to the parent}
Item.3

3. \goto[dest={(Chapter 1)}, target={/R /P /T << /R /C /N (Attachment 2) >>}]{Link to a

sibling}

6Hfootnote.6

this is the PostScript type of destinations created by hyperref, though some PDF creator applications convert
them to byte strings when writing to PDF

10

page.11

table.4

Table 4 | Options for the \goto command

Option Default Description

dest [0 /Fit] The destination to jump to in the target. It can be either a named destina-
tion (specified by a name object or a byte string) or an explicit destination.
Explicit destinations are written with squared brackets; see table 8.2 of the
PDF Reference for the syntax. Byte strings are written with parentheses.
Name objects have a preceding slash / character. If dest neither represents
a valid explicit destination nor is enclosed by parentheses or preceded by a
slash, then it will be converted to a name object (if possible) or to a byte
stringa.

filename (absent, i. e. use cur-
rent document as tar-
get document)

Path to an external file which acts as target document for the link. See table
3.40 in section 3.10.1 of the PDF Referencebackref.17 [1] for information on how to
write filenames of different operating systems. This option cannot be used
with the id option.

id (absent, i. e. use cur-
rent document as tar-
get document)

The ID of an attached file which acts as target document for the link. This
ID can be found in the List of File Attachments: it is the number to the
left of the file description (see fig. 3). ID’s are only valid within the current
document, thus this option cannot be paired with the filename option.

newwindow false Specifies whether the viewer application should use a new window to display
the destination.

target (absent, i. e. target
document is the final
target which holds the
destination)

The content of a target dictionary which specifies the final target of the link
relative to the target document (given by the id or filename option). See
table 8.52 and example 8.12 in the PDF Referencebackref.18 [1] for entries in a target
dictionary.

table.4.note: "a" a Ghostscript seems to convert the byte strings of GoTo-links to name objects when writing to PDF — weird, but the links work anyway
(at least with Adobe Reader software)

figure.3

Figure 3 | ID numbers of file attachments

figure.4

Current
document

Embedded
file (ID=1)

Figure 4 | Link to a child

figure.5

Parent
document

Current
document

Figure 5 | Link to the parent

figure.6

Parent
document

Another
embedded
file (ID=2)

Current
document
(ID=1)

Figure 6 | Link to a sibling

11

page.12

Item.4

4. \goto[dest={(Chapter 1)}, filename=someFile.pdf, target={/R /C /N (Attachment 1)}]{Link
to an embedded file in an external document}

Item.5

5. \goto[dest={(Chapter 1)}, filename=someFile.pdf]{Link from an embedded file to a normal

file}
Item.6

6. \goto[dest={(Chapter 1)}, id=1, target={/R /C /P 2 /A (Attachment 1)]{Link to a

grandchild}
Item.7

7. \goto[dest=(destination), target={/R /P /T << /R /C /N (Attachment 2) /T << /R /C

/P 3 /A (Attachment 1) >> >>}]{Link to a niece/nephew through the source’s parent}

figure.7

Current
document

Remote
document

someFile.pdfcurrentDocument.pdf

Embedded
file (ID=1)

Figure 7 | Link to an embedded file in an external document

figure.8

Parent
document

Remote
document

someFile.pdfparentDocument.pdf

Current
document

Figure 8 | Link from an embedded file to a normal file

As the id option is just a shortcut, item 1. could also be written as

\goto[dest={(Chapter 1)}, target={/R /C /N (Attachment 1)}]{Link to a child}

or

\goto[dest={(Chapter 1)}, target={/R /C /P page /A (Attachment 1)}]{Link to a child}

depending on the type of the child (either embedded file or file attachment annotation).

subsection.3.8

3.8 \gotoparent{destination}{text}

This is a shortcut of the \goto command. It lets the given text point to a destination in the
parent document.

12

page.13

figure.9

Current
document

Embedded
file (ID=1)

File attach-
ment (ID=1)
on page 2
of embedded
file

Figure 9 | Link to a grandchild

figure.10

Parent
document

Another
embedded
file (ID=2)

Current
document
(ID=1)

File
attachment
(ID=1) on
page 3 of
embedded
file

Figure 10 | Link to a niece/nephew through the
source’s parent

subsection.3.9

3.9 \listofattachments

Creates a list of file attachments, analogous to the \listoffigures or \listoftables com-
mands. The lines in this list are formatted by \loaformat, which can be changed to customize
the appearance of the list:

\renewcommand{\loaformat}[4]{LATEX-code. . . }

The \loaformat command has 4 arguments:

#1 = Attachment ID

#2 = Attachment type (either FileAttachment or EmbeddedFile)

#3 = filename from the corresponding \attachfile or \embedfile command

#4 = all options that were given to the corresponding \attachfile or \embedfile command

subsection.3.10

3.10 \odest{name}{offset}

Creates the named destination /name located with a vertical offset relative to the current point
(denoted by the red X). The offset can be given in any LATEX dimension. E. g. the command

odestexample

\odest{odestexample}{1.5cm}

creates the destination /odestexample 1.5 cm above the \odest command. The \hyperlink
command can be used to link to that destination. Use this link to come back to the parent
document.

subsection.3.11

3.11 \openaction{action}

Sets the PDF document’s open-action. action is the content of an action dictionary. E. g. this
documentation uses an open-action to show the attachments tab:

\openaction{/N/ShowHideFileAttachment/S/Named}

See section 8.5 of the PDF Reference
backref.20

[1] for information on PDF actions and action dictionaries.

13

page.14

subsection.3.12

3.12 \pagelabel[page]{pagelabel}

Sets the PDF pagelabel for the specified page. The page number is optional — it defaults to
the current page. E. g. the following command

\pagelabel{- \Roman{page}\space-}

uses the current page number in Roman format enclosed by dashes - as pagelabel for the cur-
rent page.

Unnumbered pages: hypdvips modifies the \pagestyle & \thispagestyle commands to pro-
duce empty pagelabels when the pagestyle is set to empty, as seen on the title page of this
documentation.

subsection.3.13

3.13 \runattachment{ID}{text}

Creates a link from any text which launches the embedded file with the given ID . The color of
the link can be defined with \embeddedcolor & \embeddedbordercolor. For example:

\runattachment{1}{Click here to open RFC 1321 \cite{rfc1321}}

Click here to open RFC 1321
backref.21

[4]

Currently, the PDF JavaScript API only allows to export embedded files. Files in file at-
tachment annotations can only be exported via the PDF viewer application. Note that with
JavaScript=false the \runattachment command just produces the text without link.

*.6

References
cite.pdfref

[1] Adobe Systems Incorporated. PDF Reference, sixth edition, November 2006. Adobe R©

Portable Document Format Version 1.7.
Referenced in: Section 2, Table 1, Table 2, Table 2, Table 2, Section 3.1, Section 3.1, Table 3, Table 3, Section 3.7, Section 3.7, Section 3.7,

Table 4, Table 4, Section 3.11

cite.rfc2046

[2] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types, November 1996. Updated by RFCs 2646, 3798 and 5147.
http://tools.ietf.org/html/rfc2046.
Referenced in: Table 2, Table 3

cite.xcolor

[3] Dr. Uwe Kern. Extending LATEX’s color facilities: the xcolor package, January 2007.
http://www.ctan.org/get/macros/latex/contrib/xcolor/xcolor.pdf.
Referenced in: Section 3.3

cite.rfc1321

[4] R. Rivest. The MD5 Message-Digest Algorithm, April 1992.
http://tools.ietf.org/html/rfc1321.
Referenced in: Table 2, Table 3, Section 3.13

14

http://tools.ietf.org/html/rfc2046

http://www.ctan.org/get/macros/latex/contrib/xcolor/xcolor.pdf

http://tools.ietf.org/html/rfc1321

		Contents

		Trademark Information

		List of Figures

		List of Tables

		List of File Attachments

		1 Introduction

		2 Usage

		Package options

		3 Command list

		3.1 \attachfile

		3.2 \bmstyle

		3.3 Color commands

		3.4 \embedfile

		3.5 \evenboxesstring

		3.6 \file

		3.7 \goto

		3.8 \gotoparent

		3.9 \listofattachments

		3.10 \odest

		3.11 \openaction

		3.12 \pagelabel

		3.13 \runattachment

		References

Network Working Group R. Rivest
Request for Comments: 1321 MIT Laboratory for Computer Science
 and RSA Data Security, Inc.
 April 1992

 The MD5 Message-Digest Algorithm

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard. Distribution of this memo is
 unlimited.

Acknowlegements

 We would like to thank Don Coppersmith, Burt Kaliski, Ralph Merkle,
 David Chaum, and Noam Nisan for numerous helpful comments and
 suggestions.

Table of Contents

 1. Executive Summary 1
 2. Terminology and Notation 2
 3. MD5 Algorithm Description 3
 4. Summary 6
 5. Differences Between MD4 and MD5 6
 References 7
 APPENDIX A - Reference Implementation 7
 Security Considerations 21
 Author's Address 21

1. Executive Summary

 This document describes the MD5 message-digest algorithm. The
 algorithm takes as input a message of arbitrary length and produces
 as output a 128-bit "fingerprint" or "message digest" of the input.
 It is conjectured that it is computationally infeasible to produce
 two messages having the same message digest, or to produce any
 message having a given prespecified target message digest. The MD5
 algorithm is intended for digital signature applications, where a
 large file must be "compressed" in a secure manner before being
 encrypted with a private (secret) key under a public-key cryptosystem
 such as RSA.

Rivest [Page 1]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 The MD5 algorithm is designed to be quite fast on 32-bit machines. In
 addition, the MD5 algorithm does not require any large substitution
 tables; the algorithm can be coded quite compactly.

 The MD5 algorithm is an extension of the MD4 message-digest algorithm
 1,2]. MD5 is slightly slower than MD4, but is more "conservative" in
 design. MD5 was designed because it was felt that MD4 was perhaps
 being adopted for use more quickly than justified by the existing
 critical review; because MD4 was designed to be exceptionally fast,
 it is "at the edge" in terms of risking successful cryptanalytic
 attack. MD5 backs off a bit, giving up a little in speed for a much
 greater likelihood of ultimate security. It incorporates some
 suggestions made by various reviewers, and contains additional
 optimizations. The MD5 algorithm is being placed in the public domain
 for review and possible adoption as a standard.

 For OSI-based applications, MD5's object identifier is

 md5 OBJECT IDENTIFIER ::=
 iso(1) member-body(2) US(840) rsadsi(113549) digestAlgorithm(2) 5}

 In the X.509 type AlgorithmIdentifier [3], the parameters for MD5
 should have type NULL.

2. Terminology and Notation

 In this document a "word" is a 32-bit quantity and a "byte" is an
 eight-bit quantity. A sequence of bits can be interpreted in a
 natural manner as a sequence of bytes, where each consecutive group
 of eight bits is interpreted as a byte with the high-order (most
 significant) bit of each byte listed first. Similarly, a sequence of
 bytes can be interpreted as a sequence of 32-bit words, where each
 consecutive group of four bytes is interpreted as a word with the
 low-order (least significant) byte given first.

 Let x_i denote "x sub i". If the subscript is an expression, we
 surround it in braces, as in x_{i+1}. Similarly, we use ^ for
 superscripts (exponentiation), so that x^i denotes x to the i-th
 power.

 Let the symbol "+" denote addition of words (i.e., modulo-2^32
 addition). Let X <<< s denote the 32-bit value obtained by circularly
 shifting (rotating) X left by s bit positions. Let not(X) denote the
 bit-wise complement of X, and let X v Y denote the bit-wise OR of X
 and Y. Let X xor Y denote the bit-wise XOR of X and Y, and let XY
 denote the bit-wise AND of X and Y.

Rivest [Page 2]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

3. MD5 Algorithm Description

 We begin by supposing that we have a b-bit message as input, and that
 we wish to find its message digest. Here b is an arbitrary
 nonnegative integer; b may be zero, it need not be a multiple of
 eight, and it may be arbitrarily large. We imagine the bits of the
 message written down as follows:

 m_0 m_1 ... m_{b-1}

 The following five steps are performed to compute the message digest
 of the message.

3.1 Step 1. Append Padding Bits

 The message is "padded" (extended) so that its length (in bits) is
 congruent to 448, modulo 512. That is, the message is extended so
 that it is just 64 bits shy of being a multiple of 512 bits long.
 Padding is always performed, even if the length of the message is
 already congruent to 448, modulo 512.

 Padding is performed as follows: a single "1" bit is appended to the
 message, and then "0" bits are appended so that the length in bits of
 the padded message becomes congruent to 448, modulo 512. In all, at
 least one bit and at most 512 bits are appended.

3.2 Step 2. Append Length

 A 64-bit representation of b (the length of the message before the
 padding bits were added) is appended to the result of the previous
 step. In the unlikely event that b is greater than 2^64, then only
 the low-order 64 bits of b are used. (These bits are appended as two
 32-bit words and appended low-order word first in accordance with the
 previous conventions.)

 At this point the resulting message (after padding with bits and with
 b) has a length that is an exact multiple of 512 bits. Equivalently,
 this message has a length that is an exact multiple of 16 (32-bit)
 words. Let M[0 ... N-1] denote the words of the resulting message,
 where N is a multiple of 16.

3.3 Step 3. Initialize MD Buffer

 A four-word buffer (A,B,C,D) is used to compute the message digest.
 Here each of A, B, C, D is a 32-bit register. These registers are
 initialized to the following values in hexadecimal, low-order bytes
 first):

Rivest [Page 3]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 word A: 01 23 45 67
 word B: 89 ab cd ef
 word C: fe dc ba 98
 word D: 76 54 32 10

3.4 Step 4. Process Message in 16-Word Blocks

 We first define four auxiliary functions that each take as input
 three 32-bit words and produce as output one 32-bit word.

 F(X,Y,Z) = XY v not(X) Z
 G(X,Y,Z) = XZ v Y not(Z)
 H(X,Y,Z) = X xor Y xor Z
 I(X,Y,Z) = Y xor (X v not(Z))

 In each bit position F acts as a conditional: if X then Y else Z.
 The function F could have been defined using + instead of v since XY
 and not(X)Z will never have 1's in the same bit position.) It is
 interesting to note that if the bits of X, Y, and Z are independent
 and unbiased, the each bit of F(X,Y,Z) will be independent and
 unbiased.

 The functions G, H, and I are similar to the function F, in that they
 act in "bitwise parallel" to produce their output from the bits of X,
 Y, and Z, in such a manner that if the corresponding bits of X, Y,
 and Z are independent and unbiased, then each bit of G(X,Y,Z),
 H(X,Y,Z), and I(X,Y,Z) will be independent and unbiased. Note that
 the function H is the bit-wise "xor" or "parity" function of its
 inputs.

 This step uses a 64-element table T[1 ... 64] constructed from the
 sine function. Let T[i] denote the i-th element of the table, which
 is equal to the integer part of 4294967296 times abs(sin(i)), where i
 is in radians. The elements of the table are given in the appendix.

 Do the following:

 /* Process each 16-word block. */
 For i = 0 to N/16-1 do

 /* Copy block i into X. */
 For j = 0 to 15 do
 Set X[j] to M[i*16+j].
 end /* of loop on j */

 /* Save A as AA, B as BB, C as CC, and D as DD. */
 AA = A
 BB = B

Rivest [Page 4]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 CC = C
 DD = D

 /* Round 1. */
 /* Let [abcd k s i] denote the operation
 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
 /* Do the following 16 operations. */
 [ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]
 [ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]
 [ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
 [ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]

 /* Round 2. */
 /* Let [abcd k s i] denote the operation
 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
 /* Do the following 16 operations. */
 [ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]
 [ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
 [ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]
 [ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]

 /* Round 3. */
 /* Let [abcd k s t] denote the operation
 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
 /* Do the following 16 operations. */
 [ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]
 [ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]
 [ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]
 [ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]

 /* Round 4. */
 /* Let [abcd k s t] denote the operation
 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
 /* Do the following 16 operations. */
 [ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
 [ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]
 [ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
 [ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]

 /* Then perform the following additions. (That is increment each
 of the four registers by the value it had before this block
 was started.) */
 A = A + AA
 B = B + BB
 C = C + CC
 D = D + DD

 end /* of loop on i */

Rivest [Page 5]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

3.5 Step 5. Output

 The message digest produced as output is A, B, C, D. That is, we
 begin with the low-order byte of A, and end with the high-order byte
 of D.

 This completes the description of MD5. A reference implementation in
 C is given in the appendix.

4. Summary

 The MD5 message-digest algorithm is simple to implement, and provides
 a "fingerprint" or message digest of a message of arbitrary length.
 It is conjectured that the difficulty of coming up with two messages
 having the same message digest is on the order of 2^64 operations,
 and that the difficulty of coming up with any message having a given
 message digest is on the order of 2^128 operations. The MD5 algorithm
 has been carefully scrutinized for weaknesses. It is, however, a
 relatively new algorithm and further security analysis is of course
 justified, as is the case with any new proposal of this sort.

5. Differences Between MD4 and MD5

 The following are the differences between MD4 and MD5:

 1. A fourth round has been added.

 2. Each step now has a unique additive constant.

 3. The function g in round 2 was changed from (XY v XZ v YZ) to
 (XZ v Y not(Z)) to make g less symmetric.

 4. Each step now adds in the result of the previous step. This
 promotes a faster "avalanche effect".

 5. The order in which input words are accessed in rounds 2 and
 3 is changed, to make these patterns less like each other.

 6. The shift amounts in each round have been approximately
 optimized, to yield a faster "avalanche effect." The shifts in
 different rounds are distinct.

Rivest [Page 6]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

References

 [1] Rivest, R., "The MD4 Message Digest Algorithm", RFC 1320, MIT and
 RSA Data Security, Inc., April 1992.

 [2] Rivest, R., "The MD4 message digest algorithm", in A.J. Menezes
 and S.A. Vanstone, editors, Advances in Cryptology - CRYPTO '90
 Proceedings, pages 303-311, Springer-Verlag, 1991.

 [3] CCITT Recommendation X.509 (1988), "The Directory -
 Authentication Framework."

APPENDIX A - Reference Implementation

 This appendix contains the following files taken from RSAREF: A
 Cryptographic Toolkit for Privacy-Enhanced Mail:

 global.h -- global header file

 md5.h -- header file for MD5

 md5c.c -- source code for MD5

 For more information on RSAREF, send email to <rsaref@rsa.com>.

 The appendix also includes the following file:

 mddriver.c -- test driver for MD2, MD4 and MD5

 The driver compiles for MD5 by default but can compile for MD2 or MD4
 if the symbol MD is defined on the C compiler command line as 2 or 4.

 The implementation is portable and should work on many different
 plaforms. However, it is not difficult to optimize the implementation
 on particular platforms, an exercise left to the reader. For example,
 on "little-endian" platforms where the lowest-addressed byte in a 32-
 bit word is the least significant and there are no alignment
 restrictions, the call to Decode in MD5Transform can be replaced with
 a typecast.

A.1 global.h

/* GLOBAL.H - RSAREF types and constants
 */

/* PROTOTYPES should be set to one if and only if the compiler supports
 function argument prototyping.
The following makes PROTOTYPES default to 0 if it has not already

Rivest [Page 7]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 been defined with C compiler flags.
 */
#ifndef PROTOTYPES
#define PROTOTYPES 0
#endif

/* POINTER defines a generic pointer type */
typedef unsigned char *POINTER;

/* UINT2 defines a two byte word */
typedef unsigned short int UINT2;

/* UINT4 defines a four byte word */
typedef unsigned long int UINT4;

/* PROTO_LIST is defined depending on how PROTOTYPES is defined above.
If using PROTOTYPES, then PROTO_LIST returns the list, otherwise it
 returns an empty list.
 */
#if PROTOTYPES
#define PROTO_LIST(list) list
#else
#define PROTO_LIST(list) ()
#endif

A.2 md5.h

/* MD5.H - header file for MD5C.C
 */

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

Rivest [Page 8]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

These notices must be retained in any copies of any part of this
documentation and/or software.
 */

/* MD5 context. */
typedef struct {
 UINT4 state[4]; /* state (ABCD) */
 UINT4 count[2]; /* number of bits, modulo 2^64 (lsb first) */
 unsigned char buffer[64]; /* input buffer */
} MD5_CTX;

void MD5Init PROTO_LIST ((MD5_CTX *));
void MD5Update PROTO_LIST
 ((MD5_CTX *, unsigned char *, unsigned int));
void MD5Final PROTO_LIST ((unsigned char [16], MD5_CTX *));

A.3 md5c.c

/* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
 */

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.
 */

#include "global.h"
#include "md5.h"

/* Constants for MD5Transform routine.
 */

Rivest [Page 9]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21

static void MD5Transform PROTO_LIST ((UINT4 [4], unsigned char [64]));
static void Encode PROTO_LIST
 ((unsigned char *, UINT4 *, unsigned int));
static void Decode PROTO_LIST
 ((UINT4 *, unsigned char *, unsigned int));
static void MD5_memcpy PROTO_LIST ((POINTER, POINTER, unsigned int));
static void MD5_memset PROTO_LIST ((POINTER, int, unsigned int));

static unsigned char PADDING[64] = {
 0x80, 0,
 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

/* F, G, H and I are basic MD5 functions.
 */
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))

/* ROTATE_LEFT rotates x left n bits.
 */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
Rotation is separate from addition to prevent recomputation.
 */
#define FF(a, b, c, d, x, s, ac) { \
 (a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \

Rivest [Page 10]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 (a) += (b); \
 }
#define GG(a, b, c, d, x, s, ac) { \
 (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }
#define HH(a, b, c, d, x, s, ac) { \
 (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }
#define II(a, b, c, d, x, s, ac) { \
 (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }

/* MD5 initialization. Begins an MD5 operation, writing a new context.
 */
void MD5Init (context)
MD5_CTX *context; /* context */
{
 context->count[0] = context->count[1] = 0;
 /* Load magic initialization constants.
*/
 context->state[0] = 0x67452301;
 context->state[1] = 0xefcdab89;
 context->state[2] = 0x98badcfe;
 context->state[3] = 0x10325476;
}

/* MD5 block update operation. Continues an MD5 message-digest
 operation, processing another message block, and updating the
 context.
 */
void MD5Update (context, input, inputLen)
MD5_CTX *context; /* context */
unsigned char *input; /* input block */
unsigned int inputLen; /* length of input block */
{
 unsigned int i, index, partLen;

 /* Compute number of bytes mod 64 */
 index = (unsigned int)((context->count[0] >> 3) & 0x3F);

 /* Update number of bits */
 if ((context->count[0] += ((UINT4)inputLen << 3))

Rivest [Page 11]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 < ((UINT4)inputLen << 3))
 context->count[1]++;
 context->count[1] += ((UINT4)inputLen >> 29);

 partLen = 64 - index;

 /* Transform as many times as possible.
*/
 if (inputLen >= partLen) {
 MD5_memcpy
 ((POINTER)&context->buffer[index], (POINTER)input, partLen);
 MD5Transform (context->state, context->buffer);

 for (i = partLen; i + 63 < inputLen; i += 64)
 MD5Transform (context->state, &input[i]);

 index = 0;
 }
 else
 i = 0;

 /* Buffer remaining input */
 MD5_memcpy
 ((POINTER)&context->buffer[index], (POINTER)&input[i],
 inputLen-i);
}

/* MD5 finalization. Ends an MD5 message-digest operation, writing the
 the message digest and zeroizing the context.
 */
void MD5Final (digest, context)
unsigned char digest[16]; /* message digest */
MD5_CTX *context; /* context */
{
 unsigned char bits[8];
 unsigned int index, padLen;

 /* Save number of bits */
 Encode (bits, context->count, 8);

 /* Pad out to 56 mod 64.
*/
 index = (unsigned int)((context->count[0] >> 3) & 0x3f);
 padLen = (index < 56) ? (56 - index) : (120 - index);
 MD5Update (context, PADDING, padLen);

 /* Append length (before padding) */
 MD5Update (context, bits, 8);

Rivest [Page 12]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 /* Store state in digest */
 Encode (digest, context->state, 16);

 /* Zeroize sensitive information.
*/
 MD5_memset ((POINTER)context, 0, sizeof (*context));
}

/* MD5 basic transformation. Transforms state based on block.
 */
static void MD5Transform (state, block)
UINT4 state[4];
unsigned char block[64];
{
 UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];

 Decode (x, block, 64);

 /* Round 1 */
 FF (a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */
 FF (d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */
 FF (c, d, a, b, x[2], S13, 0x242070db); /* 3 */
 FF (b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */
 FF (a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */
 FF (d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */
 FF (c, d, a, b, x[6], S13, 0xa8304613); /* 7 */
 FF (b, c, d, a, x[7], S14, 0xfd469501); /* 8 */
 FF (a, b, c, d, x[8], S11, 0x698098d8); /* 9 */
 FF (d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */
 FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
 FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
 FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
 FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
 FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
 FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

 /* Round 2 */
 GG (a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */
 GG (d, a, b, c, x[6], S22, 0xc040b340); /* 18 */
 GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
 GG (b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */
 GG (a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */
 GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */
 GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
 GG (b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */
 GG (a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */
 GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
 GG (c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */

Rivest [Page 13]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 GG (b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */
 GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
 GG (d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */
 GG (c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */
 GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */

 /* Round 3 */
 HH (a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */
 HH (d, a, b, c, x[8], S32, 0x8771f681); /* 34 */
 HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
 HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
 HH (a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */
 HH (d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */
 HH (c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */
 HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
 HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
 HH (d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */
 HH (c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */
 HH (b, c, d, a, x[6], S34, 0x4881d05); /* 44 */
 HH (a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */
 HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
 HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
 HH (b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */

 /* Round 4 */
 II (a, b, c, d, x[0], S41, 0xf4292244); /* 49 */
 II (d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
 II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
 II (b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */
 II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
 II (d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */
 II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
 II (b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */
 II (a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */
 II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
 II (c, d, a, b, x[6], S43, 0xa3014314); /* 59 */
 II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
 II (a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
 II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
 II (c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */
 II (b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */

 state[0] += a;
 state[1] += b;
 state[2] += c;
 state[3] += d;

 /* Zeroize sensitive information.

Rivest [Page 14]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

*/
 MD5_memset ((POINTER)x, 0, sizeof (x));
}

/* Encodes input (UINT4) into output (unsigned char). Assumes len is
 a multiple of 4.
 */
static void Encode (output, input, len)
unsigned char *output;
UINT4 *input;
unsigned int len;
{
 unsigned int i, j;

 for (i = 0, j = 0; j < len; i++, j += 4) {
 output[j] = (unsigned char)(input[i] & 0xff);
 output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
 output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
 output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
 }
}

/* Decodes input (unsigned char) into output (UINT4). Assumes len is
 a multiple of 4.
 */
static void Decode (output, input, len)
UINT4 *output;
unsigned char *input;
unsigned int len;
{
 unsigned int i, j;

 for (i = 0, j = 0; j < len; i++, j += 4)
 output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) |
 (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24);
}

/* Note: Replace "for loop" with standard memcpy if possible.
 */

static void MD5_memcpy (output, input, len)
POINTER output;
POINTER input;
unsigned int len;
{
 unsigned int i;

 for (i = 0; i < len; i++)

Rivest [Page 15]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 output[i] = input[i];
}

/* Note: Replace "for loop" with standard memset if possible.
 */
static void MD5_memset (output, value, len)
POINTER output;
int value;
unsigned int len;
{
 unsigned int i;

 for (i = 0; i < len; i++)
 ((char *)output)[i] = (char)value;
}

A.4 mddriver.c

/* MDDRIVER.C - test driver for MD2, MD4 and MD5
 */

/* Copyright (C) 1990-2, RSA Data Security, Inc. Created 1990. All
rights reserved.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.
 */

/* The following makes MD default to MD5 if it has not already been
 defined with C compiler flags.
 */
#ifndef MD
#define MD MD5
#endif

#include <stdio.h>
#include <time.h>
#include <string.h>
#include "global.h"
#if MD == 2
#include "md2.h"
#endif
#if MD == 4

Rivest [Page 16]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

#include "md4.h"
#endif
#if MD == 5
#include "md5.h"
#endif

/* Length of test block, number of test blocks.
 */
#define TEST_BLOCK_LEN 1000
#define TEST_BLOCK_COUNT 1000

static void MDString PROTO_LIST ((char *));
static void MDTimeTrial PROTO_LIST ((void));
static void MDTestSuite PROTO_LIST ((void));
static void MDFile PROTO_LIST ((char *));
static void MDFilter PROTO_LIST ((void));
static void MDPrint PROTO_LIST ((unsigned char [16]));

#if MD == 2
#define MD_CTX MD2_CTX
#define MDInit MD2Init
#define MDUpdate MD2Update
#define MDFinal MD2Final
#endif
#if MD == 4
#define MD_CTX MD4_CTX
#define MDInit MD4Init
#define MDUpdate MD4Update
#define MDFinal MD4Final
#endif
#if MD == 5
#define MD_CTX MD5_CTX
#define MDInit MD5Init
#define MDUpdate MD5Update
#define MDFinal MD5Final
#endif

/* Main driver.

Arguments (may be any combination):
 -sstring - digests string
 -t - runs time trial
 -x - runs test script
 filename - digests file
 (none) - digests standard input
 */
int main (argc, argv)
int argc;

Rivest [Page 17]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

char *argv[];
{
 int i;

 if (argc > 1)
 for (i = 1; i < argc; i++)
 if (argv[i][0] == '-' && argv[i][1] == 's')
 MDString (argv[i] + 2);
 else if (strcmp (argv[i], "-t") == 0)
 MDTimeTrial ();
 else if (strcmp (argv[i], "-x") == 0)
 MDTestSuite ();
 else
 MDFile (argv[i]);
 else
 MDFilter ();

 return (0);
}

/* Digests a string and prints the result.
 */
static void MDString (string)
char *string;
{
 MD_CTX context;
 unsigned char digest[16];
 unsigned int len = strlen (string);

 MDInit (&context);
 MDUpdate (&context, string, len);
 MDFinal (digest, &context);

 printf ("MD%d (\"%s\") = ", MD, string);
 MDPrint (digest);
 printf ("\n");
}

/* Measures the time to digest TEST_BLOCK_COUNT TEST_BLOCK_LEN-byte
 blocks.
 */
static void MDTimeTrial ()
{
 MD_CTX context;
 time_t endTime, startTime;
 unsigned char block[TEST_BLOCK_LEN], digest[16];
 unsigned int i;

Rivest [Page 18]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 printf
 ("MD%d time trial. Digesting %d %d-byte blocks ...", MD,
 TEST_BLOCK_LEN, TEST_BLOCK_COUNT);

 /* Initialize block */
 for (i = 0; i < TEST_BLOCK_LEN; i++)
 block[i] = (unsigned char)(i & 0xff);

 /* Start timer */
 time (&startTime);

 /* Digest blocks */
 MDInit (&context);
 for (i = 0; i < TEST_BLOCK_COUNT; i++)
 MDUpdate (&context, block, TEST_BLOCK_LEN);
 MDFinal (digest, &context);

 /* Stop timer */
 time (&endTime);

 printf (" done\n");
 printf ("Digest = ");
 MDPrint (digest);
 printf ("\nTime = %ld seconds\n", (long)(endTime-startTime));
 printf
 ("Speed = %ld bytes/second\n",
 (long)TEST_BLOCK_LEN * (long)TEST_BLOCK_COUNT/(endTime-startTime));
}

/* Digests a reference suite of strings and prints the results.
 */
static void MDTestSuite ()
{
 printf ("MD%d test suite:\n", MD);

 MDString ("");
 MDString ("a");
 MDString ("abc");
 MDString ("message digest");
 MDString ("abcdefghijklmnopqrstuvwxyz");
 MDString
 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
 MDString
 ("1234567890123456789012345678901234567890\
1234567890123456789012345678901234567890");
}

/* Digests a file and prints the result.

Rivest [Page 19]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 */
static void MDFile (filename)
char *filename;
{
 FILE *file;
 MD_CTX context;
 int len;
 unsigned char buffer[1024], digest[16];

 if ((file = fopen (filename, "rb")) == NULL)
 printf ("%s can't be opened\n", filename);

 else {
 MDInit (&context);
 while (len = fread (buffer, 1, 1024, file))
 MDUpdate (&context, buffer, len);
 MDFinal (digest, &context);

 fclose (file);

 printf ("MD%d (%s) = ", MD, filename);
 MDPrint (digest);
 printf ("\n");
 }
}

/* Digests the standard input and prints the result.
 */
static void MDFilter ()
{
 MD_CTX context;
 int len;
 unsigned char buffer[16], digest[16];

 MDInit (&context);
 while (len = fread (buffer, 1, 16, stdin))
 MDUpdate (&context, buffer, len);
 MDFinal (digest, &context);

 MDPrint (digest);
 printf ("\n");
}

/* Prints a message digest in hexadecimal.
 */
static void MDPrint (digest)
unsigned char digest[16];
{

Rivest [Page 20]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 unsigned int i;

 for (i = 0; i < 16; i++)
 printf ("%02x", digest[i]);
}

A.5 Test suite

 The MD5 test suite (driver option "-x") should print the following
 results:

MD5 test suite:
MD5 ("") = d41d8cd98f00b204e9800998ecf8427e
MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661
MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72
MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0
MD5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3d76192e4007dfb496cca67e13b
MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") =
d174ab98d277d9f5a5611c2c9f419d9f
MD5 ("123456789012345678901234567890123456789012345678901234567890123456
78901234567890") = 57edf4a22be3c955ac49da2e2107b67a

Security Considerations

 The level of security discussed in this memo is considered to be
 sufficient for implementing very high security hybrid digital-
 signature schemes based on MD5 and a public-key cryptosystem.

Author's Address

 Ronald L. Rivest
 Massachusetts Institute of Technology
 Laboratory for Computer Science
 NE43-324
 545 Technology Square
 Cambridge, MA 02139-1986

 Phone: (617) 253-5880
 EMail: rivest@theory.lcs.mit.edu

Rivest [Page 21]
�

Network Working Group N. Freed
Request for Comments: 2046 Innosoft
Obsoletes: 1521, 1522, 1590 N. Borenstein
Category: Standards Track First Virtual
 November 1996

 Multipurpose Internet Mail Extensions
 (MIME) Part Two:
 Media Types

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 STD 11, RFC 822 defines a message representation protocol specifying
 considerable detail about US-ASCII message headers, but which leaves
 the message content, or message body, as flat US-ASCII text. This
 set of documents, collectively called the Multipurpose Internet Mail
 Extensions, or MIME, redefines the format of messages to allow for

 (1) textual message bodies in character sets other than
 US-ASCII,

 (2) an extensible set of different formats for non-textual
 message bodies,

 (3) multi-part message bodies, and

 (4) textual header information in character sets other than
 US-ASCII.

 These documents are based on earlier work documented in RFC 934, STD
 11, and RFC 1049, but extends and revises them. Because RFC 822 said
 so little about message bodies, these documents are largely
 orthogonal to (rather than a revision of) RFC 822.

 The initial document in this set, RFC 2045, specifies the various
 headers used to describe the structure of MIME messages. This second
 document defines the general structure of the MIME media typing
 system and defines an initial set of media types. The third document,
 RFC 2047, describes extensions to RFC 822 to allow non-US-ASCII text

Freed & Borenstein Standards Track [Page 1]
�
RFC 2046 Media Types November 1996

 data in Internet mail header fields. The fourth document, RFC 2048,
 specifies various IANA registration procedures for MIME-related
 facilities. The fifth and final document, RFC 2049, describes MIME
 conformance criteria as well as providing some illustrative examples
 of MIME message formats, acknowledgements, and the bibliography.

 These documents are revisions of RFCs 1521 and 1522, which themselves
 were revisions of RFCs 1341 and 1342. An appendix in RFC 2049
 describes differences and changes from previous versions.

Table of Contents

 1. Introduction ... 3
 2. Definition of a Top-Level Media Type 4
 3. Overview Of The Initial Top-Level Media Types 4
 4. Discrete Media Type Values 6
 4.1 Text Media Type 6
 4.1.1 Representation of Line Breaks 7
 4.1.2 Charset Parameter 7
 4.1.3 Plain Subtype 11
 4.1.4 Unrecognized Subtypes 11
 4.2 Image Media Type 11
 4.3 Audio Media Type 11
 4.4 Video Media Type 12
 4.5 Application Media Type 12
 4.5.1 Octet-Stream Subtype 13
 4.5.2 PostScript Subtype 14
 4.5.3 Other Application Subtypes 17
 5. Composite Media Type Values 17
 5.1 Multipart Media Type 17
 5.1.1 Common Syntax 19
 5.1.2 Handling Nested Messages and Multiparts 24
 5.1.3 Mixed Subtype 24
 5.1.4 Alternative Subtype 24
 5.1.5 Digest Subtype 26
 5.1.6 Parallel Subtype 27
 5.1.7 Other Multipart Subtypes 28
 5.2 Message Media Type 28
 5.2.1 RFC822 Subtype 28
 5.2.2 Partial Subtype 29
 5.2.2.1 Message Fragmentation and Reassembly 30
 5.2.2.2 Fragmentation and Reassembly Example 31
 5.2.3 External-Body Subtype 33
 5.2.4 Other Message Subtypes 40
 6. Experimental Media Type Values 40
 7. Summary .. 41
 8. Security Considerations 41
 9. Authors' Addresses 42

Freed & Borenstein Standards Track [Page 2]
�
RFC 2046 Media Types November 1996

 A. Collected Grammar 43

1. Introduction

 The first document in this set, RFC 2045, defines a number of header
 fields, including Content-Type. The Content-Type field is used to
 specify the nature of the data in the body of a MIME entity, by
 giving media type and subtype identifiers, and by providing auxiliary
 information that may be required for certain media types. After the
 type and subtype names, the remainder of the header field is simply a
 set of parameters, specified in an attribute/value notation. The
 ordering of parameters is not significant.

 In general, the top-level media type is used to declare the general
 type of data, while the subtype specifies a specific format for that
 type of data. Thus, a media type of "image/xyz" is enough to tell a
 user agent that the data is an image, even if the user agent has no
 knowledge of the specific image format "xyz". Such information can
 be used, for example, to decide whether or not to show a user the raw
 data from an unrecognized subtype -- such an action might be
 reasonable for unrecognized subtypes of "text", but not for
 unrecognized subtypes of "image" or "audio". For this reason,
 registered subtypes of "text", "image", "audio", and "video" should
 not contain embedded information that is really of a different type.
 Such compound formats should be represented using the "multipart" or
 "application" types.

 Parameters are modifiers of the media subtype, and as such do not
 fundamentally affect the nature of the content. The set of
 meaningful parameters depends on the media type and subtype. Most
 parameters are associated with a single specific subtype. However, a
 given top-level media type may define parameters which are applicable
 to any subtype of that type. Parameters may be required by their
 defining media type or subtype or they may be optional. MIME
 implementations must also ignore any parameters whose names they do
 not recognize.

 MIME's Content-Type header field and media type mechanism has been
 carefully designed to be extensible, and it is expected that the set
 of media type/subtype pairs and their associated parameters will grow
 significantly over time. Several other MIME facilities, such as
 transfer encodings and "message/external-body" access types, are
 likely to have new values defined over time. In order to ensure that
 the set of such values is developed in an orderly, well-specified,
 and public manner, MIME sets up a registration process which uses the
 Internet Assigned Numbers Authority (IANA) as a central registry for
 MIME's various areas of extensibility. The registration process for
 these areas is described in a companion document, RFC 2048.

Freed & Borenstein Standards Track [Page 3]
�
RFC 2046 Media Types November 1996

 The initial seven standard top-level media type are defined and
 described in the remainder of this document.

2. Definition of a Top-Level Media Type

 The definition of a top-level media type consists of:

 (1) a name and a description of the type, including
 criteria for whether a particular type would qualify
 under that type,

 (2) the names and definitions of parameters, if any, which
 are defined for all subtypes of that type (including
 whether such parameters are required or optional),

 (3) how a user agent and/or gateway should handle unknown
 subtypes of this type,

 (4) general considerations on gatewaying entities of this
 top-level type, if any, and

 (5) any restrictions on content-transfer-encodings for
 entities of this top-level type.

3. Overview Of The Initial Top-Level Media Types

 The five discrete top-level media types are:

 (1) text -- textual information. The subtype "plain" in
 particular indicates plain text containing no
 formatting commands or directives of any sort. Plain
 text is intended to be displayed "as-is". No special
 software is required to get the full meaning of the
 text, aside from support for the indicated character
 set. Other subtypes are to be used for enriched text in
 forms where application software may enhance the
 appearance of the text, but such software must not be
 required in order to get the general idea of the
 content. Possible subtypes of "text" thus include any
 word processor format that can be read without
 resorting to software that understands the format. In
 particular, formats that employ embeddded binary
 formatting information are not considered directly
 readable. A very simple and portable subtype,
 "richtext", was defined in RFC 1341, with a further
 revision in RFC 1896 under the name "enriched".

Freed & Borenstein Standards Track [Page 4]
�
RFC 2046 Media Types November 1996

 (2) image -- image data. "Image" requires a display device
 (such as a graphical display, a graphics printer, or a
 FAX machine) to view the information. An initial
 subtype is defined for the widely-used image format
 JPEG. . subtypes are defined for two widely-used image
 formats, jpeg and gif.

 (3) audio -- audio data. "Audio" requires an audio output
 device (such as a speaker or a telephone) to "display"
 the contents. An initial subtype "basic" is defined in
 this document.

 (4) video -- video data. "Video" requires the capability
 to display moving images, typically including
 specialized hardware and software. An initial subtype
 "mpeg" is defined in this document.

 (5) application -- some other kind of data, typically
 either uninterpreted binary data or information to be
 processed by an application. The subtype "octet-
 stream" is to be used in the case of uninterpreted
 binary data, in which case the simplest recommended
 action is to offer to write the information into a file
 for the user. The "PostScript" subtype is also defined
 for the transport of PostScript material. Other
 expected uses for "application" include spreadsheets,
 data for mail-based scheduling systems, and languages
 for "active" (computational) messaging, and word
 processing formats that are not directly readable.
 Note that security considerations may exist for some
 types of application data, most notably
 "application/PostScript" and any form of active
 messaging. These issues are discussed later in this
 document.

 The two composite top-level media types are:

 (1) multipart -- data consisting of multiple entities of
 independent data types. Four subtypes are initially
 defined, including the basic "mixed" subtype specifying
 a generic mixed set of parts, "alternative" for
 representing the same data in multiple formats,
 "parallel" for parts intended to be viewed
 simultaneously, and "digest" for multipart entities in
 which each part has a default type of "message/rfc822".

Freed & Borenstein Standards Track [Page 5]
�
RFC 2046 Media Types November 1996

 (2) message -- an encapsulated message. A body of media
 type "message" is itself all or a portion of some kind
 of message object. Such objects may or may not in turn
 contain other entities. The "rfc822" subtype is used
 when the encapsulated content is itself an RFC 822
 message. The "partial" subtype is defined for partial
 RFC 822 messages, to permit the fragmented transmission
 of bodies that are thought to be too large to be passed
 through transport facilities in one piece. Another
 subtype, "external-body", is defined for specifying
 large bodies by reference to an external data source.

 It should be noted that the list of media type values given here may
 be augmented in time, via the mechanisms described above, and that
 the set of subtypes is expected to grow substantially.

4. Discrete Media Type Values

 Five of the seven initial media type values refer to discrete bodies.
 The content of these types must be handled by non-MIME mechanisms;
 they are opaque to MIME processors.

4.1. Text Media Type

 The "text" media type is intended for sending material which is
 principally textual in form. A "charset" parameter may be used to
 indicate the character set of the body text for "text" subtypes,
 notably including the subtype "text/plain", which is a generic
 subtype for plain text. Plain text does not provide for or allow
 formatting commands, font attribute specifications, processing
 instructions, interpretation directives, or content markup. Plain
 text is seen simply as a linear sequence of characters, possibly
 interrupted by line breaks or page breaks. Plain text may allow the
 stacking of several characters in the same position in the text.
 Plain text in scripts like Arabic and Hebrew may also include
 facilitites that allow the arbitrary mixing of text segments with
 opposite writing directions.

 Beyond plain text, there are many formats for representing what might
 be known as "rich text". An interesting characteristic of many such
 representations is that they are to some extent readable even without
 the software that interprets them. It is useful, then, to
 distinguish them, at the highest level, from such unreadable data as
 images, audio, or text represented in an unreadable form. In the
 absence of appropriate interpretation software, it is reasonable to
 show subtypes of "text" to the user, while it is not reasonable to do
 so with most nontextual data. Such formatted textual data should be
 represented using subtypes of "text".

Freed & Borenstein Standards Track [Page 6]
�
RFC 2046 Media Types November 1996

4.1.1. Representation of Line Breaks

 The canonical form of any MIME "text" subtype MUST always represent a
 line break as a CRLF sequence. Similarly, any occurrence of CRLF in
 MIME "text" MUST represent a line break. Use of CR and LF outside of
 line break sequences is also forbidden.

 This rule applies regardless of format or character set or sets
 involved.

 NOTE: The proper interpretation of line breaks when a body is
 displayed depends on the media type. In particular, while it is
 appropriate to treat a line break as a transition to a new line when
 displaying a "text/plain" body, this treatment is actually incorrect
 for other subtypes of "text" like "text/enriched" [RFC-1896].
 Similarly, whether or not line breaks should be added during display
 operations is also a function of the media type. It should not be
 necessary to add any line breaks to display "text/plain" correctly,
 whereas proper display of "text/enriched" requires the appropriate
 addition of line breaks.

 NOTE: Some protocols defines a maximum line length. E.g. SMTP [RFC-
 821] allows a maximum of 998 octets before the next CRLF sequence.
 To be transported by such protocols, data which includes too long
 segments without CRLF sequences must be encoded with a suitable
 content-transfer-encoding.

4.1.2. Charset Parameter

 A critical parameter that may be specified in the Content-Type field
 for "text/plain" data is the character set. This is specified with a
 "charset" parameter, as in:

 Content-type: text/plain; charset=iso-8859-1

 Unlike some other parameter values, the values of the charset
 parameter are NOT case sensitive. The default character set, which
 must be assumed in the absence of a charset parameter, is US-ASCII.

 The specification for any future subtypes of "text" must specify
 whether or not they will also utilize a "charset" parameter, and may
 possibly restrict its values as well. For other subtypes of "text"
 than "text/plain", the semantics of the "charset" parameter should be
 defined to be identical to those specified here for "text/plain",
 i.e., the body consists entirely of characters in the given charset.
 In particular, definers of future "text" subtypes should pay close
 attention to the implications of multioctet character sets for their
 subtype definitions.

Freed & Borenstein Standards Track [Page 7]
�
RFC 2046 Media Types November 1996

 The charset parameter for subtypes of "text" gives a name of a
 character set, as "character set" is defined in RFC 2045. The rules
 regarding line breaks detailed in the previous section must also be
 observed -- a character set whose definition does not conform to
 these rules cannot be used in a MIME "text" subtype.

 An initial list of predefined character set names can be found at the
 end of this section. Additional character sets may be registered
 with IANA.

 Other media types than subtypes of "text" might choose to employ the
 charset parameter as defined here, but with the CRLF/line break
 restriction removed. Therefore, all character sets that conform to
 the general definition of "character set" in RFC 2045 can be
 registered for MIME use.

 Note that if the specified character set includes 8-bit characters
 and such characters are used in the body, a Content-Transfer-Encoding
 header field and a corresponding encoding on the data are required in
 order to transmit the body via some mail transfer protocols, such as
 SMTP [RFC-821].

 The default character set, US-ASCII, has been the subject of some
 confusion and ambiguity in the past. Not only were there some
 ambiguities in the definition, there have been wide variations in
 practice. In order to eliminate such ambiguity and variations in the
 future, it is strongly recommended that new user agents explicitly
 specify a character set as a media type parameter in the Content-Type
 header field. "US-ASCII" does not indicate an arbitrary 7-bit
 character set, but specifies that all octets in the body must be
 interpreted as characters according to the US-ASCII character set.
 National and application-oriented versions of ISO 646 [ISO-646] are
 usually NOT identical to US-ASCII, and in that case their use in
 Internet mail is explicitly discouraged. The omission of the ISO 646
 character set from this document is deliberate in this regard. The
 character set name of "US-ASCII" explicitly refers to the character
 set defined in ANSI X3.4-1986 [US- ASCII]. The new international
 reference version (IRV) of the 1991 edition of ISO 646 is identical
 to US-ASCII. The character set name "ASCII" is reserved and must not
 be used for any purpose.

 NOTE: RFC 821 explicitly specifies "ASCII", and references an earlier
 version of the American Standard. Insofar as one of the purposes of
 specifying a media type and character set is to permit the receiver
 to unambiguously determine how the sender intended the coded message
 to be interpreted, assuming anything other than "strict ASCII" as the
 default would risk unintentional and incompatible changes to the
 semantics of messages now being transmitted. This also implies that

Freed & Borenstein Standards Track [Page 8]
�
RFC 2046 Media Types November 1996

 messages containing characters coded according to other versions of
 ISO 646 than US-ASCII and the 1991 IRV, or using code-switching
 procedures (e.g., those of ISO 2022), as well as 8bit or multiple
 octet character encodings MUST use an appropriate character set
 specification to be consistent with MIME.

 The complete US-ASCII character set is listed in ANSI X3.4- 1986.
 Note that the control characters including DEL (0-31, 127) have no
 defined meaning in apart from the combination CRLF (US-ASCII values
 13 and 10) indicating a new line. Two of the characters have de
 facto meanings in wide use: FF (12) often means "start subsequent
 text on the beginning of a new page"; and TAB or HT (9) often (though
 not always) means "move the cursor to the next available column after
 the current position where the column number is a multiple of 8
 (counting the first column as column 0)." Aside from these
 conventions, any use of the control characters or DEL in a body must
 either occur

 (1) because a subtype of text other than "plain"
 specifically assigns some additional meaning, or

 (2) within the context of a private agreement between the
 sender and recipient. Such private agreements are
 discouraged and should be replaced by the other
 capabilities of this document.

 NOTE: An enormous proliferation of character sets exist beyond US-
 ASCII. A large number of partially or totally overlapping character
 sets is NOT a good thing. A SINGLE character set that can be used
 universally for representing all of the world's languages in Internet
 mail would be preferrable. Unfortunately, existing practice in
 several communities seems to point to the continued use of multiple
 character sets in the near future. A small number of standard
 character sets are, therefore, defined for Internet use in this
 document.

 The defined charset values are:

 (1) US-ASCII -- as defined in ANSI X3.4-1986 [US-ASCII].

 (2) ISO-8859-X -- where "X" is to be replaced, as
 necessary, for the parts of ISO-8859 [ISO-8859]. Note
 that the ISO 646 character sets have deliberately been
 omitted in favor of their 8859 replacements, which are
 the designated character sets for Internet mail. As of
 the publication of this document, the legitimate values
 for "X" are the digits 1 through 10.

Freed & Borenstein Standards Track [Page 9]
�
RFC 2046 Media Types November 1996

 Characters in the range 128-159 has no assigned meaning in ISO-8859-
 X. Characters with values below 128 in ISO-8859-X have the same
 assigned meaning as they do in US-ASCII.

 Part 6 of ISO 8859 (Latin/Arabic alphabet) and part 8 (Latin/Hebrew
 alphabet) includes both characters for which the normal writing
 direction is right to left and characters for which it is left to
 right, but do not define a canonical ordering method for representing
 bi-directional text. The charset values "ISO-8859-6" and "ISO-8859-
 8", however, specify that the visual method is used [RFC-1556].

 All of these character sets are used as pure 7bit or 8bit sets
 without any shift or escape functions. The meaning of shift and
 escape sequences in these character sets is not defined.

 The character sets specified above are the ones that were relatively
 uncontroversial during the drafting of MIME. This document does not
 endorse the use of any particular character set other than US-ASCII,
 and recognizes that the future evolution of world character sets
 remains unclear.

 Note that the character set used, if anything other than US- ASCII,
 must always be explicitly specified in the Content-Type field.

 No character set name other than those defined above may be used in
 Internet mail without the publication of a formal specification and
 its registration with IANA, or by private agreement, in which case
 the character set name must begin with "X-".

 Implementors are discouraged from defining new character sets unless
 absolutely necessary.

 The "charset" parameter has been defined primarily for the purpose of
 textual data, and is described in this section for that reason.
 However, it is conceivable that non-textual data might also wish to
 specify a charset value for some purpose, in which case the same
 syntax and values should be used.

 In general, composition software should always use the "lowest common
 denominator" character set possible. For example, if a body contains
 only US-ASCII characters, it SHOULD be marked as being in the US-
 ASCII character set, not ISO-8859-1, which, like all the ISO-8859
 family of character sets, is a superset of US-ASCII. More generally,
 if a widely-used character set is a subset of another character set,
 and a body contains only characters in the widely-used subset, it
 should be labelled as being in that subset. This will increase the
 chances that the recipient will be able to view the resulting entity
 correctly.

Freed & Borenstein Standards Track [Page 10]
�
RFC 2046 Media Types November 1996

4.1.3. Plain Subtype

 The simplest and most important subtype of "text" is "plain". This
 indicates plain text that does not contain any formatting commands or
 directives. Plain text is intended to be displayed "as-is", that is,
 no interpretation of embedded formatting commands, font attribute
 specifications, processing instructions, interpretation directives,
 or content markup should be necessary for proper display. The
 default media type of "text/plain; charset=us-ascii" for Internet
 mail describes existing Internet practice. That is, it is the type
 of body defined by RFC 822.

 No other "text" subtype is defined by this document.

4.1.4. Unrecognized Subtypes

 Unrecognized subtypes of "text" should be treated as subtype "plain"
 as long as the MIME implementation knows how to handle the charset.
 Unrecognized subtypes which also specify an unrecognized charset
 should be treated as "application/octet- stream".

4.2. Image Media Type

 A media type of "image" indicates that the body contains an image.
 The subtype names the specific image format. These names are not
 case sensitive. An initial subtype is "jpeg" for the JPEG format
 using JFIF encoding [JPEG].

 The list of "image" subtypes given here is neither exclusive nor
 exhaustive, and is expected to grow as more types are registered with
 IANA, as described in RFC 2048.

 Unrecognized subtypes of "image" should at a miniumum be treated as
 "application/octet-stream". Implementations may optionally elect to
 pass subtypes of "image" that they do not specifically recognize to a
 secure and robust general-purpose image viewing application, if such
 an application is available.

 NOTE: Using of a generic-purpose image viewing application this way
 inherits the security problems of the most dangerous type supported
 by the application.

4.3. Audio Media Type

 A media type of "audio" indicates that the body contains audio data.
 Although there is not yet a consensus on an "ideal" audio format for
 use with computers, there is a pressing need for a format capable of
 providing interoperable behavior.

Freed & Borenstein Standards Track [Page 11]
�
RFC 2046 Media Types November 1996

 The initial subtype of "basic" is specified to meet this requirement
 by providing an absolutely minimal lowest common denominator audio
 format. It is expected that richer formats for higher quality and/or
 lower bandwidth audio will be defined by a later document.

 The content of the "audio/basic" subtype is single channel audio
 encoded using 8bit ISDN mu-law [PCM] at a sample rate of 8000 Hz.

 Unrecognized subtypes of "audio" should at a miniumum be treated as
 "application/octet-stream". Implementations may optionally elect to
 pass subtypes of "audio" that they do not specifically recognize to a
 robust general-purpose audio playing application, if such an
 application is available.

4.4. Video Media Type

 A media type of "video" indicates that the body contains a time-
 varying-picture image, possibly with color and coordinated sound.
 The term 'video' is used in its most generic sense, rather than with
 reference to any particular technology or format, and is not meant to
 preclude subtypes such as animated drawings encoded compactly. The
 subtype "mpeg" refers to video coded according to the MPEG standard
 [MPEG].

 Note that although in general this document strongly discourages the
 mixing of multiple media in a single body, it is recognized that many
 so-called video formats include a representation for synchronized
 audio, and this is explicitly permitted for subtypes of "video".

 Unrecognized subtypes of "video" should at a minumum be treated as
 "application/octet-stream". Implementations may optionally elect to
 pass subtypes of "video" that they do not specifically recognize to a
 robust general-purpose video display application, if such an
 application is available.

4.5. Application Media Type

 The "application" media type is to be used for discrete data which do
 not fit in any of the other categories, and particularly for data to
 be processed by some type of application program. This is
 information which must be processed by an application before it is
 viewable or usable by a user. Expected uses for the "application"
 media type include file transfer, spreadsheets, data for mail-based
 scheduling systems, and languages for "active" (computational)
 material. (The latter, in particular, can pose security problems
 which must be understood by implementors, and are considered in
 detail in the discussion of the "application/PostScript" media type.)

Freed & Borenstein Standards Track [Page 12]
�
RFC 2046 Media Types November 1996

 For example, a meeting scheduler might define a standard
 representation for information about proposed meeting dates. An
 intelligent user agent would use this information to conduct a dialog
 with the user, and might then send additional material based on that
 dialog. More generally, there have been several "active" messaging
 languages developed in which programs in a suitably specialized
 language are transported to a remote location and automatically run
 in the recipient's environment.

 Such applications may be defined as subtypes of the "application"
 media type. This document defines two subtypes:

 octet-stream, and PostScript.

 The subtype of "application" will often be either the name or include
 part of the name of the application for which the data are intended.
 This does not mean, however, that any application program name may be
 used freely as a subtype of "application".

4.5.1. Octet-Stream Subtype

 The "octet-stream" subtype is used to indicate that a body contains
 arbitrary binary data. The set of currently defined parameters is:

 (1) TYPE -- the general type or category of binary data.
 This is intended as information for the human recipient
 rather than for any automatic processing.

 (2) PADDING -- the number of bits of padding that were
 appended to the bit-stream comprising the actual
 contents to produce the enclosed 8bit byte-oriented
 data. This is useful for enclosing a bit-stream in a
 body when the total number of bits is not a multiple of
 8.

 Both of these parameters are optional.

 An additional parameter, "CONVERSIONS", was defined in RFC 1341 but
 has since been removed. RFC 1341 also defined the use of a "NAME"
 parameter which gave a suggested file name to be used if the data
 were to be written to a file. This has been deprecated in
 anticipation of a separate Content-Disposition header field, to be
 defined in a subsequent RFC.

 The recommended action for an implementation that receives an
 "application/octet-stream" entity is to simply offer to put the data
 in a file, with any Content-Transfer-Encoding undone, or perhaps to
 use it as input to a user-specified process.

Freed & Borenstein Standards Track [Page 13]
�
RFC 2046 Media Types November 1996

 To reduce the danger of transmitting rogue programs, it is strongly
 recommended that implementations NOT implement a path-search
 mechanism whereby an arbitrary program named in the Content-Type
 parameter (e.g., an "interpreter=" parameter) is found and executed
 using the message body as input.

4.5.2. PostScript Subtype

 A media type of "application/postscript" indicates a PostScript
 program. Currently two variants of the PostScript language are
 allowed; the original level 1 variant is described in [POSTSCRIPT]
 and the more recent level 2 variant is described in [POSTSCRIPT2].

 PostScript is a registered trademark of Adobe Systems, Inc. Use of
 the MIME media type "application/postscript" implies recognition of
 that trademark and all the rights it entails.

 The PostScript language definition provides facilities for internal
 labelling of the specific language features a given program uses.
 This labelling, called the PostScript document structuring
 conventions, or DSC, is very general and provides substantially more
 information than just the language level. The use of document
 structuring conventions, while not required, is strongly recommended
 as an aid to interoperability. Documents which lack proper
 structuring conventions cannot be tested to see whether or not they
 will work in a given environment. As such, some systems may assume
 the worst and refuse to process unstructured documents.

 The execution of general-purpose PostScript interpreters entails
 serious security risks, and implementors are discouraged from simply
 sending PostScript bodies to "off- the-shelf" interpreters. While it
 is usually safe to send PostScript to a printer, where the potential
 for harm is greatly constrained by typical printer environments,
 implementors should consider all of the following before they add
 interactive display of PostScript bodies to their MIME readers.

 The remainder of this section outlines some, though probably not all,
 of the possible problems with the transport of PostScript entities.

 (1) Dangerous operations in the PostScript language
 include, but may not be limited to, the PostScript
 operators "deletefile", "renamefile", "filenameforall",
 and "file". "File" is only dangerous when applied to
 something other than standard input or output.
 Implementations may also define additional nonstandard
 file operators; these may also pose a threat to
 security. "Filenameforall", the wildcard file search
 operator, may appear at first glance to be harmless.

Freed & Borenstein Standards Track [Page 14]
�
RFC 2046 Media Types November 1996

 Note, however, that this operator has the potential to
 reveal information about what files the recipient has
 access to, and this information may itself be
 sensitive. Message senders should avoid the use of
 potentially dangerous file operators, since these
 operators are quite likely to be unavailable in secure
 PostScript implementations. Message receiving and
 displaying software should either completely disable
 all potentially dangerous file operators or take
 special care not to delegate any special authority to
 their operation. These operators should be viewed as
 being done by an outside agency when interpreting
 PostScript documents. Such disabling and/or checking
 should be done completely outside of the reach of the
 PostScript language itself; care should be taken to
 insure that no method exists for re-enabling full-
 function versions of these operators.

 (2) The PostScript language provides facilities for exiting
 the normal interpreter, or server, loop. Changes made
 in this "outer" environment are customarily retained
 across documents, and may in some cases be retained
 semipermanently in nonvolatile memory. The operators
 associated with exiting the interpreter loop have the
 potential to interfere with subsequent document
 processing. As such, their unrestrained use
 constitutes a threat of service denial. PostScript
 operators that exit the interpreter loop include, but
 may not be limited to, the exitserver and startjob
 operators. Message sending software should not
 generate PostScript that depends on exiting the
 interpreter loop to operate, since the ability to exit
 will probably be unavailable in secure PostScript
 implementations. Message receiving and displaying
 software should completely disable the ability to make
 retained changes to the PostScript environment by
 eliminating or disabling the "startjob" and
 "exitserver" operations. If these operations cannot be
 eliminated or completely disabled the password
 associated with them should at least be set to a hard-
 to-guess value.

 (3) PostScript provides operators for setting system-wide
 and device-specific parameters. These parameter
 settings may be retained across jobs and may
 potentially pose a threat to the correct operation of
 the interpreter. The PostScript operators that set
 system and device parameters include, but may not be

Freed & Borenstein Standards Track [Page 15]
�
RFC 2046 Media Types November 1996

 limited to, the "setsystemparams" and "setdevparams"
 operators. Message sending software should not
 generate PostScript that depends on the setting of
 system or device parameters to operate correctly. The
 ability to set these parameters will probably be
 unavailable in secure PostScript implementations.
 Message receiving and displaying software should
 disable the ability to change system and device
 parameters. If these operators cannot be completely
 disabled the password associated with them should at
 least be set to a hard-to-guess value.

 (4) Some PostScript implementations provide nonstandard
 facilities for the direct loading and execution of
 machine code. Such facilities are quite obviously open
 to substantial abuse. Message sending software should
 not make use of such features. Besides being totally
 hardware-specific, they are also likely to be
 unavailable in secure implementations of PostScript.
 Message receiving and displaying software should not
 allow such operators to be used if they exist.

 (5) PostScript is an extensible language, and many, if not
 most, implementations of it provide a number of their
 own extensions. This document does not deal with such
 extensions explicitly since they constitute an unknown
 factor. Message sending software should not make use
 of nonstandard extensions; they are likely to be
 missing from some implementations. Message receiving
 and displaying software should make sure that any
 nonstandard PostScript operators are secure and don't
 present any kind of threat.

 (6) It is possible to write PostScript that consumes huge
 amounts of various system resources. It is also
 possible to write PostScript programs that loop
 indefinitely. Both types of programs have the
 potential to cause damage if sent to unsuspecting
 recipients. Message-sending software should avoid the
 construction and dissemination of such programs, which
 is antisocial. Message receiving and displaying
 software should provide appropriate mechanisms to abort
 processing after a reasonable amount of time has
 elapsed. In addition, PostScript interpreters should be
 limited to the consumption of only a reasonable amount
 of any given system resource.

Freed & Borenstein Standards Track [Page 16]
�
RFC 2046 Media Types November 1996

 (7) It is possible to include raw binary information inside
 PostScript in various forms. This is not recommended
 for use in Internet mail, both because it is not
 supported by all PostScript interpreters and because it
 significantly complicates the use of a MIME Content-
 Transfer-Encoding. (Without such binary, PostScript
 may typically be viewed as line-oriented data. The
 treatment of CRLF sequences becomes extremely
 problematic if binary and line-oriented data are mixed
 in a single Postscript data stream.)

 (8) Finally, bugs may exist in some PostScript interpreters
 which could possibly be exploited to gain unauthorized
 access to a recipient's system. Apart from noting this
 possibility, there is no specific action to take to
 prevent this, apart from the timely correction of such
 bugs if any are found.

4.5.3. Other Application Subtypes

 It is expected that many other subtypes of "application" will be
 defined in the future. MIME implementations must at a minimum treat
 any unrecognized subtypes as being equivalent to "application/octet-
 stream".

5. Composite Media Type Values

 The remaining two of the seven initial Content-Type values refer to
 composite entities. Composite entities are handled using MIME
 mechanisms -- a MIME processor typically handles the body directly.

5.1. Multipart Media Type

 In the case of multipart entities, in which one or more different
 sets of data are combined in a single body, a "multipart" media type
 field must appear in the entity's header. The body must then contain
 one or more body parts, each preceded by a boundary delimiter line,
 and the last one followed by a closing boundary delimiter line.
 After its boundary delimiter line, each body part then consists of a
 header area, a blank line, and a body area. Thus a body part is
 similar to an RFC 822 message in syntax, but different in meaning.

 A body part is an entity and hence is NOT to be interpreted as
 actually being an RFC 822 message. To begin with, NO header fields
 are actually required in body parts. A body part that starts with a
 blank line, therefore, is allowed and is a body part for which all
 default values are to be assumed. In such a case, the absence of a
 Content-Type header usually indicates that the corresponding body has

Freed & Borenstein Standards Track [Page 17]
�
RFC 2046 Media Types November 1996

 a content-type of "text/plain; charset=US-ASCII".

 The only header fields that have defined meaning for body parts are
 those the names of which begin with "Content-". All other header
 fields may be ignored in body parts. Although they should generally
 be retained if at all possible, they may be discarded by gateways if
 necessary. Such other fields are permitted to appear in body parts
 but must not be depended on. "X-" fields may be created for
 experimental or private purposes, with the recognition that the
 information they contain may be lost at some gateways.

 NOTE: The distinction between an RFC 822 message and a body part is
 subtle, but important. A gateway between Internet and X.400 mail,
 for example, must be able to tell the difference between a body part
 that contains an image and a body part that contains an encapsulated
 message, the body of which is a JPEG image. In order to represent
 the latter, the body part must have "Content-Type: message/rfc822",
 and its body (after the blank line) must be the encapsulated message,
 with its own "Content-Type: image/jpeg" header field. The use of
 similar syntax facilitates the conversion of messages to body parts,
 and vice versa, but the distinction between the two must be
 understood by implementors. (For the special case in which parts
 actually are messages, a "digest" subtype is also defined.)

 As stated previously, each body part is preceded by a boundary
 delimiter line that contains the boundary delimiter. The boundary
 delimiter MUST NOT appear inside any of the encapsulated parts, on a
 line by itself or as the prefix of any line. This implies that it is
 crucial that the composing agent be able to choose and specify a
 unique boundary parameter value that does not contain the boundary
 parameter value of an enclosing multipart as a prefix.

 All present and future subtypes of the "multipart" type must use an
 identical syntax. Subtypes may differ in their semantics, and may
 impose additional restrictions on syntax, but must conform to the
 required syntax for the "multipart" type. This requirement ensures
 that all conformant user agents will at least be able to recognize
 and separate the parts of any multipart entity, even those of an
 unrecognized subtype.

 As stated in the definition of the Content-Transfer-Encoding field
 [RFC 2045], no encoding other than "7bit", "8bit", or "binary" is
 permitted for entities of type "multipart". The "multipart" boundary
 delimiters and header fields are always represented as 7bit US-ASCII
 in any case (though the header fields may encode non-US-ASCII header
 text as per RFC 2047) and data within the body parts can be encoded
 on a part-by-part basis, with Content-Transfer-Encoding fields for
 each appropriate body part.

Freed & Borenstein Standards Track [Page 18]
�
RFC 2046 Media Types November 1996

5.1.1. Common Syntax

 This section defines a common syntax for subtypes of "multipart".
 All subtypes of "multipart" must use this syntax. A simple example
 of a multipart message also appears in this section. An example of a
 more complex multipart message is given in RFC 2049.

 The Content-Type field for multipart entities requires one parameter,
 "boundary". The boundary delimiter line is then defined as a line
 consisting entirely of two hyphen characters ("-", decimal value 45)
 followed by the boundary parameter value from the Content-Type header
 field, optional linear whitespace, and a terminating CRLF.

 NOTE: The hyphens are for rough compatibility with the earlier RFC
 934 method of message encapsulation, and for ease of searching for
 the boundaries in some implementations. However, it should be noted
 that multipart messages are NOT completely compatible with RFC 934
 encapsulations; in particular, they do not obey RFC 934 quoting
 conventions for embedded lines that begin with hyphens. This
 mechanism was chosen over the RFC 934 mechanism because the latter
 causes lines to grow with each level of quoting. The combination of
 this growth with the fact that SMTP implementations sometimes wrap
 long lines made the RFC 934 mechanism unsuitable for use in the event
 that deeply-nested multipart structuring is ever desired.

 WARNING TO IMPLEMENTORS: The grammar for parameters on the Content-
 type field is such that it is often necessary to enclose the boundary
 parameter values in quotes on the Content-type line. This is not
 always necessary, but never hurts. Implementors should be sure to
 study the grammar carefully in order to avoid producing invalid
 Content-type fields. Thus, a typical "multipart" Content-Type header
 field might look like this:

 Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p

 But the following is not valid:

 Content-Type: multipart/mixed; boundary=gc0pJq0M:08jU534c0p

 (because of the colon) and must instead be represented as

 Content-Type: multipart/mixed; boundary="gc0pJq0M:08jU534c0p"

 This Content-Type value indicates that the content consists of one or
 more parts, each with a structure that is syntactically identical to
 an RFC 822 message, except that the header area is allowed to be
 completely empty, and that the parts are each preceded by the line

Freed & Borenstein Standards Track [Page 19]
�
RFC 2046 Media Types November 1996

 --gc0pJq0M:08jU534c0p

 The boundary delimiter MUST occur at the beginning of a line, i.e.,
 following a CRLF, and the initial CRLF is considered to be attached
 to the boundary delimiter line rather than part of the preceding
 part. The boundary may be followed by zero or more characters of
 linear whitespace. It is then terminated by either another CRLF and
 the header fields for the next part, or by two CRLFs, in which case
 there are no header fields for the next part. If no Content-Type
 field is present it is assumed to be "message/rfc822" in a
 "multipart/digest" and "text/plain" otherwise.

 NOTE: The CRLF preceding the boundary delimiter line is conceptually
 attached to the boundary so that it is possible to have a part that
 does not end with a CRLF (line break). Body parts that must be
 considered to end with line breaks, therefore, must have two CRLFs
 preceding the boundary delimiter line, the first of which is part of
 the preceding body part, and the second of which is part of the
 encapsulation boundary.

 Boundary delimiters must not appear within the encapsulated material,
 and must be no longer than 70 characters, not counting the two
 leading hyphens.

 The boundary delimiter line following the last body part is a
 distinguished delimiter that indicates that no further body parts
 will follow. Such a delimiter line is identical to the previous
 delimiter lines, with the addition of two more hyphens after the
 boundary parameter value.

 --gc0pJq0M:08jU534c0p--

 NOTE TO IMPLEMENTORS: Boundary string comparisons must compare the
 boundary value with the beginning of each candidate line. An exact
 match of the entire candidate line is not required; it is sufficient
 that the boundary appear in its entirety following the CRLF.

 There appears to be room for additional information prior to the
 first boundary delimiter line and following the final boundary
 delimiter line. These areas should generally be left blank, and
 implementations must ignore anything that appears before the first
 boundary delimiter line or after the last one.

 NOTE: These "preamble" and "epilogue" areas are generally not used
 because of the lack of proper typing of these parts and the lack of
 clear semantics for handling these areas at gateways, particularly
 X.400 gateways. However, rather than leaving the preamble area
 blank, many MIME implementations have found this to be a convenient

Freed & Borenstein Standards Track [Page 20]
�
RFC 2046 Media Types November 1996

 place to insert an explanatory note for recipients who read the
 message with pre-MIME software, since such notes will be ignored by
 MIME-compliant software.

 NOTE: Because boundary delimiters must not appear in the body parts
 being encapsulated, a user agent must exercise care to choose a
 unique boundary parameter value. The boundary parameter value in the
 example above could have been the result of an algorithm designed to
 produce boundary delimiters with a very low probability of already
 existing in the data to be encapsulated without having to prescan the
 data. Alternate algorithms might result in more "readable" boundary
 delimiters for a recipient with an old user agent, but would require
 more attention to the possibility that the boundary delimiter might
 appear at the beginning of some line in the encapsulated part. The
 simplest boundary delimiter line possible is something like "---",
 with a closing boundary delimiter line of "-----".

 As a very simple example, the following multipart message has two
 parts, both of them plain text, one of them explicitly typed and one
 of them implicitly typed:

 From: Nathaniel Borenstein <nsb@bellcore.com>
 To: Ned Freed <ned@innosoft.com>
 Date: Sun, 21 Mar 1993 23:56:48 -0800 (PST)
 Subject: Sample message
 MIME-Version: 1.0
 Content-type: multipart/mixed; boundary="simple boundary"

 This is the preamble. It is to be ignored, though it
 is a handy place for composition agents to include an
 explanatory note to non-MIME conformant readers.

 --simple boundary

 This is implicitly typed plain US-ASCII text.
 It does NOT end with a linebreak.
 --simple boundary
 Content-type: text/plain; charset=us-ascii

 This is explicitly typed plain US-ASCII text.
 It DOES end with a linebreak.

 --simple boundary--

 This is the epilogue. It is also to be ignored.

Freed & Borenstein Standards Track [Page 21]
�
RFC 2046 Media Types November 1996

 The use of a media type of "multipart" in a body part within another
 "multipart" entity is explicitly allowed. In such cases, for obvious
 reasons, care must be taken to ensure that each nested "multipart"
 entity uses a different boundary delimiter. See RFC 2049 for an
 example of nested "multipart" entities.

 The use of the "multipart" media type with only a single body part
 may be useful in certain contexts, and is explicitly permitted.

 NOTE: Experience has shown that a "multipart" media type with a
 single body part is useful for sending non-text media types. It has
 the advantage of providing the preamble as a place to include
 decoding instructions. In addition, a number of SMTP gateways move
 or remove the MIME headers, and a clever MIME decoder can take a good
 guess at multipart boundaries even in the absence of the Content-Type
 header and thereby successfully decode the message.

 The only mandatory global parameter for the "multipart" media type is
 the boundary parameter, which consists of 1 to 70 characters from a
 set of characters known to be very robust through mail gateways, and
 NOT ending with white space. (If a boundary delimiter line appears to
 end with white space, the white space must be presumed to have been
 added by a gateway, and must be deleted.) It is formally specified
 by the following BNF:

 boundary := 0*69<bchars> bcharsnospace

 bchars := bcharsnospace / " "

 bcharsnospace := DIGIT / ALPHA / "'" / "(" / ")" /
 "+" / "_" / "," / "-" / "." /
 "/" / ":" / "=" / "?"

 Overall, the body of a "multipart" entity may be specified as
 follows:

 dash-boundary := "--" boundary
 ; boundary taken from the value of
 ; boundary parameter of the
 ; Content-Type field.

 multipart-body := [preamble CRLF]
 dash-boundary transport-padding CRLF
 body-part *encapsulation
 close-delimiter transport-padding
 [CRLF epilogue]

Freed & Borenstein Standards Track [Page 22]
�
RFC 2046 Media Types November 1996

 transport-padding := *LWSP-char
 ; Composers MUST NOT generate
 ; non-zero length transport
 ; padding, but receivers MUST
 ; be able to handle padding
 ; added by message transports.

 encapsulation := delimiter transport-padding
 CRLF body-part

 delimiter := CRLF dash-boundary

 close-delimiter := delimiter "--"

 preamble := discard-text

 epilogue := discard-text

 discard-text := *(*text CRLF) *text
 ; May be ignored or discarded.

 body-part := MIME-part-headers [CRLF *OCTET]
 ; Lines in a body-part must not start
 ; with the specified dash-boundary and
 ; the delimiter must not appear anywhere
 ; in the body part. Note that the
 ; semantics of a body-part differ from
 ; the semantics of a message, as
 ; described in the text.

 OCTET := <any 0-255 octet value>

 IMPORTANT: The free insertion of linear-white-space and RFC 822
 comments between the elements shown in this BNF is NOT allowed since
 this BNF does not specify a structured header field.

 NOTE: In certain transport enclaves, RFC 822 restrictions such as
 the one that limits bodies to printable US-ASCII characters may not
 be in force. (That is, the transport domains may exist that resemble
 standard Internet mail transport as specified in RFC 821 and assumed
 by RFC 822, but without certain restrictions.) The relaxation of
 these restrictions should be construed as locally extending the
 definition of bodies, for example to include octets outside of the
 US-ASCII range, as long as these extensions are supported by the
 transport and adequately documented in the Content- Transfer-Encoding
 header field. However, in no event are headers (either message
 headers or body part headers) allowed to contain anything other than
 US-ASCII characters.

Freed & Borenstein Standards Track [Page 23]
�
RFC 2046 Media Types November 1996

 NOTE: Conspicuously missing from the "multipart" type is a notion of
 structured, related body parts. It is recommended that those wishing
 to provide more structured or integrated multipart messaging
 facilities should define subtypes of multipart that are syntactically
 identical but define relationships between the various parts. For
 example, subtypes of multipart could be defined that include a
 distinguished part which in turn is used to specify the relationships
 between the other parts, probably referring to them by their
 Content-ID field. Old implementations will not recognize the new
 subtype if this approach is used, but will treat it as
 multipart/mixed and will thus be able to show the user the parts that
 are recognized.

5.1.2. Handling Nested Messages and Multiparts

 The "message/rfc822" subtype defined in a subsequent section of this
 document has no terminating condition other than running out of data.
 Similarly, an improperly truncated "multipart" entity may not have
 any terminating boundary marker, and can turn up operationally due to
 mail system malfunctions.

 It is essential that such entities be handled correctly when they are
 themselves imbedded inside of another "multipart" structure. MIME
 implementations are therefore required to recognize outer level
 boundary markers at ANY level of inner nesting. It is not sufficient
 to only check for the next expected marker or other terminating
 condition.

5.1.3. Mixed Subtype

 The "mixed" subtype of "multipart" is intended for use when the body
 parts are independent and need to be bundled in a particular order.
 Any "multipart" subtypes that an implementation does not recognize
 must be treated as being of subtype "mixed".

5.1.4. Alternative Subtype

 The "multipart/alternative" type is syntactically identical to
 "multipart/mixed", but the semantics are different. In particular,
 each of the body parts is an "alternative" version of the same
 information.

 Systems should recognize that the content of the various parts are
 interchangeable. Systems should choose the "best" type based on the
 local environment and references, in some cases even through user
 interaction. As with "multipart/mixed", the order of body parts is
 significant. In this case, the alternatives appear in an order of
 increasing faithfulness to the original content. In general, the

Freed & Borenstein Standards Track [Page 24]
�
RFC 2046 Media Types November 1996

 best choice is the LAST part of a type supported by the recipient
 system's local environment.

 "Multipart/alternative" may be used, for example, to send a message
 in a fancy text format in such a way that it can easily be displayed
 anywhere:

 From: Nathaniel Borenstein <nsb@bellcore.com>
 To: Ned Freed <ned@innosoft.com>
 Date: Mon, 22 Mar 1993 09:41:09 -0800 (PST)
 Subject: Formatted text mail
 MIME-Version: 1.0
 Content-Type: multipart/alternative; boundary=boundary42

 --boundary42
 Content-Type: text/plain; charset=us-ascii

 ... plain text version of message goes here ...

 --boundary42
 Content-Type: text/enriched

 ... RFC 1896 text/enriched version of same message
 goes here ...

 --boundary42
 Content-Type: application/x-whatever

 ... fanciest version of same message goes here ...

 --boundary42--

 In this example, users whose mail systems understood the
 "application/x-whatever" format would see only the fancy version,
 while other users would see only the enriched or plain text version,
 depending on the capabilities of their system.

 In general, user agents that compose "multipart/alternative" entities
 must place the body parts in increasing order of preference, that is,
 with the preferred format last. For fancy text, the sending user
 agent should put the plainest format first and the richest format
 last. Receiving user agents should pick and display the last format
 they are capable of displaying. In the case where one of the
 alternatives is itself of type "multipart" and contains unrecognized
 sub-parts, the user agent may choose either to show that alternative,
 an earlier alternative, or both.

Freed & Borenstein Standards Track [Page 25]
�
RFC 2046 Media Types November 1996

 NOTE: From an implementor's perspective, it might seem more sensible
 to reverse this ordering, and have the plainest alternative last.
 However, placing the plainest alternative first is the friendliest
 possible option when "multipart/alternative" entities are viewed
 using a non-MIME-conformant viewer. While this approach does impose
 some burden on conformant MIME viewers, interoperability with older
 mail readers was deemed to be more important in this case.

 It may be the case that some user agents, if they can recognize more
 than one of the formats, will prefer to offer the user the choice of
 which format to view. This makes sense, for example, if a message
 includes both a nicely- formatted image version and an easily-edited
 text version. What is most critical, however, is that the user not
 automatically be shown multiple versions of the same data. Either
 the user should be shown the last recognized version or should be
 given the choice.

 THE SEMANTICS OF CONTENT-ID IN MULTIPART/ALTERNATIVE: Each part of a
 "multipart/alternative" entity represents the same data, but the
 mappings between the two are not necessarily without information
 loss. For example, information is lost when translating ODA to
 PostScript or plain text. It is recommended that each part should
 have a different Content-ID value in the case where the information
 content of the two parts is not identical. And when the information
 content is identical -- for example, where several parts of type
 "message/external-body" specify alternate ways to access the
 identical data -- the same Content-ID field value should be used, to
 optimize any caching mechanisms that might be present on the
 recipient's end. However, the Content-ID values used by the parts
 should NOT be the same Content-ID value that describes the
 "multipart/alternative" as a whole, if there is any such Content-ID
 field. That is, one Content-ID value will refer to the
 "multipart/alternative" entity, while one or more other Content-ID
 values will refer to the parts inside it.

5.1.5. Digest Subtype

 This document defines a "digest" subtype of the "multipart" Content-
 Type. This type is syntactically identical to "multipart/mixed", but
 the semantics are different. In particular, in a digest, the default
 Content-Type value for a body part is changed from "text/plain" to
 "message/rfc822". This is done to allow a more readable digest
 format that is largely compatible (except for the quoting convention)
 with RFC 934.

 Note: Though it is possible to specify a Content-Type value for a
 body part in a digest which is other than "message/rfc822", such as a
 "text/plain" part containing a description of the material in the

Freed & Borenstein Standards Track [Page 26]
�
RFC 2046 Media Types November 1996

 digest, actually doing so is undesireble. The "multipart/digest"
 Content-Type is intended to be used to send collections of messages.
 If a "text/plain" part is needed, it should be included as a seperate
 part of a "multipart/mixed" message.

 A digest in this format might, then, look something like this:

 From: Moderator-Address
 To: Recipient-List
 Date: Mon, 22 Mar 1994 13:34:51 +0000
 Subject: Internet Digest, volume 42
 MIME-Version: 1.0
 Content-Type: multipart/mixed;
 boundary="---- main boundary ----"

 ------ main boundary ----

 ...Introductory text or table of contents...

 ------ main boundary ----
 Content-Type: multipart/digest;
 boundary="---- next message ----"

 ------ next message ----

 From: someone-else
 Date: Fri, 26 Mar 1993 11:13:32 +0200
 Subject: my opinion

 ...body goes here ...

 ------ next message ----

 From: someone-else-again
 Date: Fri, 26 Mar 1993 10:07:13 -0500
 Subject: my different opinion

 ... another body goes here ...

 ------ next message ------

 ------ main boundary ------

5.1.6. Parallel Subtype

 This document defines a "parallel" subtype of the "multipart"
 Content-Type. This type is syntactically identical to
 "multipart/mixed", but the semantics are different. In particular,

Freed & Borenstein Standards Track [Page 27]
�
RFC 2046 Media Types November 1996

 in a parallel entity, the order of body parts is not significant.

 A common presentation of this type is to display all of the parts
 simultaneously on hardware and software that are capable of doing so.
 However, composing agents should be aware that many mail readers will
 lack this capability and will show the parts serially in any event.

5.1.7. Other Multipart Subtypes

 Other "multipart" subtypes are expected in the future. MIME
 implementations must in general treat unrecognized subtypes of
 "multipart" as being equivalent to "multipart/mixed".

5.2. Message Media Type

 It is frequently desirable, in sending mail, to encapsulate another
 mail message. A special media type, "message", is defined to
 facilitate this. In particular, the "rfc822" subtype of "message" is
 used to encapsulate RFC 822 messages.

 NOTE: It has been suggested that subtypes of "message" might be
 defined for forwarded or rejected messages. However, forwarded and
 rejected messages can be handled as multipart messages in which the
 first part contains any control or descriptive information, and a
 second part, of type "message/rfc822", is the forwarded or rejected
 message. Composing rejection and forwarding messages in this manner
 will preserve the type information on the original message and allow
 it to be correctly presented to the recipient, and hence is strongly
 encouraged.

 Subtypes of "message" often impose restrictions on what encodings are
 allowed. These restrictions are described in conjunction with each
 specific subtype.

 Mail gateways, relays, and other mail handling agents are commonly
 known to alter the top-level header of an RFC 822 message. In
 particular, they frequently add, remove, or reorder header fields.
 These operations are explicitly forbidden for the encapsulated
 headers embedded in the bodies of messages of type "message."

5.2.1. RFC822 Subtype

 A media type of "message/rfc822" indicates that the body contains an
 encapsulated message, with the syntax of an RFC 822 message.
 However, unlike top-level RFC 822 messages, the restriction that each
 "message/rfc822" body must include a "From", "Date", and at least one
 destination header is removed and replaced with the requirement that
 at least one of "From", "Subject", or "Date" must be present.

Freed & Borenstein Standards Track [Page 28]
�
RFC 2046 Media Types November 1996

 It should be noted that, despite the use of the numbers "822", a
 "message/rfc822" entity isn't restricted to material in strict
 conformance to RFC822, nor are the semantics of "message/rfc822"
 objects restricted to the semantics defined in RFC822. More
 specifically, a "message/rfc822" message could well be a News article
 or a MIME message.

 No encoding other than "7bit", "8bit", or "binary" is permitted for
 the body of a "message/rfc822" entity. The message header fields are
 always US-ASCII in any case, and data within the body can still be
 encoded, in which case the Content-Transfer-Encoding header field in
 the encapsulated message will reflect this. Non-US-ASCII text in the
 headers of an encapsulated message can be specified using the
 mechanisms described in RFC 2047.

5.2.2. Partial Subtype

 The "partial" subtype is defined to allow large entities to be
 delivered as several separate pieces of mail and automatically
 reassembled by a receiving user agent. (The concept is similar to IP
 fragmentation and reassembly in the basic Internet Protocols.) This
 mechanism can be used when intermediate transport agents limit the
 size of individual messages that can be sent. The media type
 "message/partial" thus indicates that the body contains a fragment of
 a larger entity.

 Because data of type "message" may never be encoded in base64 or
 quoted-printable, a problem might arise if "message/partial" entities
 are constructed in an environment that supports binary or 8bit
 transport. The problem is that the binary data would be split into
 multiple "message/partial" messages, each of them requiring binary
 transport. If such messages were encountered at a gateway into a
 7bit transport environment, there would be no way to properly encode
 them for the 7bit world, aside from waiting for all of the fragments,
 reassembling the inner message, and then encoding the reassembled
 data in base64 or quoted-printable. Since it is possible that
 different fragments might go through different gateways, even this is
 not an acceptable solution. For this reason, it is specified that
 entities of type "message/partial" must always have a content-
 transfer-encoding of 7bit (the default). In particular, even in
 environments that support binary or 8bit transport, the use of a
 content- transfer-encoding of "8bit" or "binary" is explicitly
 prohibited for MIME entities of type "message/partial". This in turn
 implies that the inner message must not use "8bit" or "binary"
 encoding.

Freed & Borenstein Standards Track [Page 29]
�
RFC 2046 Media Types November 1996

 Because some message transfer agents may choose to automatically
 fragment large messages, and because such agents may use very
 different fragmentation thresholds, it is possible that the pieces of
 a partial message, upon reassembly, may prove themselves to comprise
 a partial message. This is explicitly permitted.

 Three parameters must be specified in the Content-Type field of type
 "message/partial": The first, "id", is a unique identifier, as close
 to a world-unique identifier as possible, to be used to match the
 fragments together. (In general, the identifier is essentially a
 message-id; if placed in double quotes, it can be ANY message-id, in
 accordance with the BNF for "parameter" given in RFC 2045.) The
 second, "number", an integer, is the fragment number, which indicates
 where this fragment fits into the sequence of fragments. The third,
 "total", another integer, is the total number of fragments. This
 third subfield is required on the final fragment, and is optional
 (though encouraged) on the earlier fragments. Note also that these
 parameters may be given in any order.

 Thus, the second piece of a 3-piece message may have either of the
 following header fields:

 Content-Type: Message/Partial; number=2; total=3;
 id="oc=jpbe0M2Yt4s@thumper.bellcore.com"

 Content-Type: Message/Partial;
 id="oc=jpbe0M2Yt4s@thumper.bellcore.com";
 number=2

 But the third piece MUST specify the total number of fragments:

 Content-Type: Message/Partial; number=3; total=3;
 id="oc=jpbe0M2Yt4s@thumper.bellcore.com"

 Note that fragment numbering begins with 1, not 0.

 When the fragments of an entity broken up in this manner are put
 together, the result is always a complete MIME entity, which may have
 its own Content-Type header field, and thus may contain any other
 data type.

5.2.2.1. Message Fragmentation and Reassembly

 The semantics of a reassembled partial message must be those of the
 "inner" message, rather than of a message containing the inner
 message. This makes it possible, for example, to send a large audio
 message as several partial messages, and still have it appear to the
 recipient as a simple audio message rather than as an encapsulated

Freed & Borenstein Standards Track [Page 30]
�
RFC 2046 Media Types November 1996

 message containing an audio message. That is, the encapsulation of
 the message is considered to be "transparent".

 When generating and reassembling the pieces of a "message/partial"
 message, the headers of the encapsulated message must be merged with
 the headers of the enclosing entities. In this process the following
 rules must be observed:

 (1) Fragmentation agents must split messages at line
 boundaries only. This restriction is imposed because
 splits at points other than the ends of lines in turn
 depends on message transports being able to preserve
 the semantics of messages that don't end with a CRLF
 sequence. Many transports are incapable of preserving
 such semantics.

 (2) All of the header fields from the initial enclosing
 message, except those that start with "Content-" and
 the specific header fields "Subject", "Message-ID",
 "Encrypted", and "MIME-Version", must be copied, in
 order, to the new message.

 (3) The header fields in the enclosed message which start
 with "Content-", plus the "Subject", "Message-ID",
 "Encrypted", and "MIME-Version" fields, must be
 appended, in order, to the header fields of the new
 message. Any header fields in the enclosed message
 which do not start with "Content-" (except for the
 "Subject", "Message-ID", "Encrypted", and "MIME-
 Version" fields) will be ignored and dropped.

 (4) All of the header fields from the second and any
 subsequent enclosing messages are discarded by the
 reassembly process.

5.2.2.2. Fragmentation and Reassembly Example

 If an audio message is broken into two pieces, the first piece might
 look something like this:

 X-Weird-Header-1: Foo
 From: Bill@host.com
 To: joe@otherhost.com
 Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
 Subject: Audio mail (part 1 of 2)
 Message-ID: <id1@host.com>
 MIME-Version: 1.0
 Content-type: message/partial; id="ABC@host.com";

Freed & Borenstein Standards Track [Page 31]
�
RFC 2046 Media Types November 1996

 number=1; total=2

 X-Weird-Header-1: Bar
 X-Weird-Header-2: Hello
 Message-ID: <anotherid@foo.com>
 Subject: Audio mail
 MIME-Version: 1.0
 Content-type: audio/basic
 Content-transfer-encoding: base64

 ... first half of encoded audio data goes here ...

 and the second half might look something like this:

 From: Bill@host.com
 To: joe@otherhost.com
 Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
 Subject: Audio mail (part 2 of 2)
 MIME-Version: 1.0
 Message-ID: <id2@host.com>
 Content-type: message/partial;
 id="ABC@host.com"; number=2; total=2

 ... second half of encoded audio data goes here ...

 Then, when the fragmented message is reassembled, the resulting
 message to be displayed to the user should look something like this:

 X-Weird-Header-1: Foo
 From: Bill@host.com
 To: joe@otherhost.com
 Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
 Subject: Audio mail
 Message-ID: <anotherid@foo.com>
 MIME-Version: 1.0
 Content-type: audio/basic
 Content-transfer-encoding: base64

 ... first half of encoded audio data goes here ...
 ... second half of encoded audio data goes here ...

 The inclusion of a "References" field in the headers of the second
 and subsequent pieces of a fragmented message that references the
 Message-Id on the previous piece may be of benefit to mail readers
 that understand and track references. However, the generation of
 such "References" fields is entirely optional.

Freed & Borenstein Standards Track [Page 32]
�
RFC 2046 Media Types November 1996

 Finally, it should be noted that the "Encrypted" header field has
 been made obsolete by Privacy Enhanced Messaging (PEM) [RFC-1421,
 RFC-1422, RFC-1423, RFC-1424], but the rules above are nevertheless
 believed to describe the correct way to treat it if it is encountered
 in the context of conversion to and from "message/partial" fragments.

5.2.3. External-Body Subtype

 The external-body subtype indicates that the actual body data are not
 included, but merely referenced. In this case, the parameters
 describe a mechanism for accessing the external data.

 When a MIME entity is of type "message/external-body", it consists of
 a header, two consecutive CRLFs, and the message header for the
 encapsulated message. If another pair of consecutive CRLFs appears,
 this of course ends the message header for the encapsulated message.
 However, since the encapsulated message's body is itself external, it
 does NOT appear in the area that follows. For example, consider the
 following message:

 Content-type: message/external-body;
 access-type=local-file;
 name="/u/nsb/Me.jpeg"

 Content-type: image/jpeg
 Content-ID: <id42@guppylake.bellcore.com>
 Content-Transfer-Encoding: binary

 THIS IS NOT REALLY THE BODY!

 The area at the end, which might be called the "phantom body", is
 ignored for most external-body messages. However, it may be used to
 contain auxiliary information for some such messages, as indeed it is
 when the access-type is "mail- server". The only access-type defined
 in this document that uses the phantom body is "mail-server", but
 other access-types may be defined in the future in other
 specifications that use this area.

 The encapsulated headers in ALL "message/external-body" entities MUST
 include a Content-ID header field to give a unique identifier by
 which to reference the data. This identifier may be used for caching
 mechanisms, and for recognizing the receipt of the data when the
 access-type is "mail-server".

 Note that, as specified here, the tokens that describe external-body
 data, such as file names and mail server commands, are required to be
 in the US-ASCII character set.

Freed & Borenstein Standards Track [Page 33]
�
RFC 2046 Media Types November 1996

 If this proves problematic in practice, a new mechanism may be
 required as a future extension to MIME, either as newly defined
 access-types for "message/external-body" or by some other mechanism.

 As with "message/partial", MIME entities of type "message/external-
 body" MUST have a content-transfer-encoding of 7bit (the default).
 In particular, even in environments that support binary or 8bit
 transport, the use of a content- transfer-encoding of "8bit" or
 "binary" is explicitly prohibited for entities of type
 "message/external-body".

5.2.3.1. General External-Body Parameters

 The parameters that may be used with any "message/external- body"
 are:

 (1) ACCESS-TYPE -- A word indicating the supported access
 mechanism by which the file or data may be obtained.
 This word is not case sensitive. Values include, but
 are not limited to, "FTP", "ANON-FTP", "TFTP", "LOCAL-
 FILE", and "MAIL-SERVER". Future values, except for
 experimental values beginning with "X-", must be
 registered with IANA, as described in RFC 2048.
 This parameter is unconditionally mandatory and MUST be
 present on EVERY "message/external-body".

 (2) EXPIRATION -- The date (in the RFC 822 "date-time"
 syntax, as extended by RFC 1123 to permit 4 digits in
 the year field) after which the existence of the
 external data is not guaranteed. This parameter may be
 used with ANY access-type and is ALWAYS optional.

 (3) SIZE -- The size (in octets) of the data. The intent
 of this parameter is to help the recipient decide
 whether or not to expend the necessary resources to
 retrieve the external data. Note that this describes
 the size of the data in its canonical form, that is,
 before any Content-Transfer-Encoding has been applied
 or after the data have been decoded. This parameter
 may be used with ANY access-type and is ALWAYS
 optional.

 (4) PERMISSION -- A case-insensitive field that indicates
 whether or not it is expected that clients might also
 attempt to overwrite the data. By default, or if
 permission is "read", the assumption is that they are
 not, and that if the data is retrieved once, it is
 never needed again. If PERMISSION is "read-write",

Freed & Borenstein Standards Track [Page 34]
�
RFC 2046 Media Types November 1996

 this assumption is invalid, and any local copy must be
 considered no more than a cache. "Read" and "Read-
 write" are the only defined values of permission. This
 parameter may be used with ANY access-type and is
 ALWAYS optional.

 The precise semantics of the access-types defined here are described
 in the sections that follow.

5.2.3.2. The 'ftp' and 'tftp' Access-Types

 An access-type of FTP or TFTP indicates that the message body is
 accessible as a file using the FTP [RFC-959] or TFTP [RFC- 783]
 protocols, respectively. For these access-types, the following
 additional parameters are mandatory:

 (1) NAME -- The name of the file that contains the actual
 body data.

 (2) SITE -- A machine from which the file may be obtained,
 using the given protocol. This must be a fully
 qualified domain name, not a nickname.

 (3) Before any data are retrieved, using FTP, the user will
 generally need to be asked to provide a login id and a
 password for the machine named by the site parameter.
 For security reasons, such an id and password are not
 specified as content-type parameters, but must be
 obtained from the user.

 In addition, the following parameters are optional:

 (1) DIRECTORY -- A directory from which the data named by
 NAME should be retrieved.

 (2) MODE -- A case-insensitive string indicating the mode
 to be used when retrieving the information. The valid
 values for access-type "TFTP" are "NETASCII", "OCTET",
 and "MAIL", as specified by the TFTP protocol [RFC-
 783]. The valid values for access-type "FTP" are
 "ASCII", "EBCDIC", "IMAGE", and "LOCALn" where "n" is a
 decimal integer, typically 8. These correspond to the
 representation types "A" "E" "I" and "L n" as specified
 by the FTP protocol [RFC-959]. Note that "BINARY" and
 "TENEX" are not valid values for MODE and that "OCTET"
 or "IMAGE" or "LOCAL8" should be used instead. IF MODE
 is not specified, the default value is "NETASCII" for
 TFTP and "ASCII" otherwise.

Freed & Borenstein Standards Track [Page 35]
�
RFC 2046 Media Types November 1996

5.2.3.3. The 'anon-ftp' Access-Type

 The "anon-ftp" access-type is identical to the "ftp" access type,
 except that the user need not be asked to provide a name and password
 for the specified site. Instead, the ftp protocol will be used with
 login "anonymous" and a password that corresponds to the user's mail
 address.

5.2.3.4. The 'local-file' Access-Type

 An access-type of "local-file" indicates that the actual body is
 accessible as a file on the local machine. Two additional parameters
 are defined for this access type:

 (1) NAME -- The name of the file that contains the actual
 body data. This parameter is mandatory for the
 "local-file" access-type.

 (2) SITE -- A domain specifier for a machine or set of
 machines that are known to have access to the data
 file. This optional parameter is used to describe the
 locality of reference for the data, that is, the site
 or sites at which the file is expected to be visible.
 Asterisks may be used for wildcard matching to a part
 of a domain name, such as "*.bellcore.com", to indicate
 a set of machines on which the data should be directly
 visible, while a single asterisk may be used to
 indicate a file that is expected to be universally
 available, e.g., via a global file system.

5.2.3.5. The 'mail-server' Access-Type

 The "mail-server" access-type indicates that the actual body is
 available from a mail server. Two additional parameters are defined
 for this access-type:

 (1) SERVER -- The addr-spec of the mail server from which
 the actual body data can be obtained. This parameter
 is mandatory for the "mail-server" access-type.

 (2) SUBJECT -- The subject that is to be used in the mail
 that is sent to obtain the data. Note that keying mail
 servers on Subject lines is NOT recommended, but such
 mail servers are known to exist. This is an optional
 parameter.

Freed & Borenstein Standards Track [Page 36]
�
RFC 2046 Media Types November 1996

 Because mail servers accept a variety of syntaxes, some of which is
 multiline, the full command to be sent to a mail server is not
 included as a parameter in the content-type header field. Instead,
 it is provided as the "phantom body" when the media type is
 "message/external-body" and the access-type is mail-server.

 Note that MIME does not define a mail server syntax. Rather, it
 allows the inclusion of arbitrary mail server commands in the phantom
 body. Implementations must include the phantom body in the body of
 the message it sends to the mail server address to retrieve the
 relevant data.

 Unlike other access-types, mail-server access is asynchronous and
 will happen at an unpredictable time in the future. For this reason,
 it is important that there be a mechanism by which the returned data
 can be matched up with the original "message/external-body" entity.
 MIME mail servers must use the same Content-ID field on the returned
 message that was used in the original "message/external-body"
 entities, to facilitate such matching.

5.2.3.6. External-Body Security Issues

 "Message/external-body" entities give rise to two important security
 issues:

 (1) Accessing data via a "message/external-body" reference
 effectively results in the message recipient performing
 an operation that was specified by the message
 originator. It is therefore possible for the message
 originator to trick a recipient into doing something
 they would not have done otherwise. For example, an
 originator could specify a action that attempts
 retrieval of material that the recipient is not
 authorized to obtain, causing the recipient to
 unwittingly violate some security policy. For this
 reason, user agents capable of resolving external
 references must always take steps to describe the
 action they are to take to the recipient and ask for
 explicit permisssion prior to performing it.

 The 'mail-server' access-type is particularly
 vulnerable, in that it causes the recipient to send a
 new message whose contents are specified by the
 original message's originator. Given the potential for
 abuse, any such request messages that are constructed
 should contain a clear indication that they were
 generated automatically (e.g. in a Comments: header
 field) in an attempt to resolve a MIME

Freed & Borenstein Standards Track [Page 37]
�
RFC 2046 Media Types November 1996

 "message/external-body" reference.

 (2) MIME will sometimes be used in environments that
 provide some guarantee of message integrity and
 authenticity. If present, such guarantees may apply
 only to the actual direct content of messages -- they
 may or may not apply to data accessed through MIME's
 "message/external-body" mechanism. In particular, it
 may be possible to subvert certain access mechanisms
 even when the messaging system itself is secure.

 It should be noted that this problem exists either with
 or without the availabilty of MIME mechanisms. A
 casual reference to an FTP site containing a document
 in the text of a secure message brings up similar
 issues -- the only difference is that MIME provides for
 automatic retrieval of such material, and users may
 place unwarranted trust is such automatic retrieval
 mechanisms.

5.2.3.7. Examples and Further Explanations

 When the external-body mechanism is used in conjunction with the
 "multipart/alternative" media type it extends the functionality of
 "multipart/alternative" to include the case where the same entity is
 provided in the same format but via different accces mechanisms.
 When this is done the originator of the message must order the parts
 first in terms of preferred formats and then by preferred access
 mechanisms. The recipient's viewer should then evaluate the list
 both in terms of format and access mechanisms.

 With the emerging possibility of very wide-area file systems, it
 becomes very hard to know in advance the set of machines where a file
 will and will not be accessible directly from the file system.
 Therefore it may make sense to provide both a file name, to be tried
 directly, and the name of one or more sites from which the file is
 known to be accessible. An implementation can try to retrieve remote
 files using FTP or any other protocol, using anonymous file retrieval
 or prompting the user for the necessary name and password. If an
 external body is accessible via multiple mechanisms, the sender may
 include multiple entities of type "message/external-body" within the
 body parts of an enclosing "multipart/alternative" entity.

 However, the external-body mechanism is not intended to be limited to
 file retrieval, as shown by the mail-server access-type. Beyond
 this, one can imagine, for example, using a video server for external
 references to video clips.

Freed & Borenstein Standards Track [Page 38]
�
RFC 2046 Media Types November 1996

 The embedded message header fields which appear in the body of the
 "message/external-body" data must be used to declare the media type
 of the external body if it is anything other than plain US-ASCII
 text, since the external body does not have a header section to
 declare its type. Similarly, any Content-transfer-encoding other
 than "7bit" must also be declared here. Thus a complete
 "message/external-body" message, referring to an object in PostScript
 format, might look like this:

 From: Whomever
 To: Someone
 Date: Whenever
 Subject: whatever
 MIME-Version: 1.0
 Message-ID: <id1@host.com>
 Content-Type: multipart/alternative; boundary=42
 Content-ID: <id001@guppylake.bellcore.com>

 --42
 Content-Type: message/external-body; name="BodyFormats.ps";
 site="thumper.bellcore.com"; mode="image";
 access-type=ANON-FTP; directory="pub";
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

 Content-type: application/postscript
 Content-ID: <id42@guppylake.bellcore.com>

 --42
 Content-Type: message/external-body; access-type=local-file;
 name="/u/nsb/writing/rfcs/RFC-MIME.ps";
 site="thumper.bellcore.com";
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

 Content-type: application/postscript
 Content-ID: <id42@guppylake.bellcore.com>

 --42
 Content-Type: message/external-body;
 access-type=mail-server
 server="listserv@bogus.bitnet";
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

 Content-type: application/postscript
 Content-ID: <id42@guppylake.bellcore.com>

 get RFC-MIME.DOC

 --42--

Freed & Borenstein Standards Track [Page 39]
�
RFC 2046 Media Types November 1996

 Note that in the above examples, the default Content-transfer-
 encoding of "7bit" is assumed for the external postscript data.

 Like the "message/partial" type, the "message/external-body" media
 type is intended to be transparent, that is, to convey the data type
 in the external body rather than to convey a message with a body of
 that type. Thus the headers on the outer and inner parts must be
 merged using the same rules as for "message/partial". In particular,
 this means that the Content-type and Subject fields are overridden,
 but the From field is preserved.

 Note that since the external bodies are not transported along with
 the external body reference, they need not conform to transport
 limitations that apply to the reference itself. In particular,
 Internet mail transports may impose 7bit and line length limits, but
 these do not automatically apply to binary external body references.
 Thus a Content-Transfer-Encoding is not generally necessary, though
 it is permitted.

 Note that the body of a message of type "message/external-body" is
 governed by the basic syntax for an RFC 822 message. In particular,
 anything before the first consecutive pair of CRLFs is header
 information, while anything after it is body information, which is
 ignored for most access-types.

5.2.4. Other Message Subtypes

 MIME implementations must in general treat unrecognized subtypes of
 "message" as being equivalent to "application/octet-stream".

 Future subtypes of "message" intended for use with email should be
 restricted to "7bit" encoding. A type other than "message" should be
 used if restriction to "7bit" is not possible.

6. Experimental Media Type Values

 A media type value beginning with the characters "X-" is a private
 value, to be used by consenting systems by mutual agreement. Any
 format without a rigorous and public definition must be named with an
 "X-" prefix, and publicly specified values shall never begin with
 "X-". (Older versions of the widely used Andrew system use the "X-
 BE2" name, so new systems should probably choose a different name.)

 In general, the use of "X-" top-level types is strongly discouraged.
 Implementors should invent subtypes of the existing types whenever
 possible. In many cases, a subtype of "application" will be more
 appropriate than a new top-level type.

Freed & Borenstein Standards Track [Page 40]
�
RFC 2046 Media Types November 1996

7. Summary

 The five discrete media types provide provide a standardized
 mechanism for tagging entities as "audio", "image", or several other
 kinds of data. The composite "multipart" and "message" media types
 allow mixing and hierarchical structuring of entities of different
 types in a single message. A distinguished parameter syntax allows
 further specification of data format details, particularly the
 specification of alternate character sets. Additional optional
 header fields provide mechanisms for certain extensions deemed
 desirable by many implementors. Finally, a number of useful media
 types are defined for general use by consenting user agents, notably
 "message/partial" and "message/external-body".

9. Security Considerations

 Security issues are discussed in the context of the
 "application/postscript" type, the "message/external-body" type, and
 in RFC 2048. Implementors should pay special attention to the
 security implications of any media types that can cause the remote
 execution of any actions in the recipient's environment. In such
 cases, the discussion of the "application/postscript" type may serve
 as a model for considering other media types with remote execution
 capabilities.

Freed & Borenstein Standards Track [Page 41]
�
RFC 2046 Media Types November 1996

9. Authors' Addresses

 For more information, the authors of this document are best contacted
 via Internet mail:

 Ned Freed
 Innosoft International, Inc.
 1050 East Garvey Avenue South
 West Covina, CA 91790
 USA

 Phone: +1 818 919 3600
 Fax: +1 818 919 3614
 EMail: ned@innosoft.com

 Nathaniel S. Borenstein
 First Virtual Holdings
 25 Washington Avenue
 Morristown, NJ 07960
 USA

 Phone: +1 201 540 8967
 Fax: +1 201 993 3032
 EMail: nsb@nsb.fv.com

 MIME is a result of the work of the Internet Engineering Task Force
 Working Group on RFC 822 Extensions. The chairman of that group,
 Greg Vaudreuil, may be reached at:

 Gregory M. Vaudreuil
 Octel Network Services
 17080 Dallas Parkway
 Dallas, TX 75248-1905
 USA

 EMail: Greg.Vaudreuil@Octel.Com

Freed & Borenstein Standards Track [Page 42]
�
RFC 2046 Media Types November 1996

Appendix A -- Collected Grammar

 This appendix contains the complete BNF grammar for all the syntax
 specified by this document.

 By itself, however, this grammar is incomplete. It refers by name to
 several syntax rules that are defined by RFC 822. Rather than
 reproduce those definitions here, and risk unintentional differences
 between the two, this document simply refers the reader to RFC 822
 for the remaining definitions. Wherever a term is undefined, it
 refers to the RFC 822 definition.

 boundary := 0*69<bchars> bcharsnospace

 bchars := bcharsnospace / " "

 bcharsnospace := DIGIT / ALPHA / "'" / "(" / ")" /
 "+" / "_" / "," / "-" / "." /
 "/" / ":" / "=" / "?"

 body-part := <"message" as defined in RFC 822, with all
 header fields optional, not starting with the
 specified dash-boundary, and with the
 delimiter not occurring anywhere in the
 body part. Note that the semantics of a
 part differ from the semantics of a message,
 as described in the text.>

 close-delimiter := delimiter "--"

 dash-boundary := "--" boundary
 ; boundary taken from the value of
 ; boundary parameter of the
 ; Content-Type field.

 delimiter := CRLF dash-boundary

 discard-text := *(*text CRLF)
 ; May be ignored or discarded.

 encapsulation := delimiter transport-padding
 CRLF body-part

 epilogue := discard-text

 multipart-body := [preamble CRLF]
 dash-boundary transport-padding CRLF
 body-part *encapsulation

Freed & Borenstein Standards Track [Page 43]
�
RFC 2046 Media Types November 1996

 close-delimiter transport-padding
 [CRLF epilogue]

 preamble := discard-text

 transport-padding := *LWSP-char
 ; Composers MUST NOT generate
 ; non-zero length transport
 ; padding, but receivers MUST
 ; be able to handle padding
 ; added by message transports.

Freed & Borenstein Standards Track [Page 44]
�

@manual{xcolor,
 title = "Extending \LaTeX’s color facilities: the {\sffamily xcolor} package",
 author = "Dr. Uwe Kern",
 year = 2007,
 month = jan,
 note = "\\\link{http://www.ctan.org/get/macros/latex/contrib/xcolor/xcolor.pdf}"
 }
@manual{pdfref,
 title = "PDF Reference",
 organization = "Adobe Systems Incorporated",
 edition = "sixth",
 year = 2006,
 month = nov,
 note = "Adobe\registered Portable Document Format Version 1.7"
 }
@manual{rfc1321,
 author = "R. Rivest",
 title = "The MD5 Message-Digest Algorithm",
 series = "Request for Comments",
 number = "1321",
 howpublished = "RFC 1321 (Informational)",
 publisher = "IETF",
 organisation = "Internet Engineering Task Force",
 year = 1992,
 month = apr,
 url = "http://www.ietf.org/rfc/rfc1321.txt",
 note = "\\\link{http://tools.ietf.org/html/rfc1321}"
}
@manual{rfc2046,
 author = "N. Freed and N. Borenstein",
 title = "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types",
 series = "Request for Comments",
 number = "2046",
 howpublished = "RFC 2046 (Draft Standard)",
 publisher = "IETF",
 organisation = "Internet Engineering Task Force",
 year = 1996,
 month = nov,
 url = "http://www.ietf.org/rfc/rfc2046.txt",
 note = "Updated by RFCs 2646, 3798 and 5147. \\\link{http://tools.ietf.org/html/rfc2046}"
}

Niedrist, R.
File attachment "hypdvips_showdests.pdf"
Draft copy of this documentation with enabled showdests option

http://www.adobe.com/devnet/acrobat/downloads/Acrobat_SDK_readme.html#Known_Issues

Table 2 | Options for the \attachfile command

Option Default Description

anncreated (LATEX time) Creation date of the annotation (CreationDate in annotation dictionary)a.

annmodified (LATEX time) Modification date of the annotation (M in annotation dictionary)a.

author (value of hyperref

option pdfauthor)
Name for the author field of the annotation (T in annotation dictionary).

checksum (from file) MD5-checksum of the file, written in hexadecimal format (CheckSum in embedded
file parameter dictionary; use checksum= to omit this entry). The MD5 algorithm
is described in RFC 1321 [4].

color (color of \embedded
bordercolor)

Color of the annotation icon, specified by three numbers between 0 and 1 accord-
ing to the RGB color model (C in annotation dictionary).

created (from file) Creation date of the file (CreationDate in embedded file parameter dictionary)a.

creator (absent) Only used with the package option Mac: The 4-character Mac OS file creator sig-
nature (Creator in Mac OS file information dictionary). E. g. ogle for QuickTime
PictureViewer.

description (absent) Text for the description field of the annotation (Contents in annotation dictionary
and Desc in embedded file specification dictionary).

filetype (absent) Only used with the package option Mac: The 4-character Mac OS file type (Sub-
type in Mac OS file information dictionary). E. g. GIFf for a Graphics Interchange
Format (.GIF-)file.

flags 2#0000000100

(Print= true,
all others false)

Flags for the annotation, written as PostScript integer (F in annota-
tion dictionary). The default value e. g. can also be written decimal
as 4 or hexadecimal as 16#4. Bit positions are:b 1= Invisible, 2 =Hidden,
3 =Print, 4= NoZoom, 5 =NoRotate, 6= NoView, 7= ReadOnly, 8= Locked,
9 =ToggleNoView, 10 = LockedContents. See section 8.4.2 of the PDF Refer-
ence [1] for detailed meanings of these flags.

icon paperclip Name of the annotation icon (Name in annotation dictionary). Allowed names
are: graph, pushpin, paperclip and tag. The actual appearance may
vary depending on the viewer application used to read the PDF document.

iconfilename (undefined,
i. e. use icon/text)

Filename of an Encapsulated PostScript (.EPS-)file which acts as the annotation
icon. This option must be paired with the rect option.

mimetype (absent) The MIME-type of the file (Subtype in embedded file stream dictionary; it can also
be specified by a PDF first-class name, see appendix E of the PDF Reference [1]
for details). MIME media types are specified in RFC 2046 [2]. An up-to-date list
can be found at http://www.iana.org/assignments/media-types/.

modified (from file) Modification date of the file (ModDate in embedded file parameter dictionary)a.

name filename (without
path)

The filename for the F & UF entries of the file specification dictionary, written
as PDF file specification string. Can be used to attach the file under a different
name. See table 3.40 in section 3.10.1 of the PDF Reference [1] for information
on how to write filenames of different operating systems.

opacity 1.0 The opacity of the annotation icon. Its value ranges from 0–1, where 0 means
transparent and 1 means opaque.

overprint false Only used with the option text: Overprints the annotation text, thus making the
annotation printable even if the “Print” flag is falsec. Does not work when option
rect ist used.

rect (rectangle at the
current point,
scaled to the
current font size)

Set of 4 numbers which act as coordinates of a rectangle defining the position
of the annotation icon/text. The first 2 numbers define the lower left, and the
second 2 numbers the upper right corner of the rectangle. The numbers are given
in default PDF coordinate space, where (0,0) is the lower left corner of the page
with increasing values to the right and to the top. The resolution is 72 dots per
inch.

resourcefork filename/..named

fork/rsrc

Only used with the package option Mac: Filename of a file which holds the data for
the resource fork of the embedded file stream (ResFork in Mac OS file information
dictionary; use resourcefork= to omit this entry)d.

size (from file) Size of the file, written as decimal number (Size in embedded file parameter
dictionary; use size= to omit this entry)

subject File attachment
“name”

Text for the subject field of the annotation (Subj in annotation dictionary).

text (undefined, i. e. use
icon/iconfilename)

Uses any LATEX text to define the clickable area of the annotation. Can be used
in conjunction with option rect to place the text anywhere on the page.

timezone (absent) The timezone offset which is appended to the LATEX time, written in the format
OHH’mm’a.

a see remark Date format in this section for details on how to write PDF dates
b bit position 1=LSB (least significant bit)
c this is because Adobe Reader software seems to never print file attachment annotations, even if their “Print” flag is true
d as I don’t own a Mac computer, I was unable to test whether the default value works to access the resource fork of the original file; this

probably also depends on the PDF creator program used, so feedback on that is welcome!

7

http://www.iana.org/assignments/media-types/

Date format : PDF dates are written in the form D:YYYYMMDDHHmmSSOHH’mm’. YYYY is the year,
MM is the month, DD is the day, HH is the hour, mm is the minute, SS is the second and OHH’mm’

is the relationship of local time to Universal Time. O can be +, - or Z (= zero). The prefix D:

and the apostrophe ’ characters in OHH’mm’ are part of the syntax. See section 3.8.3 of the
PDF Reference [1] for more information on PDF date strings.

See section 8.4.5 of the PDF Reference [1] for further information on file attachment anno-
tations.

3.2 \bmstyle{level}{style}

Sets the appearance of a certain bookmark level. level can be a positive number or the char-
acter * (= bookmarks originating from starred sections). Valid style values are: italic, bold
and italic,bold. The styles are cumulative, i. e. if a certain bookmark level is defined as bold
and starred sections are defined as italic, then a starred section in this certain bookmark level
will be italic & bold. E. g. the commands used in this documentation are:

\bmstyle{1}{bold}

\bmstyle{*}{italic}

3.3 Color commands

There are two types of commands which change the color of links:

\backrefcolor{color} (Default: hyperref option citecolor)

\embeddedcolor{color} (Default: hyperref option runcolor)

\footnotecolor{color} (Default: hyperref option linkcolor)

\tablenotecolor{color} (Default: hyperref option linkcolor)

change the color of the link text and are only used with the hyperref option colorlinks=true.
The color must be known to the xcolor package, see section 2.5.2 of the xcolor package doc-
umentation [3] for an explanation of how to define colors.

The other ones

\backrefbordercolor{R G B} (Default: hyperref option citebordercolor)

\embeddedbordercolor{R G B} (Default: hyperref option runbordercolor)

\footnotebordercolor{R G B} (Default: hyperref option linkbordercolor)

\tablenotebordercolor{R G B} (Default: hyperref option linkbordercolor)

set the color of the link border according to the RGB color model. Values for R, G & B range
from 0–1 and are separated by spaces.

3.4 \embedfile[options]{filename}

Attachs the file referenced by the path filename as embedded file. Table 3 shows all possible
options. E. g. this is the command which embeds the bibliography of this documentation:

\embedfile[description={Bibliography file for {\ttfamily hypdvips.tex}},
mimetype=text/plain]{bibdat.bib}

8

Table 3 | Options for the \embedfile command

Option Default Description

checksum (from file) MD5-checksum of the file, written in hexadecimal format (CheckSum in embedded
file parameter dictionary; use checksum= to omit this entry). The MD5 algorithm
is described in RFC 1321 [4].

created (from file) Creation date of the file (CreationDate in embedded file parameter dictionary)a.

creator (absent) Only used with the package option Mac: The 4-character Mac OS file creator sig-
nature (Creator in Mac OS file information dictionary). E. g. ogle for QuickTime
PictureViewer.

description (absent) Descriptive text associated with the file (Desc in embedded file specification dic-
tionary).

filetype (absent) Only used with the package option Mac: The 4-character Mac OS file type (Sub-
type in Mac OS file information dictionary). E. g. GIFf for a Graphics Interchange
Format (.GIF-)file.

mimetype (absent) The MIME-type of the file (Subtype in embedded file stream dictionary; it can also
be specified by a PDF first-class name, see appendix E of the PDF Reference [1]
for details). MIME media types are specified in RFC 2046 [2]. An up-to-date list
can be found at http://www.iana.org/assignments/media-types/.

modified (from file) Modification date of the file (ModDate in embedded file parameter dictionary)a.

name filename (without
path)

The filename for the F & UF entries of the file specification dictionary, written
as PDF file specification string. Can be used to embed the file under a different
name. See table 3.40 in section 3.10.1 of the PDF Reference [1] for information
on how to write filenames of different operating systems.

resourcefork filename/..named

fork/rsrc

Only used with the package option Mac: Filename of a file which holds the data for
the resource fork of the embedded file stream (ResFork in Mac OS file information
dictionary; use resourcefork= to omit this entry)b.

size (from file) Size of the file, written as decimal number (Size in embedded file parameter
dictionary; use size= to omit this entry)

a see remark Date format in section 3.1 for details on how to write PDF dates
b as I don’t own a Mac computer, I was unable to test whether the default value works to access the resource fork of the original file; this

probably also depends on the PDF creator program used, so feedback on that is welcome!

3.5 \evenboxesstring{text}

Only used with the option evenboxes: Sets the height of links to the height of any text .
E. g. after the command

\evenboxesstring{X}

all links are as high as the character X. This command can be used in conjunction with the
hyperref option pdfborderstyle={/W 1 /S /U} to produce underlined links, where the line
is always at the same height.

The default value is a string containing all alphanumeric characters plus some parentheses and
a superscript, to be sure to not produce links which are too small in height (or depth).

3.6 \file{filename}{description}

This is basically a shortcut of the \attachfile command. It attachs the file referenced by
the path filename using the given description, overprint=true with low opacity and default
options apart from that. E. g. the command

\file{c:/latex/documents/hypdvips.tex}{Source code of this documentation}

has the following result: hypdvips.tex

The annotation text color can be defined with the command \embeddedcolor.

9

http://www.iana.org/assignments/media-types/

%%
%% This is file `hypdvips.tex',
%% Copyright 2008-2009 Raimund Niedrist
%%
%% This work may be distributed and/or modified under the conditions
%% of the LaTeX Project Public License, either version 1.3 of this
%% license or (at your option) any later version.
%% The latest version of this license is in
%%
%% http://www.latex-project.org/lppl.txt
%%
%% and version 1.3 or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This work has the LPPL maintenance status `author-maintained'
%% and consists of all files listed in manifest.txt.
%% --
%%
\documentclass[english,twoside,paper=a4,abstract=true,fontsize=11pt,DIV18,BCOR20.00mm,pagesize=dvips,version=last]{scrartcl}

%\usepackage[draft]{graphicx}

\usepackage[ansinew]{inputenc}
\usepackage{babel, booktabs, graphicx, threeparttable}
\usepackage[sf,SF,bf,BF,scriptsize]{subfigure}
\usepackage[backref=section,unicode=true]{hyperref}
\usepackage{cleveref}
\usepackage[autotitle,evenboxes,fullbookmarks]{hypdvips}

\embedfile[modified=,created=D:199204,description={The MD5 Message-Digest Algorithm},mimetype=text/plain]{c:/documents/rfc/rfc1321.txt}
\embedfile[modified=,created=D:199611,description={Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types},mimetype=text/plain]{c:/documents/rfc/rfc2046.txt}

\newcommand{\blt}[1]{\renewcommand{\labelitemi}{$#1$}}
\newcommand{\typewriter}[1]{{\ttfamily#1}}
\newcommand{\ie}{i.\@\,e.\@~}
\newcommand{\egr}{e.\@\,g.\@~}
\newcommand{\Egr}{E.\@\,g.\@~}
\newcommand{\email}[1]{\href{mailto:#1}{\typewriter{\small#1}}}
\newcommand{\command}[1]{{\ttfamily\textbackslash#1}}
\newcommand{\optioncommand}[2]{\ttfamily\textbackslash#1[{\normalfont\textit{#2}}]}
\newcommand{\argument}[1]{\{{\ttfamily#1}\}}
\newcommand{\ph}[1]{{\normalfont\textit{#1}}}
\newcommand{\titlecommand}[1]{\bf{\textbackslash}\sffamily\bfseries#1}
\newcommand{\titleoptioncommand}[2]{\bf{\textbackslash}\sffamily\bfseries#1[{\normalfont\bfseries\textit{#2}}]}
\newcommand{\titleargument}[1]{\sffamily\bfseries\bf{\{{\normalfont\bfseries\textit{#1}}\}}}
\newcommand{\option}[1]{\typewriter{#1}}
\newcommand{\pkg}[1]{\typewriter{#1}}
\newcommand{\entry}[1]{{\sffamily\bfseries#1}}
\newcommand{\flag}[2]{{#1\,=\,#2}}
\newcommand{\icon}[1]{\raisebox{-2.5pt}{\hbox{\includegraphics[height=9pt]{images/#1}}}\,\typewriter{#1}}
\makeatletter
\newcommand{\ifelseshowdests}[2]{\ifpp@showdests#1\else#2\fi}
\newcommand{\link}[1]{%
 \let\oldborderstyle\@pdfborderstyle%
 \def\@pdfborderstyle{/W 1 /S /U}%
 \href{#1}{\ttfamily\textcolor{\@urlcolor}{#1}}%
 \let\@pdfborderstyle\oldborderstyle%
}
\newcommand{\spaceaftercommand}{\@ifnextchar.{}{\@ifnextchar,{}{\@ifnextchar:{}{\@ifnextchar;{}{\@ifnextchar){}{\space}}}}}}
\newlength{\symbol@offset}
\newcommand{\rsign}{%
 \setlength{\symbol@offset}{\f@size pt}%
 \setlength{\symbol@offset}{0.45\symbol@offset}%
 \raisebox{\symbol@offset}{\scalebox{0.4}{\textcircled{\scalebox{0.65}{R}}}}%
 \spaceaftercommand%
 }
\newcommand{\tmsign}{%
 \setlength{\symbol@offset}{\f@size pt}%
 \setlength{\symbol@offset}{0.45\symbol@offset}%
 \raisebox{\symbol@offset}{\scalebox{0.4}{TM}}%
 \spaceaftercommand%
}
\newenvironment{legal}
 {% before
 \section*{Trademark Information}%
 }
 {% after
 \endlist%
 }
\newcommand{\fig}[3]{% arguments: {filename}{width}{caption}
 \begin{figure}[htbp]%
 \capstart%
 \centering%
 \includegraphics[width=#2]{#1.eps}%
 \caption{#3}%
 \pp@strippathdef\labelname{#1}%
 \label{\labelname}%
 \end{figure}%
}
\makeatother
\newcommand{\disabletrademarksigns}{%
 \DeclareRobustCommand{\registered}{\spaceaftercommand}%
 \DeclareRobustCommand{\trademark}{\spaceaftercommand}%
}
\newcommand{\enabletrademarksigns}{%
 \DeclareRobustCommand{\registered}{\rsign}%
 \DeclareRobustCommand{\trademark}{\tmsign}%
}

\setkomafont{captionlabel}{\sffamily\bfseries\footnotesize}
\setkomafont{caption}{\sffamily\bfseries\footnotesize}
\renewcommand{\captionformat}{ $|$ }

\renewcommand{\floatpagefraction}{.8}
\renewcommand{\topfraction}{.85}
\renewcommand{\bottomfraction}{.2}
\setcounter{totalnumber}{10}

\hypersetup{
 pdfauthor={Niedrist, R.},
 pdfsubject={Hyperref extensions for use with dvips},
 pdfkeywords={LaTeX, hyperref, dvips},
 pdfdisplaydoctitle=true,
 pdfpagemode=UseOutlines,
 pdfduplex=DuplexFlipLongEdge,
 bookmarksnumbered=true,
 bookmarksopen=true,
 bookmarksopenlevel=2,
 pdfborderstyle={/W 1 /S /D /D [1 1]},
 citecolor=red,
 citebordercolor={1 0 0},
 filecolor=olive,
 filebordercolor={0 0.5 0.5},
 linkcolor=blue,
 linkbordercolor={0 0 1},
 menucolor=black,
 menubordercolor={1 0 0},
 urlcolor=blue,
 urlbordercolor={0 0 1},
 linktoc=page,
 colorlinks=true
 }
\ifelseshowdests{}{\hypersetup{pdfpagelayout=TwoPageRight}}
\definecolor{olive}{rgb}{0,.5,.5}
\backrefcolor{black}
\backrefbordercolor{1 0.4 0}
\embeddedcolor{magenta}
\embeddedbordercolor{1 0 1}
\footnotecolor{blue}
\footnotebordercolor{0 0 1}
\tablenotecolor{blue}
\tablenotebordercolor{0 0 1}
\openaction{/N/ShowHideFileAttachment/S/Named}
\bmstyle{1}{bold}
\bmstyle{*}{italic}
\creflabelformat{enumi}{#2#1.\@#3}

\author{Raimund Niedrist\\\email{raimund.niedrist@student.uibk.ac.at}}

\title{The \pkg{hypdvips} package}
\ifelseshowdests{\hypersetup{pdftitle={The hypdvips package (draft)}}}{}

\subtitle{Hyperref extensions for use with dvips}

\date{2009/03/25 v1.06}

\begin{document}
\let\TPTtagStyle\textit
\setlength{\heavyrulewidth}{1pt}
\setlength{\parindent}{0cm}
\hypersetup{pdfborderstyle={/W 1 /S /U}}
\maketitle
\hypersetup{pdfborderstyle={/W 1 /S /D /D [1 1]}}
\thispagestyle{empty}

\begin{abstract}
The \pkg{hypdvips} package fixes some problems when using \pkg{hyperref} with dvips. It also adds support for breaking links, hyperlinked tablenotes, file attachments, embedded documents and different types of GoTo-links. The cooperation of \pkg{hyperref} with \pkg{cleveref} is improved, which in addition allows an enhanced back-referencing system.
\end{abstract}

%Contents
\let\oldcontentsline\contentsline
\renewcommand{\contentsline}[4]{\oldcontentsline{#1}{#2}{#3}{#4}\vskip5pt}
\tableofcontents
\let\contentsline\oldcontentsline

\newpage

%Legal notes
\section*{Trademark Information}
\enabletrademarksigns
Adobe\registered, Distiller\registered, PostScript\registered and Reader\registered are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.
\\\\
Mac, Mac~OS and QuickTime are trademarks of Apple Inc.\@, registered in the U.\@\,S.\@ and other countries. The \typewriter{hypdvips} package documentation is an independent publication and has not been authorized, sponsored, or otherwise approved by Apple Inc.
\\\\
Ghostscript\registered is a registered trademark of Artifex Software, Inc.
\\\\
JavaScript\trademark is a trademark of Sun Microsystems, Inc.\@ in the United States and other countries.
\disabletrademarksigns

\newpage

%List of Figures
\setcounter{lofdepth}{2}
\makeatletter
\let\oldautodot\autodot
\def\autodot{}
\let\olddottedtocline\@dottedtocline
\renewcommand{\@dottedtocline}[5]{\olddottedtocline{#1}{#2}{#3}{#4}{#5}\vskip5pt}
\listoffigures
\let\@dottedtocline\olddottedtocline
\let\autodot\oldautodot
\makeatother

%List of Tables
\makeatletter
\let\oldautodot\autodot
\def\autodot{}
\let\olddottedtocline\@dottedtocline
\renewcommand{\@dottedtocline}[5]{\olddottedtocline{#1}{#2}{#3}{#4}{#5}\vskip5pt}
\listoftables
\let\@dottedtocline\olddottedtocline
\let\autodot\oldautodot
\makeatother

%List of File Attachments
\let\oldautodot\autodot
\def\autodot{}
\let\oldcontentsline\contentsline
\renewcommand{\contentsline}[4]{\oldcontentsline{#1}{#2}{#3}{#4}\vskip10pt}
\listofattachments
\let\contentsline\oldcontentsline
\let\autodot\oldautodot

\newpage

\section{Introduction}
The \pkg{hypdvips} package is a collection of fixes for problems when using \pkg{hyperref} with dvips as backend driver.
As you may have noticed, the converted PostScript\registered files created by the standalone \pkg{hyperref} package have some features missing compared to the direct PDF output of the pdflatex driver. The most severe deficit is probably the inability to break links. Another problem is, for example, that footnote links point to the baseline of the note, thus placing the footnote text itself outside of the reader window\footnote{ at least Adobe\registered Reader\registered software does so, but there may be other programs which put the link destination in the center of the window --- in this case it wouldn't matter}. Another issue is the linking to floats (\egr a figure), where the link points to the baseline of the caption text, again leaving the figure outside of the window. There is a package that particularly addresses this issue (\pkg{hypcap}), but the original version doesn't work with breaking links.
\\\\
In fact, every time I encountered a problem when using the \pkg{hyperref}/dvips bundle, I tried to fix it and put it into a collection. So, \pkg{hypdvips} has no specific purpose, I just thought it could be useful to share.
\\\\
To make it short, the main features of \pkg{hypdvips} are:

\begin{itemize}
\blt{\triangleright}
\item breaking links
\item support for \pkg{backref}, \pkg{cleveref} \& \pkg{threeparttable}
\item file attachments
\item embedded documents
\item GoTo-, GoToR- \& GoToE-links
\item custom pagelabels
\item document open-actions
\end{itemize}

\section{Usage}
The \pkg{hypdvips} package can be loaded using the following command:

\begin{quote}
\footnotesize
\optioncommand{usepackage}{options}\argument{hypdvips}
\end{quote}

\Autoref{packageoptions} shows all possible package \ph{options}. They can be specified using key/value pairs, \egr

\begin{quote}
\footnotesize
\command{usepackage}\typewriter{[autotitle=true,JavaScript=false,Mac=true,showdests]}\argument{hypdvips}
\end{quote}

If a boolean (true/false) option key is used without a specific value, it is assumed to be ``true'' (like \option{showdests} in the example above).
\\\\
There are some rules in which order packages should be loadad when using \pkg{hypdvips}: if used, \pkg{cleveref} and \pkg{threeparttable} must be loaded \textbf{before} \pkg{hypdvips}. The \pkg{hyperref} package itself is loaded implicitly by \pkg{hypdvips}, so there is no need to load it separately\footnote{ under certain circumstances \pkg{hyperref} must be loaded \textbf{before} \pkg{hypdvips}, especially if a \pkg{hyperref} option is used which can't be changed later using \command{hypersetup}}.
\\\\
\emph{PDF Reference links}: This documentation often refers to the PDF Reference \cite{pdfref}. As the electronic form of the PDF Reference is a rather huge file (approx. 31\,MB), it is not included in this documentation --- but it is linked. To get these links to work, download the file \link{http://www.adobe.com/devnet/acrobat/pdfs/pdf\string_reference\string_1-7.pdf} and put it into the same folder as this documentation.

\bookmark[bold=false,italic=false,rellevel=1,dest=table.1]{Package options}
\begin{table}[htbp]
\renewcommand{\arraystretch}{1.3}
\scriptsize
\capstart
\begin{center}
\begin{threeparttable}
\caption{Package options for \pkg{hypdvips}}
\label{packageoptions}
\begin{tabular}{r p{1cm} p{11cm}}
\toprule
\textbf{Option} & \textbf{Default} & \textbf{Description}\\
\midrule
\option{autoauthor} & \typewriter{false} & Automatically sets the \pkg{hyperref} option \option{pdfauthor} to the name given by the \command{author} command.\\
\option{autotitle} & \typewriter{false} & Automatically sets the \pkg{hyperref} option \option{pdftitle} to the title given by the \command{title} command.\\
\option{detailedpagebr} & \typewriter{true} & Only used in back-referencing: back-references that originally just point to the page top are expanded to point to the real occurrence of the citation on the page.\\
\option{evenboxes} & \typewriter{false} & Sets the height of links to a fixed value. See the description of the \goto[dest=ebs]{\command{evenboxesstring}} command for further details.\\
\option{fish} & \typewriter{true} & Only used when attaching files: Shows an animation on the console during calculation of MD5-checksums.\\
\option{flip} & \typewriter{false} & Flips all pages of the document.\\
\option{fullbookmarks} & \typewriter{false} & Creates bookmark entries for starred sections (\egr the ``Contents'' or ``References'' sections).\\
\option{german} & \typewriter{false} & Configures \pkg{hypdvips} to be used in german documents. This includes \pkg{cleveref} definitions and affects the List of File Attachments, the open-message and the back-referencing system\tnote{a}.\\
\option{hypertnotes} & \typewriter{true} & Only used with package \pkg{threeparttable}: Changes the \command{tnote} command to create hyperlinks to the corresponding tablenote text. The \command{item} command in the \typewriter{tablenotes} environment must use literally the same mark as the linking \command{tnote} commands.\\
\option{JavaScript} & \typewriter{true} & Only used when attaching files: Allows or denies the document to contain JavaScript\trademark code. Most of the option buttons in the List of File Attachments won't work anymore when \typewriter{JavaScript=false}.\\
\option{loabr} & \typewriter{false} & Only used in back-referencing: Allows back-references to citations occurring in the List of File Attachments (\egr if a file attachment description contains a citation).\\
\option{lofbr} & \typewriter{false} & Only used in back-referencing: Allows back-references to citations occurring in the List of Figures (\egr if a figure caption contains a citation).\\
\option{lotbr} & \typewriter{false} & Only used in back-referencing: Allows back-references to citations occurring in the List of Tables (\egr if a table caption contains a citation).\\
\option{Mac} & \typewriter{false} & Only used when attaching files: Includes the resource fork of Mac\registered files.\\
\option{mirror} & \typewriter{false} & Mirrors all pages of the document.\\
\option{nlwarning} & \typewriter{true} & Creates warning messages for links which are discarded due to link nesting.\\
\option{openmessage} & \typewriter{true} & Only used when attaching files: Shows a message concerning file attachments when opening the PDF document with some older Adobe\registered Reader\registered software versions. It instructs the user how to open the attached files (see \autoref{openmsg}). The open-message is implemented with JavaScript\trademark code, so it won't work with \typewriter{JavaScript=false}.\\
\option{quadpoints} & \typewriter{true} & Only used for broken links: Uses a \entry{QuadPoints} array to define the active link area. With \typewriter{quadpoints=false}, independent links are created on each line. See table \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.24509.Table.caption.wide.Table721.Additional.entries.specific.to.a.link.annotation)]{8.\@24} and figure \goto[newwindow,filename=pdf_reference_1-7.pdf,dest={[633 /FitH 350]}]{8.\@9} of the PDF Reference~\cite{pdfref} for further details.\\
\option{showdests} & \typewriter{false} & Indicates horizontal link destinations by red lines --- useful for hyperlink checking.
\ifelseshowdests{}{\goto[newwindow,id=4]{Here} you can see an embedded copy of this documentation compiled with \typewriter{showdests=true}.}\\
\option{smallfootnotes} & \typewriter{true} & Changes the size of frames around footnote marks: The default uses \command{@thefnmark} as boundary, whereas \typewriter{smallfootnotes=false} uses the \command{@makefnmark} command (like \pkg{hyperref} does). If you experience problems with footnote links, use \typewriter{smallfootnotes=false}.\\
\option{tocbr} & \typewriter{false} & Only used in back-referencing: Allows back-references to citations occurring in the Table of Contents (\egr if a section heading contains a citation).\\
\bottomrule
\end{tabular}
\begin{tablenotes}
\tiny
\item [a] please \href{mailto:raimund.niedrist@student.uibk.ac.at}{contact me} if you want to provide a translation into another language
\end{tablenotes}
\end{threeparttable}
\end{center}
\end{table}

\begin{figure}[htbp]
\capstart
\centering
\subfigure[standalone]{\includegraphics[scale=0.42]{images/openmsg_six.eps}}
\hskip1cm
\subfigure[in browser window]{\includegraphics[scale=0.42]{images/openmsg_sixinbrowser.eps}}
\caption{Open-message shown with the Adobe\registered Reader\registered 6 software}
\label{openmsg}
\end{figure}

\section{Command list}

\subsection[\command{attachfile}]{\titleoptioncommand{attachfile}{options}\titleargument{filename}}\odest{attachfilecmd}{30pt}\label{afcommand}

\begin{table}[htbp]
\renewcommand{\arraystretch}{1.3}
\scriptsize
\capstart
\begin{center}
\begin{threeparttable}
\caption{Options for the \goto[dest=attachfilecmd]{\command{attachfile}} command}
\label{attachfileoptions}
\begin{tabular}{r p{2.5cm} p{10.5cm}}
\toprule
\textbf{Option} & \textbf{Default} & \textbf{Description}\\
\midrule
\option{anncreated} & (\LaTeX~time) & Creation date of the annotation (\entry{CreationDate} in annotation dictionary)\tnote{a}.\\
\option{annmodified} & (\LaTeX~time) & Modification date of the annotation (\entry{M} in annotation dictionary)\tnote{a}.\\
\option{author} & (value of~\pkg{hyperref} option \option{pdfauthor}) & Name for the author field of the annotation (\entry{T} in annotation dictionary).\\
\option{checksum} & (from file) & MD5-checksum of the file, written in hexadecimal format (\entry{CheckSum} in embedded file parameter dictionary; use \typewriter{checksum=} to omit this entry). The MD5 algorithm is described in \runattachment{1}{RFC 1321} \cite{rfc1321}.\\
\option{color} & (color of \goto[dest=colorcmd]{\command{embedded} \typewriter{bordercolor}}) & Color of the annotation icon, specified by three numbers between 0 and 1 according to the RGB color model (\entry{C} in annotation dictionary).\\
\option{created} & (from file) & Creation date of the file (\entry{CreationDate} in embedded file parameter dictionary)\tnote{a}.\\
\option{creator} & (absent) & Only used with the package option \option{Mac}: The 4-character Mac~OS\registered file creator signature (\entry{Creator} in Mac~OS\registered file information dictionary). \Egr \typewriter{ogle} for QuickTime\registered PictureViewer.\\
\option{description} & (absent) & Text for the description field of the annotation (\entry{Contents} in annotation dictionary and \entry{Desc} in embedded file specification dictionary).\\
\option{filetype} & (absent) & Only used with the package option \option{Mac}: The 4-character Mac~OS\registered file type (\entry{Subtype} in Mac~OS\registered file information dictionary). \Egr \typewriter{GIFf} for a Graphics Interchange Format (.GIF-)file.\\
\option{flags} & \typewriter{2\#0000000100} (\flag{Print}{true}, all~others~false)& Flags for the annotation, written as PostScript\registered integer (\entry{F} in annotation dictionary). The default value \egr can also be written decimal as~\typewriter{4} or hexadecimal as \typewriter{16\#4}. Bit positions are:\tnote{b} \flag{1}{Invisible}, \flag{2}{Hidden}, \flag{3}{Print}, \flag{4}{NoZoom}, \flag{5}{NoRotate}, \flag{6}{NoView}, \flag{7}{ReadOnly}, \flag{8}{Locked}, \flag{9}{ToggleNoView}, \flag{10}{LockedContents}. See section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.19657.2Heading.742.Annotation.Flags)]{8.\@4.\@2} of the PDF~Reference~\cite{pdfref} for detailed meanings of these flags.\\
\option{icon} & \typewriter{paperclip} & Name of the annotation icon (\entry{Name} in annotation dictionary). Allowed names are: \icon{graph}, \icon{pushpin}, \icon{paperclip} and \icon{tag}. The actual appearance may vary depending on the viewer application used to read the PDF document.\\
\option{iconfilename} & (undefined, \ie use~\option{icon}/\option{text}) & Filename of an Encapsulated PostScript\registered (.EPS-)file which acts as the annotation icon. This option must be paired with the \option{rect} option.\\
\option{mimetype} & (absent) & The MIME-type of the file (\entry{Subtype} in embedded file stream dictionary; it can also be specified by a PDF first-class name, see appendix \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M20.9.30647.Appendix.title.F.Registration.Information)]{E} of the PDF~Reference~\cite{pdfref} for details). MIME media types are specified in \runattachment{2}{RFC 2046} \cite{rfc2046}. An up-to-date list can be found at \link{http://www.iana.org/assignments/media-types/}.\\
\option{modified} & (from file) & Modification date of the file (\entry{ModDate} in embedded file parameter dictionary)\tnote{a}.\\
\option{name} & \ph{filename} (without path) & The filename for the \entry{F} \& \entry{UF} entries of the file specification dictionary, written as PDF file specification string. Can be used to attach the file under a different name. See table \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.30439.Table.caption.narrow.Table317.Examples.of.file.specifications)]{3.\@40} in section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.35094.2Heading.361.File.Specification.Strings)]{3.\@10.\@1} of the PDF Reference \cite{pdfref} for information on how to write filenames of different operating systems.\\
\option{opacity} & \typewriter{1.0} & The opacity of the annotation icon. Its value ranges from 0--1, where 0 means transparent and 1 means opaque.\\
\option{overprint} & \typewriter{false} & Only used with the option \option{text}: Overprints the annotation text, thus making the annotation printable even if the ``Print'' flag is false\tnote{c}. Does not work when option \option{rect} ist used.\\
\option{rect} & (rectangle at the current point, scaled to the current font size) & Set of 4 numbers which act as coordinates of a rectangle defining the position of the annotation icon/text. The first 2 numbers define the lower left, and the second 2 numbers the upper right corner of the rectangle. The numbers are given in default PDF coordinate space, where (0,0) is the lower left corner of the page with increasing values to the right and to the top. The resolution is 72 dots per inch.\\
\option{resourcefork} & \ph{filename}\typewriter{/..named} \typewriter{fork/rsrc} & Only used with the package option \option{Mac}: Filename of a file which holds the data for the resource fork of the embedded file stream (\entry{ResFork} in Mac~OS\registered file information dictionary; use \typewriter{resourcefork=} to omit this entry)\tnote{d}.\\
\option{size} & (from file) & Size of the file, written as decimal number (\entry{Size} in embedded file parameter dictionary; use \typewriter{size=} to omit this entry)\\
\option{subject} & File attachment ``\option{name}'' & Text for the subject field of the annotation (\entry{Subj} in annotation dictionary).\\
\option{text} & (undefined, \ie use \option{icon}/\option{iconfilename}) & Uses any \LaTeX~text to define the clickable area of the annotation. Can be used in conjunction with option \option{rect} to place the text anywhere on the page.\\
\option{timezone} & (absent) & The timezone offset which is appended to the \LaTeX~time, written in the format \typewriter{OHH'mm'}\tnote{a}.\\
\bottomrule
\end{tabular}
\begin{tablenotes}
\tiny
\item [a] see remark \goto[dest=dateformat]{\emph{Date format}} in this section for details on how to write PDF dates
\item [b] bit position \flag{1}{LSB} (least significant bit)
\item [c] this is because Adobe\registered Reader\registered software seems to never print file attachment annotations, even if their ``Print'' flag is true
\item [d] as I don't own a Mac\registered computer, I was unable to test whether the default value works to access the resource fork of the original file; this probably also depends on the PDF creator program used, so feedback on that is welcome!
\end{tablenotes}
\end{threeparttable}
\end{center}
\end{table}

Creates a PDF file attachment annotation, using data of the file referenced by \ph{filename}. \Autoref{attachfileoptions} shows all possible options. They are mostly similar to those of the \command{attachfile} command of the \pkg{attachfile}/\pkg{attachfile2} packages.\\
By default, the embedded file specification includes the size, MD5-checksum and creation/modi-fication dates\footnote{ if possible (depending on the PDF creator application and operating system used)} of the attached file. Author and subject fields of the annotation are also automatically filled in, if not otherwise specified by an option. For example, the command

\begin{quote}
\footnotesize
\command{attachfile}{\ttfamily\string[author=\{Jem Berkes, SysDesign\}, subject=\{MD5sums 1.2\}, description=\{Generate MD5 hashes of files (with progress indicator)\}, mimetype=application/zip, modified=, created=, color=\{0.2 0.65 1\}, icon=tag\string]}\argument{c:/utils/md5sums-1.2.zip}
\end{quote}

yields the following result\footnote{ appearance may vary depending on the viewer application used}:
\attachfile[author={Jem Berkes, SysDesign},subject={MD5sums 1.2},description={Generate MD5 hashes of files (with progress indicator)},mimetype=application/zip,modified=,created=,color={0.2 0.65 1},icon=tag]{c:/utils/md5sums-1.2.zip}
\\\\
Another example\ifelseshowdests{}{ (that creates the icon to the left)}:
\ifelseshowdests{}{\attachfile[description={Draft copy of this documentation with enabled {\ttfamily showdests} option},name=hypdvips\string_showdests.pdf,mimetype=application/pdf,iconfilename={images/icon\string_draft.eps},rect={25 520 45 545}]{draft.pdf}}

\begin{quote}
\footnotesize
\command{attachfile}{\ttfamily\string[description=\{Draft copy of this documentation with enabled \{\command{ttfamily}\\
showdests\} option\}, name=hypdvips\command{string}\string_showdests.pdf, mimetype=application/pdf,\\
iconfilename=images/icon\command{string}\string_draft.eps, rect=\{25 520 45 545\}\string]}\argument{draft.pdf}
\end{quote}

\emph{Filenames}: Depending on the program used to convert the PostScript\registered file to PDF, you have to specify the full path to the file or not. Ghostscript\registered \egr allows relative paths, but needs to be run with the \typewriter{-dNOSAFER} command line argument if the attached file doesn't reside in the same directory as the PostScript\registered file. The Adobe\registered Distiller\registered software always needs the full path, and besides from that, it has to be run without the \typewriter{-F} command line argument for versions below 8.\@1, but \textbf{with} the \typewriter{-F} command line argument for newer versions\footnote{ \link{http://www.adobe.com/devnet/acrobat/downloads/Acrobat\string_SDK\string_readme.html\#Known\string_Issues}}.
\\\\
\emph{File sizes}: The \entry{Size} entry in the embedded file parameter dictionary is limited to the highest supported integer number of the PDF creator program's PostScript\registered interpreter. The usual limit of 32\,bit-wide integers leads to a maximum size of 2,147,483,647 bytes (2\,GB). At the beginning of processing, \pkg{hypdvips} logs information about the PostScript\registered interpreter to the standard output file. There you can find whether 64\,bit-wide integers are supported (see \autoref{logfile}).
\fig{images/logfile}{14cm}{Sample \pkg{hypdvips} log file output}

\odest{dateformat}{10pt}
\emph{Date format}: PDF dates are written in the form \typewriter{D:YYYYMMDDHHmmSSOHH'mm'}. \typewriter{YYYY} is the year, \typewriter{MM} is the month, \typewriter{DD} is the day, \typewriter{HH} is the hour, \typewriter{mm} is the minute, \typewriter{SS} is the second and \typewriter{OHH'mm'} is the relationship of local time to Universal Time. \typewriter{O}~can be \typewriter{+}, \typewriter{-} or \typewriter{Z} (=\,zero). The prefix \typewriter{D:} and the apostrophe \typewriter{'} characters in \typewriter{OHH'mm'} are part of the syntax. See section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.28430.2Heading.332.Dates.PDF.72)]{3.\@8.\@3} of the PDF Reference \cite{pdfref} for more information on PDF date strings.
\\\\
See section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.14731.3Heading.File.Attachment.Annotations)]{8.\@4.\@5} of the PDF Reference \cite{pdfref} for further information on file attachment annotations.

\subsection[\command{bmstyle}]{\titlecommand{bmstyle}\titleargument{level}\titleargument{style}}

Sets the appearance of a certain bookmark level. \ph{level} can be a positive number or the character~\typewriter{*} (=\,bookmarks originating from starred sections). Valid \ph{style} values are: \typewriter{italic}, \typewriter{bold} and \typewriter{italic,bold}. The styles are cumulative, \ie if a certain bookmark level is defined as bold and starred sections are defined as italic, then a starred section in this certain bookmark level will be italic \& bold. \Egr the commands used in this documentation are:

\begin{quote}
\footnotesize
\command{bmstyle}\argument{1}\argument{bold}
\\\\
\command{bmstyle}\argument{*}\argument{italic}
\end{quote}

\subsection{Color commands}\odest{colorcmd}{30pt}

There are two types of commands which change the color of links:

\begin{itemize}
\blt{}
\footnotesize
\item \command{backrefcolor}\argument{\ph{color}} \quad (Default: \pkg{hyperref} option \option{citecolor})
\item \command{embeddedcolor}\argument{\ph{color}} \quad (Default: \pkg{hyperref} option \option{runcolor})
\item \command{footnotecolor}\argument{\ph{color}} \quad (Default: \pkg{hyperref} option \option{linkcolor})
\item \command{tablenotecolor}\argument{\ph{color}} \quad (Default: \pkg{hyperref} option \option{linkcolor})
\end{itemize}

change the color of the link \textbf{text} and are only used with the \pkg{hyperref} option \typewriter{colorlinks=true}. The \ph{color} must be known to the \pkg{xcolor} package, see section 2.\@5.\@2 of the \pkg{xcolor} package documentation \cite{xcolor} for an explanation of how to define colors.
\\\\
The other ones

\begin{itemize}
\blt{}
\footnotesize
\item \command{backrefbordercolor}\argument{\ph{R}~\ph{G}~\ph{B}} \quad (Default: \pkg{hyperref} option \option{citebordercolor})
\item \command{embeddedbordercolor}\argument{\ph{R}~\ph{G}~\ph{B}} \quad (Default: \pkg{hyperref} option \option{runbordercolor})
\item \command{footnotebordercolor}\argument{\ph{R}~\ph{G}~\ph{B}} \quad (Default: \pkg{hyperref} option \option{linkbordercolor})
\item \command{tablenotebordercolor}\argument{\ph{R}~\ph{G}~\ph{B}} \quad (Default: \pkg{hyperref} option \option{linkbordercolor})
\end{itemize}

set the color of the link \textbf{border} according to the RGB color model. Values for \ph{R}, \ph{G}~\&~\ph{B} range from 0--1 and are separated by spaces.

\subsection[\command{embedfile}]{\titleoptioncommand{embedfile}{options}\titleargument{filename}}\odest{embedfilecmd}{30pt}

\begin{table}[htbp]
\renewcommand{\arraystretch}{1.3}
\scriptsize
\capstart
\begin{center}
\caption{Options for the \goto[dest=embedfilecmd]{\command{embedfile}} command}
\label{embedfileoptions}
\begin{threeparttable}
\begin{tabular}{r p{2.5cm} p{10.5cm}}
\toprule
\textbf{Option} & \textbf{Default} & \textbf{Description}\\
\midrule
\option{checksum} & (from file) & MD5-checksum of the file, written in hexadecimal format (\entry{CheckSum} in embedded file parameter dictionary; use \typewriter{checksum=} to omit this entry). The MD5 algorithm is described in \runattachment{1}{RFC 1321} \cite{rfc1321}.\\
\option{created} & (from file) & Creation date of the file (\entry{CreationDate} in embedded file parameter dictionary)\tnote{a}.\\
\option{creator} & (absent) & Only used with the package option \option{Mac}: The 4-character Mac~OS\registered file creator signature (\entry{Creator} in Mac~OS\registered file information dictionary). \Egr \typewriter{ogle} for QuickTime\registered PictureViewer.\\
\option{description} & (absent) & Descriptive text associated with the file (\entry{Desc} in embedded file specification dictionary).\\
\option{filetype} & (absent) & Only used with the package option \option{Mac}: The 4-character Mac~OS\registered file type (\entry{Subtype} in Mac~OS\registered file information dictionary). \Egr \typewriter{GIFf} for a Graphics Interchange Format (.GIF-)file.\\
\option{mimetype} & (absent) & The MIME-type of the file (\entry{Subtype} in embedded file stream dictionary; it can also be specified by a PDF first-class name, see appendix \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M20.9.30647.Appendix.title.F.Registration.Information)]{E} of the PDF~Reference~\cite{pdfref} for details). MIME media types are specified in \runattachment{2}{RFC 2046} \cite{rfc2046}. An up-to-date list can be found at \link{http://www.iana.org/assignments/media-types/}.\\
\option{modified} & (from file) & Modification date of the file (\entry{ModDate} in embedded file parameter dictionary)\tnote{a}.\\
\option{name} & \ph{filename} (without path) & The filename for the \entry{F} \& \entry{UF} entries of the file specification dictionary, written as PDF file specification string. Can be used to embed the file under a different name. See table \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.30439.Table.caption.narrow.Table317.Examples.of.file.specifications)]{3.\@40} in section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.35094.2Heading.361.File.Specification.Strings)]{3.\@10.\@1} of the PDF Reference \cite{pdfref} for information on how to write filenames of different operating systems.\\
\option{resourcefork} & \ph{filename}\typewriter{/..named} \typewriter{fork/rsrc} & Only used with the package option \option{Mac}: Filename of a file which holds the data for the resource fork of the embedded file stream (\entry{ResFork} in Mac~OS\registered file information dictionary; use \typewriter{resourcefork=} to omit this entry)\tnote{b}.\\
\option{size} & (from file) & Size of the file, written as decimal number (\entry{Size} in embedded file parameter dictionary; use \typewriter{size=} to omit this entry)\\
\bottomrule
\end{tabular}
\begin{tablenotes}
\tiny
\item [a] see remark \goto[dest=dateformat]{\emph{Date format}} in \autoref*{afcommand} for details on how to write PDF dates
\item [b] as I don't own a Mac\registered computer, I was unable to test whether the default value works to access the resource fork of the original file; this probably also depends on the PDF creator program used, so feedback on that is welcome!
\end{tablenotes}
\end{threeparttable}
\end{center}
\end{table}

Attachs the file referenced by the path \ph{filename} as embedded file. \Autoref{embedfileoptions} shows all possible options. \Egr this is the command which embeds the bibliography of this documentation:

\begin{quote}
\footnotesize
\command{embedfile}{\ttfamily[description=\{Bibliography file for \{\command{ttfamily} hypdvips.tex\}\},\\mimetype=text/plain]}\argument{bibdat.bib}
\end{quote}
\embedfile[description={Bibliography file for {\ttfamily hypdvips.tex}},mimetype=text/plain]
{bibdat.bib}

\subsection[\command{evenboxesstring}]{\titlecommand{evenboxesstring}\titleargument{text}}\odest{ebs}{30pt}

Only used with the option \option{evenboxes}: Sets the height of links to the height of any \ph{text}. \Egr after the command

\begin{quote}
\footnotesize
\command{evenboxesstring}\argument{X}
\evenboxesstring{X}
\end{quote}

all links are \goto[dest=ebs]{as} \goto[dest=ebs]{high} \goto[dest=ebs]{as} \goto[dest=ebs]{the} \goto[dest=ebs]{character} \goto[dest=ebs]{X}.
\hypersetup{pdfborderstyle={/W 1 /S /U}}
This command can be used in conjunction with the \pkg{hyperref} option \option{pdfborderstyle=\{/W 1 /S /U\}} to produce underlined links, where the line is \goto[dest=ebs]{always} \goto[dest=ebs]{at} \goto[dest=ebs]{the} \goto[dest=ebs]{same} \goto[dest=ebs]{height}.
\hypersetup{pdfborderstyle={/W 1 /S /D /D [1 1]}}

The default value is a string containing all alphanumeric characters plus some parentheses and a superscript, to be sure to not produce links which are too small in height (or depth).

\evenboxesstring{[(0123456789)]The quick brown fox jumps over the lazy dog!0}

\subsection[\command{file}]{\titlecommand{file}\titleargument{filename}\titleargument{description}}\odest{filecmd}{30pt}

This is basically a shortcut of the \goto[dest=attachfilecmd]{\command{attachfile}} command. It attachs the file referenced by the path \ph{filename} using the given \ph{description}, \typewriter{overprint=true} with low opacity and default options apart from that. \Egr the command

\begin{quote}
\footnotesize
\command{file}\argument{c:/latex/documents/hypdvips.tex}\argument{Source code of this documentation}
\end{quote}

has the following result: \file{c:/latex/documents/hypdvips.tex}{Source code of this documentation}
\\\\
The annotation text color can be defined with the command \goto[dest=colorcmd]{\command{embeddedcolor}}.

\subsection[\command{goto}]{\titleoptioncommand{goto}{options}\titleargument{text}}\odest{gotocmd}{30pt}

This command is used to create links inside or between PDF documents. It features the capabilities of the

\begin{itemize}
\blt{\triangleright}
\item \command{hyperlink}\argument{\ph{name}}\argument{\ph{text}}
\item \command{href}\argument{\typewriter{file:}\ph{filename}}\argument{\ph{text}}
\item \command{href}\argument{\typewriter{gotoe:}\ph{options}}\argument{\ph{text}}
\end{itemize}

commands, but offers an uniform and easy-to-use interface. You just have to specify the destination, and \command{goto} decides which type of GoTo-link is created, depending on the \ph{options} used. Links inside a document are called GoTo-links, links to external documents are GoToR-links and links to or between embedded files are called GoToE-links. \Autoref{gotooptions} shows all possible \ph{options} of the \command{goto} command. \Egr the command

\begin{quote}
\footnotesize
\command{goto}{\typewriter{[dest=section.3]}}\argument{This is a link to the section ``Command list''}
\begin{center}
\goto[dest=section.3]{This is a link to the section ``Command list''}
\end{center}
\end{quote}

makes a GoTo-link to the name object\footnote{ this is the PostScript\registered type of destinations created by \pkg{hyperref}, though some PDF creator applications convert them to byte strings when writing to PDF} \typewriter{/section.3}. You can also specify explicit destinations:

\begin{quote}
\footnotesize
\command{goto}{\typewriter{[dest=\{[0 /FitR 100 530 520 620]\}]}}\argument{This is a link which centers on the abstract}
\begin{center}
\goto[dest={[0 /FitR 100 530 520 620]}]{This is a link which centers on the abstract}
\end{center}
\end{quote}

When linking to external documents, you may have to use byte strings as named destinations:

\begin{quote}
\footnotesize
\command{goto}{\ttfamily[dest=(M13.9.20535.3Heading.Named.Destinations), filename=pdf\textbackslash\string_reference\textbackslash\string_1-7.pdf, newwindow]}\argument{This is a link to the section ``Named Destinations'' in the PDF Reference \command{cite}\argument{pdfref}}
\begin{center}
\goto[dest=(M13.9.20535.3Heading.Named.Destinations),filename=pdf_reference_1-7.pdf,newwindow]{This is a link to the section ``Named Destinations'' in the PDF Reference \cite{pdfref}}
\end{center}
\end{quote}

Note that the destination in this example includes parentheses \typewriter{(} and \typewriter{)}, to distinguish the named destination \textbf{byte string} from a named destination \textbf{name object}. See section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.39147.2Heading.712.Destinations.PDF.73)]{8.\@2.\@1} of the PDF Reference \cite{pdfref} for more information on PDF destinations. As you also may have noticed, the border color of the external link is different than in the two examples before. External links have the color of \pkg{hyperref} options \option{filecolor} and \option{filebordercolor}, whereas local links use the \option{linkcolor}/\option{linkbordercolor}. Links to embedded files have the color defined by \goto[dest=colorcmd]{\command{embeddedcolor}} \& \goto[dest=colorcmd]{\command{embeddedbordercolor}}.\\

\begin{table}[htbp]
\renewcommand{\arraystretch}{1.3}
\scriptsize
\capstart
\begin{center}
\begin{threeparttable}
\caption{Options for the \goto[dest=gotocmd]{\command{goto}} command}
\label{gotooptions}
\begin{tabular}{r p{3cm} p{10cm}}
\toprule
\textbf{Option} & \textbf{Default} & \textbf{Description}\\
\midrule
\option{dest} & \typewriter{[0 /Fit]} & The destination to jump to in the target. It can be either a named destination (specified by a name object or a byte string) or an explicit destination. Explicit destinations are written with squared brackets; see table \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.38139.Table.caption.wide.Table72.Destination.syntax)]{8.\@2} of the PDF Reference for the syntax. Byte strings are written with parentheses. Name objects have a preceding slash \typewriter{/} character. If \option{dest} neither represents a valid explicit destination nor is enclosed by parentheses or preceded by a slash, then it will be converted to a name object (if possible) or to a byte string\tnote{a}.\\
\option{filename} & (absent, \ie use current document as target document) & Path to an external file which acts as target document for the link. See table \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.30439.Table.caption.narrow.Table317.Examples.of.file.specifications)]{3.\@40} in section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M8.9.35094.2Heading.361.File.Specification.Strings)]{3.\@10.\@1} of the PDF Reference \cite{pdfref} for information on how to write filenames of different operating systems. This option cannot be used with the \option{id} option.\\
\option{id} & (absent, \ie use current document as target document) & The ID of an attached file which acts as target document for the link. This ID can be found in the List of File Attachments: it is the number to the left of the file description (see \autoref{ids}). ID's are only valid within the current document, thus this option cannot be paired with the \option{filename} option.\\
\option{newwindow} & \typewriter{false} & Specifies whether the viewer application should use a new window to display the destination.\\
\option{target} & (absent, \ie target document is the final target which holds the destination) & The content of a target dictionary which specifies the final target of the link \textbf{relative} to the target document (given by the \option{id} or \option{filename} option). See table \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.92889.Table.title.wide.Table846.Entries.specific.to.a.target.dictionary)]{8.\@52} and example \goto[newwindow,filename=pdf_reference_1-7.pdf,dest={[657 /FitH 600]}]{8.\@12} in the PDF Reference \cite{pdfref} for entries in a target dictionary.\\
\bottomrule
\end{tabular}
\begin{tablenotes}
\tiny
\item [a] Ghostscript\registered seems to convert the byte strings of GoTo-links to name objects when writing to PDF --- weird, but the links work anyway (at least with Adobe\registered Reader\registered software)
\end{tablenotes}
\end{threeparttable}
\end{center}
\end{table}

\fig{images/ids}{10cm}{ID numbers of file attachments}

\begin{figure}[htbp]
\begin{minipage}[t]{5cm}
\capstart
\centerline{\includegraphics[width=4cm]{images/ex1}}
\caption{Link to a child}
\end{minipage}
\hfill
\begin{minipage}[t]{5cm}
\capstart
\centerline{\includegraphics[width=4cm]{images/ex2}}
\caption{Link to the parent}
\end{minipage}
\hfill
\begin{minipage}[t]{5cm}
\capstart
\centerline{\includegraphics[width=4cm]{images/ex3}}
\caption{Link to a sibling}
\end{minipage}
\end{figure}

Links to embedded documents can be accomplished with the \option{id} or \option{target} option. \option{id} is used when linking to embedded documents which have been attached with the \goto[dest=attachfilecmd]{\command{attachfile}}, \goto[dest=filecmd]{\command{file}} or \goto[dest=embedfilecmd]{\command{embedfile}} commands in the the current \LaTeX~document, whereas the option \option{target} can go farther. The following examples are orientated on example \goto[newwindow,filename=pdf_reference_1-7.pdf,dest={[657 /FitH 600]}]{8.\@12} of the PDF Reference \cite{pdfref}:

\begin{enumerate}
\footnotesize
\item\label{i1} \command{goto}{\typewriter{[dest=\{(Chapter 1)\}, id=1]}}\argument{Link to a child}
\item \command{goto}{\typewriter{[dest=\{(Chapter 1)\}, target=/R/P]}}\argument{Link to the parent}
\item \command{goto}{\typewriter{[dest=\{(Chapter 1)\}, target=\{/R /P /T << /R /C /N (Attachment 2) >>\}]}}\argument{Link to a\\ sibling}
\newpage
\item \command{goto}{\typewriter{[dest=\{(Chapter 1)\}, filename=someFile.pdf, target=\{/R /C /N (Attachment 1)\}]}}\argument{Link\\ to an embedded file in an external document}
\item \command{goto}{\typewriter{[dest=\{(Chapter 1)\}, filename=someFile.pdf]}}\argument{Link from an embedded file to a normal\\ file}
\item \command{goto}{\typewriter{[dest=\{(Chapter 1)\}, id=1, target=\{/R /C /P 2 /A (Attachment 1)]}}\argument{Link to a\\grandchild}
\item \command{goto}{\ttfamily[dest=(destination), target=\{/R /P /T << /R /C /N (Attachment 2) /T << /R /C \\
/P 3 /A (Attachment 1) >> >>\}]}\argument{Link to a niece/nephew through the source's parent}
\end{enumerate}

\fig{images/ex4}{11cm}{Link to an embedded file in an external document}
\fig{images/ex5}{11cm}{Link from an embedded file to a normal file}
\begin{figure}[htbp]
\begin{minipage}[t]{7.5cm}
\capstart
\centerline{\includegraphics[width=6.5cm]{images/ex6}}
\caption{Link to a grandchild}
\end{minipage}
\hfill
\begin{minipage}[t]{7.5cm}
\capstart
\centerline{\includegraphics[width=6.5cm]{images/ex7}}
\caption{Link to a niece/nephew through the source's parent}
\end{minipage}
\end{figure}
\vspace{0.5cm}

As the \option{id} option is just a shortcut, \autoref{i1} could also be written as

\begin{quote}
\footnotesize
\command{goto}{\typewriter{[dest=\{(Chapter 1)\}, target=\{/R /C /N (Attachment 1)\}]}}\argument{Link to a child}
\end{quote}

or

\begin{quote}
\footnotesize
\command{goto}{\typewriter{[dest=\{(Chapter 1)\}, target=\{/R /C /P \ph{page} /A (Attachment 1)\}]}}\argument{Link to a child}
\end{quote}

depending on the type of the child (either embedded file or file attachment annotation).

\subsection[\command{gotoparent}]{\titlecommand{gotoparent}\titleargument{destination}\titleargument{text}}

This is a shortcut of the \goto[dest=gotocmd]{\command{goto}} command. It lets the given \ph{text} point to a \ph{destination} in the parent document.

\subsection[\command{listofattachments}]{\titlecommand{listofattachments}}

Creates a list of file attachments, analogous to the \command{listoffigures} or \command{listoftables} commands. The lines in this list are formatted by \command{loaformat}, which can be changed to customize the appearance of the list:

\begin{quote}
\footnotesize
\command{renewcommand}\argument{\command{loaformat}}\ttfamily[4]\argument{\ph{\LaTeX-code\dots}}
\end{quote}

The \command{loaformat} command has 4 arguments:

\begin{itemize}
\footnotesize
\blt{}
\item \typewriter{\#1} = Attachment ID
\item \typewriter{\#2} = Attachment type (either \typewriter{FileAttachment} or \typewriter{EmbeddedFile})
\item \typewriter{\#3} = \ph{filename} from the corresponding \goto[dest=attachfilecmd]{\command{attachfile}} or \goto[dest=embedfilecmd]{\command{embedfile}} command
\item \typewriter{\#4} = all \ph{options} that were given to the corresponding \goto[dest=attachfilecmd]{\command{attachfile}} or \goto[dest=embedfilecmd]{\command{embedfile}} command
\end{itemize}

\subsection[\command{odest}]{\titlecommand{odest}\titleargument{name}\titleargument{offset}}

Creates the named destination \typewriter{/}\ph{name} located with a vertical \ph{offset} relative to the current point\ifelseshowdests{ (denoted by the red X)}{}. The \ph{offset} can be given in any \LaTeX~dimension. \Egr the command

\begin{quote}
\footnotesize
\hskip0pt\ifelseshowdests{\point}{}\odest{odestexample}{1.5cm}\hskip5pt\command{odest}\argument{odestexample}\argument{1.5cm}
\end{quote}

creates the destination \typewriter{/odestexample} 1.5\,cm above the \command{odest} command.
\ifelseshowdests{}{In the \goto[dest=subsection.3.10,id=4]{draft copy with \typewriter{showdests=true}} you can see the newly created destination.}
The \command{hyperlink} command can be used to \hyperlink{odestexample}{link to that destination}.
\ifelseshowdests{Use this link to come back to the \gotoparent{subsection.3.10}{parent document}.}{}

\subsection[\command{openaction}]{\titlecommand{openaction}\titleargument{action}}

Sets the PDF document's open-action. \ph{action} is the content of an action dictionary. \Egr this documentation uses an open-action to show the attachments tab:

\begin{quote}
\footnotesize
\command{openaction}\argument{/N/ShowHideFileAttachment/S/Named}
\end{quote}

See section \goto[newwindow,filename=pdf_reference_1-7.pdf,dest=(M13.9.34523.1Heading.74.Actions.PDF.68)]{8.\@5} of the PDF Reference \cite{pdfref} for information on PDF actions and action dictionaries.

\subsection[\command{pagelabel}]{\titleoptioncommand{pagelabel}{page}\titleargument{pagelabel}}

Sets the PDF \ph{pagelabel} for the specified \ph{page}. The page number is optional --- it defaults to the current page. \Egr the following command

\begin{quote}
\footnotesize
\command{pagelabel}\argument{- \command{Roman}\argument{page}\command{space}-}
\end{quote}
\pagelabel{- \Roman{page}\space-}

uses the current page number in Roman format enclosed by dashes \typewriter{-} as pagelabel for the current page.
\\\\
\emph{Unnumbered pages}: \pkg{hypdvips} modifies the \command{pagestyle} \& \command{thispagestyle} commands to produce empty pagelabels when the pagestyle is set to \typewriter{empty}, as seen on the \goto{title page} of this documentation.

\subsection[\command{runattachment}]{\titlecommand{runattachment}\titleargument{ID}\titleargument{text}}

Creates a link from any \ph{text} which launches the embedded file with the given \ph{ID}. The color of the link can be defined with \goto[dest=colorcmd]{\command{embeddedcolor}} \& \goto[dest=colorcmd]{\command{embeddedbordercolor}}. For example:

\begin{quote}
\footnotesize
\command{runattachment}\argument{1}\argument{Click here to open RFC 1321 \command{cite}\argument{rfc1321}}
\begin{center}
\runattachment{1}{Click here to open RFC 1321 \cite{rfc1321}}
\end{center}
\end{quote}

Currently, the PDF JavaScript\trademark API only allows to export embedded files. Files in file attachment annotations can only be exported via the PDF viewer application. Note that with \typewriter{JavaScript=false} the \command{runattachment} command just produces the \ph{text} without link.

\vfill
\hypersetup{pdfborderstyle={/W 1 /S /U}}
\enabletrademarksigns
\bibliography{bibdat}
\bibliographystyle{plain}

\end{document}

Niedrist, R.
File attachment "hypdvips.tex"
Source code of this documentation

3.7 \goto[options]{text}

This command is used to create links inside or between PDF documents. It features the
capabilities of the

⊲ \hyperlink{name}{text}

⊲ \href{file:filename}{text}

⊲ \href{gotoe:options}{text}

commands, but offers an uniform and easy-to-use interface. You just have to specify the
destination, and \goto decides which type of GoTo-link is created, depending on the options
used. Links inside a document are called GoTo-links, links to external documents are GoToR-
links and links to or between embedded files are called GoToE-links. Table 4 shows all possible
options of the \goto command. E. g. the command

\goto[dest=section.3]{This is a link to the section ‘‘Command list’’}

This is a link to the section “Command list”

makes a GoTo-link to the name object6 /section.3. You can also specify explicit destinations:

\goto[dest={[0 /FitR 100 530 520 620]}]{This is a link which centers on the abstract}

This is a link which centers on the abstract

When linking to external documents, you may have to use byte strings as named destinations:

\goto[dest=(M13.9.20535.3Heading.Named.Destinations), filename=pdf_reference_1-7.pdf,
newwindow]{This is a link to the section ‘‘Named Destinations’’ in the PDF Reference

\cite{pdfref}}

This is a link to the section “Named Destinations” in the PDF Reference [1]

Note that the destination in this example includes parentheses (and), to distinguish the
named destination byte string from a named destination name object. See section 8.2.1
of the PDF Reference [1] for more information on PDF destinations. As you also may have
noticed, the border color of the external link is different than in the two examples before. Exter-
nal links have the color of hyperref options filecolor and filebordercolor, whereas local
links use the linkcolor/linkbordercolor. Links to embedded files have the color defined by
\embeddedcolor & \embeddedbordercolor.

Links to embedded documents can be accomplished with the id or target option. id is used
when linking to embedded documents which have been attached with the \attachfile, \file
or \embedfile commands in the the current LATEX document, whereas the option target can
go farther. The following examples are orientated on example 8.12 of the PDF Reference [1]:

1. \goto[dest={(Chapter 1)}, id=1]{Link to a child}

2. \goto[dest={(Chapter 1)}, target=/R/P]{Link to the parent}

3. \goto[dest={(Chapter 1)}, target={/R /P /T << /R /C /N (Attachment 2) >>}]{Link to a

sibling}

6 this is the PostScript type of destinations created by hyperref, though some PDF creator applications convert
them to byte strings when writing to PDF

10

Table 4 | Options for the \goto command

Option Default Description

dest [0 /Fit] The destination to jump to in the target. It can be either a named destina-
tion (specified by a name object or a byte string) or an explicit destination.
Explicit destinations are written with squared brackets; see table 8.2 of the
PDF Reference for the syntax. Byte strings are written with parentheses.
Name objects have a preceding slash / character. If dest neither represents
a valid explicit destination nor is enclosed by parentheses or preceded by a
slash, then it will be converted to a name object (if possible) or to a byte
stringa.

filename (absent, i. e. use cur-
rent document as tar-
get document)

Path to an external file which acts as target document for the link. See table
3.40 in section 3.10.1 of the PDF Reference [1] for information on how to
write filenames of different operating systems. This option cannot be used
with the id option.

id (absent, i. e. use cur-
rent document as tar-
get document)

The ID of an attached file which acts as target document for the link. This
ID can be found in the List of File Attachments: it is the number to the
left of the file description (see fig. 3). ID’s are only valid within the current
document, thus this option cannot be paired with the filename option.

newwindow false Specifies whether the viewer application should use a new window to display
the destination.

target (absent, i. e. target
document is the final
target which holds the
destination)

The content of a target dictionary which specifies the final target of the link
relative to the target document (given by the id or filename option). See
table 8.52 and example 8.12 in the PDF Reference [1] for entries in a target
dictionary.

a Ghostscript seems to convert the byte strings of GoTo-links to name objects when writing to PDF — weird, but the links work anyway
(at least with Adobe Reader software)

Figure 3 | ID numbers of file attachments

Current
document

Embedded
file (ID=1)

Figure 4 | Link to a child

Parent
document

Current
document

Figure 5 | Link to the parent

Parent
document

Another
embedded
file (ID=2)

Current
document
(ID=1)

Figure 6 | Link to a sibling

11

4. \goto[dest={(Chapter 1)}, filename=someFile.pdf, target={/R /C /N (Attachment 1)}]{Link
to an embedded file in an external document}

5. \goto[dest={(Chapter 1)}, filename=someFile.pdf]{Link from an embedded file to a normal

file}

6. \goto[dest={(Chapter 1)}, id=1, target={/R /C /P 2 /A (Attachment 1)]{Link to a

grandchild}

7. \goto[dest=(destination), target={/R /P /T << /R /C /N (Attachment 2) /T << /R /C

/P 3 /A (Attachment 1) >> >>}]{Link to a niece/nephew through the source’s parent}

Current
document

Remote
document

someFile.pdfcurrentDocument.pdf

Embedded
file (ID=1)

Figure 7 | Link to an embedded file in an external document

Parent
document

Remote
document

someFile.pdfparentDocument.pdf

Current
document

Figure 8 | Link from an embedded file to a normal file

As the id option is just a shortcut, item 1. could also be written as

\goto[dest={(Chapter 1)}, target={/R /C /N (Attachment 1)}]{Link to a child}

or

\goto[dest={(Chapter 1)}, target={/R /C /P page /A (Attachment 1)}]{Link to a child}

depending on the type of the child (either embedded file or file attachment annotation).

3.8 \gotoparent{destination}{text}

This is a shortcut of the \goto command. It lets the given text point to a destination in the
parent document.

12

Current
document

Embedded
file (ID=1)

File attach-
ment (ID=1)
on page 2
of embedded
file

Figure 9 | Link to a grandchild

Parent
document

Another
embedded
file (ID=2)

Current
document
(ID=1)

File
attachment
(ID=1) on
page 3 of
embedded
file

Figure 10 | Link to a niece/nephew through the
source’s parent

3.9 \listofattachments

Creates a list of file attachments, analogous to the \listoffigures or \listoftables com-
mands. The lines in this list are formatted by \loaformat, which can be changed to customize
the appearance of the list:

\renewcommand{\loaformat}[4]{LATEX-code. . . }

The \loaformat command has 4 arguments:

#1 = Attachment ID

#2 = Attachment type (either FileAttachment or EmbeddedFile)

#3 = filename from the corresponding \attachfile or \embedfile command

#4 = all options that were given to the corresponding \attachfile or \embedfile command

3.10 \odest{name}{offset}

Creates the named destination /name located with a vertical offset relative to the current
point. The offset can be given in any LATEX dimension. E. g. the command

\odest{odestexample}{1.5cm}

creates the destination /odestexample 1.5 cm above the \odest command. In the draft copy
with showdests=true you can see the newly created destination. The \hyperlink command
can be used to link to that destination.

3.11 \openaction{action}

Sets the PDF document’s open-action. action is the content of an action dictionary. E. g. this
documentation uses an open-action to show the attachments tab:

\openaction{/N/ShowHideFileAttachment/S/Named}

See section 8.5 of the PDF Reference [1] for information on PDF actions and action dictionaries.

13

3.12 \pagelabel[page]{pagelabel}

Sets the PDF pagelabel for the specified page. The page number is optional — it defaults to
the current page. E. g. the following command

\pagelabel{- \Roman{page}\space-}

uses the current page number in Roman format enclosed by dashes - as pagelabel for the cur-
rent page.

Unnumbered pages: hypdvips modifies the \pagestyle & \thispagestyle commands to pro-
duce empty pagelabels when the pagestyle is set to empty, as seen on the title page of this
documentation.

3.13 \runattachment{ID}{text}

Creates a link from any text which launches the embedded file with the given ID . The color of
the link can be defined with \embeddedcolor & \embeddedbordercolor. For example:

\runattachment{1}{Click here to open RFC 1321 \cite{rfc1321}}

Click here to open RFC 1321 [4]

Currently, the PDF JavaScript API only allows to export embedded files. Files in file at-
tachment annotations can only be exported via the PDF viewer application. Note that with
JavaScript=false the \runattachment command just produces the text without link.

References

[1] Adobe Systems Incorporated. PDF Reference, sixth edition, November 2006. Adobe R©

Portable Document Format Version 1.7.
Referenced in: Section 2, Table 1, Table 2, Table 2, Table 2, Section 3.1, Section 3.1, Table 3, Table 3, Section 3.7, Section 3.7, Section 3.7,

Table 4, Table 4, Section 3.11

[2] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types, November 1996. Updated by RFCs 2646, 3798 and 5147.
http://tools.ietf.org/html/rfc2046.
Referenced in: Table 2, Table 3

[3] Dr. Uwe Kern. Extending LATEX’s color facilities: the xcolor package, January 2007.
http://www.ctan.org/get/macros/latex/contrib/xcolor/xcolor.pdf.
Referenced in: Section 3.3

[4] R. Rivest. The MD5 Message-Digest Algorithm, April 1992.
http://tools.ietf.org/html/rfc1321.
Referenced in: Table 2, Table 3, Section 3.13

14

http://tools.ietf.org/html/rfc2046
http://www.ctan.org/get/macros/latex/contrib/xcolor/xcolor.pdf
http://tools.ietf.org/html/rfc1321

	Contents
	Trademark Information
	List of Figures
	List of Tables
	List of File Attachments
	1 Introduction
	2 Usage
	Package options

	3 Command list
	3.1 \attachfile
	3.2 \bmstyle
	3.3 Color commands
	3.4 \embedfile
	3.5 \evenboxesstring
	3.6 \file
	3.7 \goto
	3.8 \gotoparent
	3.9 \listofattachments
	3.10 \odest
	3.11 \openaction
	3.12 \pagelabel
	3.13 \runattachment

	References

Network Working Group R. Rivest
Request for Comments: 1321 MIT Laboratory for Computer Science
 and RSA Data Security, Inc.
 April 1992

 The MD5 Message-Digest Algorithm

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard. Distribution of this memo is
 unlimited.

Acknowlegements

 We would like to thank Don Coppersmith, Burt Kaliski, Ralph Merkle,
 David Chaum, and Noam Nisan for numerous helpful comments and
 suggestions.

Table of Contents

 1. Executive Summary 1
 2. Terminology and Notation 2
 3. MD5 Algorithm Description 3
 4. Summary 6
 5. Differences Between MD4 and MD5 6
 References 7
 APPENDIX A - Reference Implementation 7
 Security Considerations 21
 Author's Address 21

1. Executive Summary

 This document describes the MD5 message-digest algorithm. The
 algorithm takes as input a message of arbitrary length and produces
 as output a 128-bit "fingerprint" or "message digest" of the input.
 It is conjectured that it is computationally infeasible to produce
 two messages having the same message digest, or to produce any
 message having a given prespecified target message digest. The MD5
 algorithm is intended for digital signature applications, where a
 large file must be "compressed" in a secure manner before being
 encrypted with a private (secret) key under a public-key cryptosystem
 such as RSA.

Rivest [Page 1]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 The MD5 algorithm is designed to be quite fast on 32-bit machines. In
 addition, the MD5 algorithm does not require any large substitution
 tables; the algorithm can be coded quite compactly.

 The MD5 algorithm is an extension of the MD4 message-digest algorithm
 1,2]. MD5 is slightly slower than MD4, but is more "conservative" in
 design. MD5 was designed because it was felt that MD4 was perhaps
 being adopted for use more quickly than justified by the existing
 critical review; because MD4 was designed to be exceptionally fast,
 it is "at the edge" in terms of risking successful cryptanalytic
 attack. MD5 backs off a bit, giving up a little in speed for a much
 greater likelihood of ultimate security. It incorporates some
 suggestions made by various reviewers, and contains additional
 optimizations. The MD5 algorithm is being placed in the public domain
 for review and possible adoption as a standard.

 For OSI-based applications, MD5's object identifier is

 md5 OBJECT IDENTIFIER ::=
 iso(1) member-body(2) US(840) rsadsi(113549) digestAlgorithm(2) 5}

 In the X.509 type AlgorithmIdentifier [3], the parameters for MD5
 should have type NULL.

2. Terminology and Notation

 In this document a "word" is a 32-bit quantity and a "byte" is an
 eight-bit quantity. A sequence of bits can be interpreted in a
 natural manner as a sequence of bytes, where each consecutive group
 of eight bits is interpreted as a byte with the high-order (most
 significant) bit of each byte listed first. Similarly, a sequence of
 bytes can be interpreted as a sequence of 32-bit words, where each
 consecutive group of four bytes is interpreted as a word with the
 low-order (least significant) byte given first.

 Let x_i denote "x sub i". If the subscript is an expression, we
 surround it in braces, as in x_{i+1}. Similarly, we use ^ for
 superscripts (exponentiation), so that x^i denotes x to the i-th
 power.

 Let the symbol "+" denote addition of words (i.e., modulo-2^32
 addition). Let X <<< s denote the 32-bit value obtained by circularly
 shifting (rotating) X left by s bit positions. Let not(X) denote the
 bit-wise complement of X, and let X v Y denote the bit-wise OR of X
 and Y. Let X xor Y denote the bit-wise XOR of X and Y, and let XY
 denote the bit-wise AND of X and Y.

Rivest [Page 2]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

3. MD5 Algorithm Description

 We begin by supposing that we have a b-bit message as input, and that
 we wish to find its message digest. Here b is an arbitrary
 nonnegative integer; b may be zero, it need not be a multiple of
 eight, and it may be arbitrarily large. We imagine the bits of the
 message written down as follows:

 m_0 m_1 ... m_{b-1}

 The following five steps are performed to compute the message digest
 of the message.

3.1 Step 1. Append Padding Bits

 The message is "padded" (extended) so that its length (in bits) is
 congruent to 448, modulo 512. That is, the message is extended so
 that it is just 64 bits shy of being a multiple of 512 bits long.
 Padding is always performed, even if the length of the message is
 already congruent to 448, modulo 512.

 Padding is performed as follows: a single "1" bit is appended to the
 message, and then "0" bits are appended so that the length in bits of
 the padded message becomes congruent to 448, modulo 512. In all, at
 least one bit and at most 512 bits are appended.

3.2 Step 2. Append Length

 A 64-bit representation of b (the length of the message before the
 padding bits were added) is appended to the result of the previous
 step. In the unlikely event that b is greater than 2^64, then only
 the low-order 64 bits of b are used. (These bits are appended as two
 32-bit words and appended low-order word first in accordance with the
 previous conventions.)

 At this point the resulting message (after padding with bits and with
 b) has a length that is an exact multiple of 512 bits. Equivalently,
 this message has a length that is an exact multiple of 16 (32-bit)
 words. Let M[0 ... N-1] denote the words of the resulting message,
 where N is a multiple of 16.

3.3 Step 3. Initialize MD Buffer

 A four-word buffer (A,B,C,D) is used to compute the message digest.
 Here each of A, B, C, D is a 32-bit register. These registers are
 initialized to the following values in hexadecimal, low-order bytes
 first):

Rivest [Page 3]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 word A: 01 23 45 67
 word B: 89 ab cd ef
 word C: fe dc ba 98
 word D: 76 54 32 10

3.4 Step 4. Process Message in 16-Word Blocks

 We first define four auxiliary functions that each take as input
 three 32-bit words and produce as output one 32-bit word.

 F(X,Y,Z) = XY v not(X) Z
 G(X,Y,Z) = XZ v Y not(Z)
 H(X,Y,Z) = X xor Y xor Z
 I(X,Y,Z) = Y xor (X v not(Z))

 In each bit position F acts as a conditional: if X then Y else Z.
 The function F could have been defined using + instead of v since XY
 and not(X)Z will never have 1's in the same bit position.) It is
 interesting to note that if the bits of X, Y, and Z are independent
 and unbiased, the each bit of F(X,Y,Z) will be independent and
 unbiased.

 The functions G, H, and I are similar to the function F, in that they
 act in "bitwise parallel" to produce their output from the bits of X,
 Y, and Z, in such a manner that if the corresponding bits of X, Y,
 and Z are independent and unbiased, then each bit of G(X,Y,Z),
 H(X,Y,Z), and I(X,Y,Z) will be independent and unbiased. Note that
 the function H is the bit-wise "xor" or "parity" function of its
 inputs.

 This step uses a 64-element table T[1 ... 64] constructed from the
 sine function. Let T[i] denote the i-th element of the table, which
 is equal to the integer part of 4294967296 times abs(sin(i)), where i
 is in radians. The elements of the table are given in the appendix.

 Do the following:

 /* Process each 16-word block. */
 For i = 0 to N/16-1 do

 /* Copy block i into X. */
 For j = 0 to 15 do
 Set X[j] to M[i*16+j].
 end /* of loop on j */

 /* Save A as AA, B as BB, C as CC, and D as DD. */
 AA = A
 BB = B

Rivest [Page 4]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 CC = C
 DD = D

 /* Round 1. */
 /* Let [abcd k s i] denote the operation
 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
 /* Do the following 16 operations. */
 [ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]
 [ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]
 [ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
 [ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]

 /* Round 2. */
 /* Let [abcd k s i] denote the operation
 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
 /* Do the following 16 operations. */
 [ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]
 [ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
 [ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]
 [ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]

 /* Round 3. */
 /* Let [abcd k s t] denote the operation
 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
 /* Do the following 16 operations. */
 [ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]
 [ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]
 [ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]
 [ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]

 /* Round 4. */
 /* Let [abcd k s t] denote the operation
 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
 /* Do the following 16 operations. */
 [ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
 [ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]
 [ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
 [ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]

 /* Then perform the following additions. (That is increment each
 of the four registers by the value it had before this block
 was started.) */
 A = A + AA
 B = B + BB
 C = C + CC
 D = D + DD

 end /* of loop on i */

Rivest [Page 5]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

3.5 Step 5. Output

 The message digest produced as output is A, B, C, D. That is, we
 begin with the low-order byte of A, and end with the high-order byte
 of D.

 This completes the description of MD5. A reference implementation in
 C is given in the appendix.

4. Summary

 The MD5 message-digest algorithm is simple to implement, and provides
 a "fingerprint" or message digest of a message of arbitrary length.
 It is conjectured that the difficulty of coming up with two messages
 having the same message digest is on the order of 2^64 operations,
 and that the difficulty of coming up with any message having a given
 message digest is on the order of 2^128 operations. The MD5 algorithm
 has been carefully scrutinized for weaknesses. It is, however, a
 relatively new algorithm and further security analysis is of course
 justified, as is the case with any new proposal of this sort.

5. Differences Between MD4 and MD5

 The following are the differences between MD4 and MD5:

 1. A fourth round has been added.

 2. Each step now has a unique additive constant.

 3. The function g in round 2 was changed from (XY v XZ v YZ) to
 (XZ v Y not(Z)) to make g less symmetric.

 4. Each step now adds in the result of the previous step. This
 promotes a faster "avalanche effect".

 5. The order in which input words are accessed in rounds 2 and
 3 is changed, to make these patterns less like each other.

 6. The shift amounts in each round have been approximately
 optimized, to yield a faster "avalanche effect." The shifts in
 different rounds are distinct.

Rivest [Page 6]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

References

 [1] Rivest, R., "The MD4 Message Digest Algorithm", RFC 1320, MIT and
 RSA Data Security, Inc., April 1992.

 [2] Rivest, R., "The MD4 message digest algorithm", in A.J. Menezes
 and S.A. Vanstone, editors, Advances in Cryptology - CRYPTO '90
 Proceedings, pages 303-311, Springer-Verlag, 1991.

 [3] CCITT Recommendation X.509 (1988), "The Directory -
 Authentication Framework."

APPENDIX A - Reference Implementation

 This appendix contains the following files taken from RSAREF: A
 Cryptographic Toolkit for Privacy-Enhanced Mail:

 global.h -- global header file

 md5.h -- header file for MD5

 md5c.c -- source code for MD5

 For more information on RSAREF, send email to <rsaref@rsa.com>.

 The appendix also includes the following file:

 mddriver.c -- test driver for MD2, MD4 and MD5

 The driver compiles for MD5 by default but can compile for MD2 or MD4
 if the symbol MD is defined on the C compiler command line as 2 or 4.

 The implementation is portable and should work on many different
 plaforms. However, it is not difficult to optimize the implementation
 on particular platforms, an exercise left to the reader. For example,
 on "little-endian" platforms where the lowest-addressed byte in a 32-
 bit word is the least significant and there are no alignment
 restrictions, the call to Decode in MD5Transform can be replaced with
 a typecast.

A.1 global.h

/* GLOBAL.H - RSAREF types and constants
 */

/* PROTOTYPES should be set to one if and only if the compiler supports
 function argument prototyping.
The following makes PROTOTYPES default to 0 if it has not already

Rivest [Page 7]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 been defined with C compiler flags.
 */
#ifndef PROTOTYPES
#define PROTOTYPES 0
#endif

/* POINTER defines a generic pointer type */
typedef unsigned char *POINTER;

/* UINT2 defines a two byte word */
typedef unsigned short int UINT2;

/* UINT4 defines a four byte word */
typedef unsigned long int UINT4;

/* PROTO_LIST is defined depending on how PROTOTYPES is defined above.
If using PROTOTYPES, then PROTO_LIST returns the list, otherwise it
 returns an empty list.
 */
#if PROTOTYPES
#define PROTO_LIST(list) list
#else
#define PROTO_LIST(list) ()
#endif

A.2 md5.h

/* MD5.H - header file for MD5C.C
 */

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

Rivest [Page 8]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

These notices must be retained in any copies of any part of this
documentation and/or software.
 */

/* MD5 context. */
typedef struct {
 UINT4 state[4]; /* state (ABCD) */
 UINT4 count[2]; /* number of bits, modulo 2^64 (lsb first) */
 unsigned char buffer[64]; /* input buffer */
} MD5_CTX;

void MD5Init PROTO_LIST ((MD5_CTX *));
void MD5Update PROTO_LIST
 ((MD5_CTX *, unsigned char *, unsigned int));
void MD5Final PROTO_LIST ((unsigned char [16], MD5_CTX *));

A.3 md5c.c

/* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
 */

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.
 */

#include "global.h"
#include "md5.h"

/* Constants for MD5Transform routine.
 */

Rivest [Page 9]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21

static void MD5Transform PROTO_LIST ((UINT4 [4], unsigned char [64]));
static void Encode PROTO_LIST
 ((unsigned char *, UINT4 *, unsigned int));
static void Decode PROTO_LIST
 ((UINT4 *, unsigned char *, unsigned int));
static void MD5_memcpy PROTO_LIST ((POINTER, POINTER, unsigned int));
static void MD5_memset PROTO_LIST ((POINTER, int, unsigned int));

static unsigned char PADDING[64] = {
 0x80, 0,
 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

/* F, G, H and I are basic MD5 functions.
 */
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))

/* ROTATE_LEFT rotates x left n bits.
 */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
Rotation is separate from addition to prevent recomputation.
 */
#define FF(a, b, c, d, x, s, ac) { \
 (a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \

Rivest [Page 10]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 (a) += (b); \
 }
#define GG(a, b, c, d, x, s, ac) { \
 (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }
#define HH(a, b, c, d, x, s, ac) { \
 (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }
#define II(a, b, c, d, x, s, ac) { \
 (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }

/* MD5 initialization. Begins an MD5 operation, writing a new context.
 */
void MD5Init (context)
MD5_CTX *context; /* context */
{
 context->count[0] = context->count[1] = 0;
 /* Load magic initialization constants.
*/
 context->state[0] = 0x67452301;
 context->state[1] = 0xefcdab89;
 context->state[2] = 0x98badcfe;
 context->state[3] = 0x10325476;
}

/* MD5 block update operation. Continues an MD5 message-digest
 operation, processing another message block, and updating the
 context.
 */
void MD5Update (context, input, inputLen)
MD5_CTX *context; /* context */
unsigned char *input; /* input block */
unsigned int inputLen; /* length of input block */
{
 unsigned int i, index, partLen;

 /* Compute number of bytes mod 64 */
 index = (unsigned int)((context->count[0] >> 3) & 0x3F);

 /* Update number of bits */
 if ((context->count[0] += ((UINT4)inputLen << 3))

Rivest [Page 11]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 < ((UINT4)inputLen << 3))
 context->count[1]++;
 context->count[1] += ((UINT4)inputLen >> 29);

 partLen = 64 - index;

 /* Transform as many times as possible.
*/
 if (inputLen >= partLen) {
 MD5_memcpy
 ((POINTER)&context->buffer[index], (POINTER)input, partLen);
 MD5Transform (context->state, context->buffer);

 for (i = partLen; i + 63 < inputLen; i += 64)
 MD5Transform (context->state, &input[i]);

 index = 0;
 }
 else
 i = 0;

 /* Buffer remaining input */
 MD5_memcpy
 ((POINTER)&context->buffer[index], (POINTER)&input[i],
 inputLen-i);
}

/* MD5 finalization. Ends an MD5 message-digest operation, writing the
 the message digest and zeroizing the context.
 */
void MD5Final (digest, context)
unsigned char digest[16]; /* message digest */
MD5_CTX *context; /* context */
{
 unsigned char bits[8];
 unsigned int index, padLen;

 /* Save number of bits */
 Encode (bits, context->count, 8);

 /* Pad out to 56 mod 64.
*/
 index = (unsigned int)((context->count[0] >> 3) & 0x3f);
 padLen = (index < 56) ? (56 - index) : (120 - index);
 MD5Update (context, PADDING, padLen);

 /* Append length (before padding) */
 MD5Update (context, bits, 8);

Rivest [Page 12]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 /* Store state in digest */
 Encode (digest, context->state, 16);

 /* Zeroize sensitive information.
*/
 MD5_memset ((POINTER)context, 0, sizeof (*context));
}

/* MD5 basic transformation. Transforms state based on block.
 */
static void MD5Transform (state, block)
UINT4 state[4];
unsigned char block[64];
{
 UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];

 Decode (x, block, 64);

 /* Round 1 */
 FF (a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */
 FF (d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */
 FF (c, d, a, b, x[2], S13, 0x242070db); /* 3 */
 FF (b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */
 FF (a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */
 FF (d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */
 FF (c, d, a, b, x[6], S13, 0xa8304613); /* 7 */
 FF (b, c, d, a, x[7], S14, 0xfd469501); /* 8 */
 FF (a, b, c, d, x[8], S11, 0x698098d8); /* 9 */
 FF (d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */
 FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
 FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
 FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
 FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
 FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
 FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

 /* Round 2 */
 GG (a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */
 GG (d, a, b, c, x[6], S22, 0xc040b340); /* 18 */
 GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
 GG (b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */
 GG (a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */
 GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */
 GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
 GG (b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */
 GG (a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */
 GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
 GG (c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */

Rivest [Page 13]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 GG (b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */
 GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
 GG (d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */
 GG (c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */
 GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */

 /* Round 3 */
 HH (a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */
 HH (d, a, b, c, x[8], S32, 0x8771f681); /* 34 */
 HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
 HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
 HH (a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */
 HH (d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */
 HH (c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */
 HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
 HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
 HH (d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */
 HH (c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */
 HH (b, c, d, a, x[6], S34, 0x4881d05); /* 44 */
 HH (a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */
 HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
 HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
 HH (b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */

 /* Round 4 */
 II (a, b, c, d, x[0], S41, 0xf4292244); /* 49 */
 II (d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
 II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
 II (b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */
 II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
 II (d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */
 II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
 II (b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */
 II (a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */
 II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
 II (c, d, a, b, x[6], S43, 0xa3014314); /* 59 */
 II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
 II (a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
 II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
 II (c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */
 II (b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */

 state[0] += a;
 state[1] += b;
 state[2] += c;
 state[3] += d;

 /* Zeroize sensitive information.

Rivest [Page 14]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

*/
 MD5_memset ((POINTER)x, 0, sizeof (x));
}

/* Encodes input (UINT4) into output (unsigned char). Assumes len is
 a multiple of 4.
 */
static void Encode (output, input, len)
unsigned char *output;
UINT4 *input;
unsigned int len;
{
 unsigned int i, j;

 for (i = 0, j = 0; j < len; i++, j += 4) {
 output[j] = (unsigned char)(input[i] & 0xff);
 output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
 output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
 output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
 }
}

/* Decodes input (unsigned char) into output (UINT4). Assumes len is
 a multiple of 4.
 */
static void Decode (output, input, len)
UINT4 *output;
unsigned char *input;
unsigned int len;
{
 unsigned int i, j;

 for (i = 0, j = 0; j < len; i++, j += 4)
 output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) |
 (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24);
}

/* Note: Replace "for loop" with standard memcpy if possible.
 */

static void MD5_memcpy (output, input, len)
POINTER output;
POINTER input;
unsigned int len;
{
 unsigned int i;

 for (i = 0; i < len; i++)

Rivest [Page 15]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 output[i] = input[i];
}

/* Note: Replace "for loop" with standard memset if possible.
 */
static void MD5_memset (output, value, len)
POINTER output;
int value;
unsigned int len;
{
 unsigned int i;

 for (i = 0; i < len; i++)
 ((char *)output)[i] = (char)value;
}

A.4 mddriver.c

/* MDDRIVER.C - test driver for MD2, MD4 and MD5
 */

/* Copyright (C) 1990-2, RSA Data Security, Inc. Created 1990. All
rights reserved.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.
 */

/* The following makes MD default to MD5 if it has not already been
 defined with C compiler flags.
 */
#ifndef MD
#define MD MD5
#endif

#include <stdio.h>
#include <time.h>
#include <string.h>
#include "global.h"
#if MD == 2
#include "md2.h"
#endif
#if MD == 4

Rivest [Page 16]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

#include "md4.h"
#endif
#if MD == 5
#include "md5.h"
#endif

/* Length of test block, number of test blocks.
 */
#define TEST_BLOCK_LEN 1000
#define TEST_BLOCK_COUNT 1000

static void MDString PROTO_LIST ((char *));
static void MDTimeTrial PROTO_LIST ((void));
static void MDTestSuite PROTO_LIST ((void));
static void MDFile PROTO_LIST ((char *));
static void MDFilter PROTO_LIST ((void));
static void MDPrint PROTO_LIST ((unsigned char [16]));

#if MD == 2
#define MD_CTX MD2_CTX
#define MDInit MD2Init
#define MDUpdate MD2Update
#define MDFinal MD2Final
#endif
#if MD == 4
#define MD_CTX MD4_CTX
#define MDInit MD4Init
#define MDUpdate MD4Update
#define MDFinal MD4Final
#endif
#if MD == 5
#define MD_CTX MD5_CTX
#define MDInit MD5Init
#define MDUpdate MD5Update
#define MDFinal MD5Final
#endif

/* Main driver.

Arguments (may be any combination):
 -sstring - digests string
 -t - runs time trial
 -x - runs test script
 filename - digests file
 (none) - digests standard input
 */
int main (argc, argv)
int argc;

Rivest [Page 17]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

char *argv[];
{
 int i;

 if (argc > 1)
 for (i = 1; i < argc; i++)
 if (argv[i][0] == '-' && argv[i][1] == 's')
 MDString (argv[i] + 2);
 else if (strcmp (argv[i], "-t") == 0)
 MDTimeTrial ();
 else if (strcmp (argv[i], "-x") == 0)
 MDTestSuite ();
 else
 MDFile (argv[i]);
 else
 MDFilter ();

 return (0);
}

/* Digests a string and prints the result.
 */
static void MDString (string)
char *string;
{
 MD_CTX context;
 unsigned char digest[16];
 unsigned int len = strlen (string);

 MDInit (&context);
 MDUpdate (&context, string, len);
 MDFinal (digest, &context);

 printf ("MD%d (\"%s\") = ", MD, string);
 MDPrint (digest);
 printf ("\n");
}

/* Measures the time to digest TEST_BLOCK_COUNT TEST_BLOCK_LEN-byte
 blocks.
 */
static void MDTimeTrial ()
{
 MD_CTX context;
 time_t endTime, startTime;
 unsigned char block[TEST_BLOCK_LEN], digest[16];
 unsigned int i;

Rivest [Page 18]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 printf
 ("MD%d time trial. Digesting %d %d-byte blocks ...", MD,
 TEST_BLOCK_LEN, TEST_BLOCK_COUNT);

 /* Initialize block */
 for (i = 0; i < TEST_BLOCK_LEN; i++)
 block[i] = (unsigned char)(i & 0xff);

 /* Start timer */
 time (&startTime);

 /* Digest blocks */
 MDInit (&context);
 for (i = 0; i < TEST_BLOCK_COUNT; i++)
 MDUpdate (&context, block, TEST_BLOCK_LEN);
 MDFinal (digest, &context);

 /* Stop timer */
 time (&endTime);

 printf (" done\n");
 printf ("Digest = ");
 MDPrint (digest);
 printf ("\nTime = %ld seconds\n", (long)(endTime-startTime));
 printf
 ("Speed = %ld bytes/second\n",
 (long)TEST_BLOCK_LEN * (long)TEST_BLOCK_COUNT/(endTime-startTime));
}

/* Digests a reference suite of strings and prints the results.
 */
static void MDTestSuite ()
{
 printf ("MD%d test suite:\n", MD);

 MDString ("");
 MDString ("a");
 MDString ("abc");
 MDString ("message digest");
 MDString ("abcdefghijklmnopqrstuvwxyz");
 MDString
 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
 MDString
 ("1234567890123456789012345678901234567890\
1234567890123456789012345678901234567890");
}

/* Digests a file and prints the result.

Rivest [Page 19]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 */
static void MDFile (filename)
char *filename;
{
 FILE *file;
 MD_CTX context;
 int len;
 unsigned char buffer[1024], digest[16];

 if ((file = fopen (filename, "rb")) == NULL)
 printf ("%s can't be opened\n", filename);

 else {
 MDInit (&context);
 while (len = fread (buffer, 1, 1024, file))
 MDUpdate (&context, buffer, len);
 MDFinal (digest, &context);

 fclose (file);

 printf ("MD%d (%s) = ", MD, filename);
 MDPrint (digest);
 printf ("\n");
 }
}

/* Digests the standard input and prints the result.
 */
static void MDFilter ()
{
 MD_CTX context;
 int len;
 unsigned char buffer[16], digest[16];

 MDInit (&context);
 while (len = fread (buffer, 1, 16, stdin))
 MDUpdate (&context, buffer, len);
 MDFinal (digest, &context);

 MDPrint (digest);
 printf ("\n");
}

/* Prints a message digest in hexadecimal.
 */
static void MDPrint (digest)
unsigned char digest[16];
{

Rivest [Page 20]
�
RFC 1321 MD5 Message-Digest Algorithm April 1992

 unsigned int i;

 for (i = 0; i < 16; i++)
 printf ("%02x", digest[i]);
}

A.5 Test suite

 The MD5 test suite (driver option "-x") should print the following
 results:

MD5 test suite:
MD5 ("") = d41d8cd98f00b204e9800998ecf8427e
MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661
MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72
MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0
MD5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3d76192e4007dfb496cca67e13b
MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") =
d174ab98d277d9f5a5611c2c9f419d9f
MD5 ("123456789012345678901234567890123456789012345678901234567890123456
78901234567890") = 57edf4a22be3c955ac49da2e2107b67a

Security Considerations

 The level of security discussed in this memo is considered to be
 sufficient for implementing very high security hybrid digital-
 signature schemes based on MD5 and a public-key cryptosystem.

Author's Address

 Ronald L. Rivest
 Massachusetts Institute of Technology
 Laboratory for Computer Science
 NE43-324
 545 Technology Square
 Cambridge, MA 02139-1986

 Phone: (617) 253-5880
 EMail: rivest@theory.lcs.mit.edu

Rivest [Page 21]
�

Network Working Group N. Freed
Request for Comments: 2046 Innosoft
Obsoletes: 1521, 1522, 1590 N. Borenstein
Category: Standards Track First Virtual
 November 1996

 Multipurpose Internet Mail Extensions
 (MIME) Part Two:
 Media Types

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 STD 11, RFC 822 defines a message representation protocol specifying
 considerable detail about US-ASCII message headers, but which leaves
 the message content, or message body, as flat US-ASCII text. This
 set of documents, collectively called the Multipurpose Internet Mail
 Extensions, or MIME, redefines the format of messages to allow for

 (1) textual message bodies in character sets other than
 US-ASCII,

 (2) an extensible set of different formats for non-textual
 message bodies,

 (3) multi-part message bodies, and

 (4) textual header information in character sets other than
 US-ASCII.

 These documents are based on earlier work documented in RFC 934, STD
 11, and RFC 1049, but extends and revises them. Because RFC 822 said
 so little about message bodies, these documents are largely
 orthogonal to (rather than a revision of) RFC 822.

 The initial document in this set, RFC 2045, specifies the various
 headers used to describe the structure of MIME messages. This second
 document defines the general structure of the MIME media typing
 system and defines an initial set of media types. The third document,
 RFC 2047, describes extensions to RFC 822 to allow non-US-ASCII text

Freed & Borenstein Standards Track [Page 1]
�
RFC 2046 Media Types November 1996

 data in Internet mail header fields. The fourth document, RFC 2048,
 specifies various IANA registration procedures for MIME-related
 facilities. The fifth and final document, RFC 2049, describes MIME
 conformance criteria as well as providing some illustrative examples
 of MIME message formats, acknowledgements, and the bibliography.

 These documents are revisions of RFCs 1521 and 1522, which themselves
 were revisions of RFCs 1341 and 1342. An appendix in RFC 2049
 describes differences and changes from previous versions.

Table of Contents

 1. Introduction ... 3
 2. Definition of a Top-Level Media Type 4
 3. Overview Of The Initial Top-Level Media Types 4
 4. Discrete Media Type Values 6
 4.1 Text Media Type 6
 4.1.1 Representation of Line Breaks 7
 4.1.2 Charset Parameter 7
 4.1.3 Plain Subtype 11
 4.1.4 Unrecognized Subtypes 11
 4.2 Image Media Type 11
 4.3 Audio Media Type 11
 4.4 Video Media Type 12
 4.5 Application Media Type 12
 4.5.1 Octet-Stream Subtype 13
 4.5.2 PostScript Subtype 14
 4.5.3 Other Application Subtypes 17
 5. Composite Media Type Values 17
 5.1 Multipart Media Type 17
 5.1.1 Common Syntax 19
 5.1.2 Handling Nested Messages and Multiparts 24
 5.1.3 Mixed Subtype 24
 5.1.4 Alternative Subtype 24
 5.1.5 Digest Subtype 26
 5.1.6 Parallel Subtype 27
 5.1.7 Other Multipart Subtypes 28
 5.2 Message Media Type 28
 5.2.1 RFC822 Subtype 28
 5.2.2 Partial Subtype 29
 5.2.2.1 Message Fragmentation and Reassembly 30
 5.2.2.2 Fragmentation and Reassembly Example 31
 5.2.3 External-Body Subtype 33
 5.2.4 Other Message Subtypes 40
 6. Experimental Media Type Values 40
 7. Summary .. 41
 8. Security Considerations 41
 9. Authors' Addresses 42

Freed & Borenstein Standards Track [Page 2]
�
RFC 2046 Media Types November 1996

 A. Collected Grammar 43

1. Introduction

 The first document in this set, RFC 2045, defines a number of header
 fields, including Content-Type. The Content-Type field is used to
 specify the nature of the data in the body of a MIME entity, by
 giving media type and subtype identifiers, and by providing auxiliary
 information that may be required for certain media types. After the
 type and subtype names, the remainder of the header field is simply a
 set of parameters, specified in an attribute/value notation. The
 ordering of parameters is not significant.

 In general, the top-level media type is used to declare the general
 type of data, while the subtype specifies a specific format for that
 type of data. Thus, a media type of "image/xyz" is enough to tell a
 user agent that the data is an image, even if the user agent has no
 knowledge of the specific image format "xyz". Such information can
 be used, for example, to decide whether or not to show a user the raw
 data from an unrecognized subtype -- such an action might be
 reasonable for unrecognized subtypes of "text", but not for
 unrecognized subtypes of "image" or "audio". For this reason,
 registered subtypes of "text", "image", "audio", and "video" should
 not contain embedded information that is really of a different type.
 Such compound formats should be represented using the "multipart" or
 "application" types.

 Parameters are modifiers of the media subtype, and as such do not
 fundamentally affect the nature of the content. The set of
 meaningful parameters depends on the media type and subtype. Most
 parameters are associated with a single specific subtype. However, a
 given top-level media type may define parameters which are applicable
 to any subtype of that type. Parameters may be required by their
 defining media type or subtype or they may be optional. MIME
 implementations must also ignore any parameters whose names they do
 not recognize.

 MIME's Content-Type header field and media type mechanism has been
 carefully designed to be extensible, and it is expected that the set
 of media type/subtype pairs and their associated parameters will grow
 significantly over time. Several other MIME facilities, such as
 transfer encodings and "message/external-body" access types, are
 likely to have new values defined over time. In order to ensure that
 the set of such values is developed in an orderly, well-specified,
 and public manner, MIME sets up a registration process which uses the
 Internet Assigned Numbers Authority (IANA) as a central registry for
 MIME's various areas of extensibility. The registration process for
 these areas is described in a companion document, RFC 2048.

Freed & Borenstein Standards Track [Page 3]
�
RFC 2046 Media Types November 1996

 The initial seven standard top-level media type are defined and
 described in the remainder of this document.

2. Definition of a Top-Level Media Type

 The definition of a top-level media type consists of:

 (1) a name and a description of the type, including
 criteria for whether a particular type would qualify
 under that type,

 (2) the names and definitions of parameters, if any, which
 are defined for all subtypes of that type (including
 whether such parameters are required or optional),

 (3) how a user agent and/or gateway should handle unknown
 subtypes of this type,

 (4) general considerations on gatewaying entities of this
 top-level type, if any, and

 (5) any restrictions on content-transfer-encodings for
 entities of this top-level type.

3. Overview Of The Initial Top-Level Media Types

 The five discrete top-level media types are:

 (1) text -- textual information. The subtype "plain" in
 particular indicates plain text containing no
 formatting commands or directives of any sort. Plain
 text is intended to be displayed "as-is". No special
 software is required to get the full meaning of the
 text, aside from support for the indicated character
 set. Other subtypes are to be used for enriched text in
 forms where application software may enhance the
 appearance of the text, but such software must not be
 required in order to get the general idea of the
 content. Possible subtypes of "text" thus include any
 word processor format that can be read without
 resorting to software that understands the format. In
 particular, formats that employ embeddded binary
 formatting information are not considered directly
 readable. A very simple and portable subtype,
 "richtext", was defined in RFC 1341, with a further
 revision in RFC 1896 under the name "enriched".

Freed & Borenstein Standards Track [Page 4]
�
RFC 2046 Media Types November 1996

 (2) image -- image data. "Image" requires a display device
 (such as a graphical display, a graphics printer, or a
 FAX machine) to view the information. An initial
 subtype is defined for the widely-used image format
 JPEG. . subtypes are defined for two widely-used image
 formats, jpeg and gif.

 (3) audio -- audio data. "Audio" requires an audio output
 device (such as a speaker or a telephone) to "display"
 the contents. An initial subtype "basic" is defined in
 this document.

 (4) video -- video data. "Video" requires the capability
 to display moving images, typically including
 specialized hardware and software. An initial subtype
 "mpeg" is defined in this document.

 (5) application -- some other kind of data, typically
 either uninterpreted binary data or information to be
 processed by an application. The subtype "octet-
 stream" is to be used in the case of uninterpreted
 binary data, in which case the simplest recommended
 action is to offer to write the information into a file
 for the user. The "PostScript" subtype is also defined
 for the transport of PostScript material. Other
 expected uses for "application" include spreadsheets,
 data for mail-based scheduling systems, and languages
 for "active" (computational) messaging, and word
 processing formats that are not directly readable.
 Note that security considerations may exist for some
 types of application data, most notably
 "application/PostScript" and any form of active
 messaging. These issues are discussed later in this
 document.

 The two composite top-level media types are:

 (1) multipart -- data consisting of multiple entities of
 independent data types. Four subtypes are initially
 defined, including the basic "mixed" subtype specifying
 a generic mixed set of parts, "alternative" for
 representing the same data in multiple formats,
 "parallel" for parts intended to be viewed
 simultaneously, and "digest" for multipart entities in
 which each part has a default type of "message/rfc822".

Freed & Borenstein Standards Track [Page 5]
�
RFC 2046 Media Types November 1996

 (2) message -- an encapsulated message. A body of media
 type "message" is itself all or a portion of some kind
 of message object. Such objects may or may not in turn
 contain other entities. The "rfc822" subtype is used
 when the encapsulated content is itself an RFC 822
 message. The "partial" subtype is defined for partial
 RFC 822 messages, to permit the fragmented transmission
 of bodies that are thought to be too large to be passed
 through transport facilities in one piece. Another
 subtype, "external-body", is defined for specifying
 large bodies by reference to an external data source.

 It should be noted that the list of media type values given here may
 be augmented in time, via the mechanisms described above, and that
 the set of subtypes is expected to grow substantially.

4. Discrete Media Type Values

 Five of the seven initial media type values refer to discrete bodies.
 The content of these types must be handled by non-MIME mechanisms;
 they are opaque to MIME processors.

4.1. Text Media Type

 The "text" media type is intended for sending material which is
 principally textual in form. A "charset" parameter may be used to
 indicate the character set of the body text for "text" subtypes,
 notably including the subtype "text/plain", which is a generic
 subtype for plain text. Plain text does not provide for or allow
 formatting commands, font attribute specifications, processing
 instructions, interpretation directives, or content markup. Plain
 text is seen simply as a linear sequence of characters, possibly
 interrupted by line breaks or page breaks. Plain text may allow the
 stacking of several characters in the same position in the text.
 Plain text in scripts like Arabic and Hebrew may also include
 facilitites that allow the arbitrary mixing of text segments with
 opposite writing directions.

 Beyond plain text, there are many formats for representing what might
 be known as "rich text". An interesting characteristic of many such
 representations is that they are to some extent readable even without
 the software that interprets them. It is useful, then, to
 distinguish them, at the highest level, from such unreadable data as
 images, audio, or text represented in an unreadable form. In the
 absence of appropriate interpretation software, it is reasonable to
 show subtypes of "text" to the user, while it is not reasonable to do
 so with most nontextual data. Such formatted textual data should be
 represented using subtypes of "text".

Freed & Borenstein Standards Track [Page 6]
�
RFC 2046 Media Types November 1996

4.1.1. Representation of Line Breaks

 The canonical form of any MIME "text" subtype MUST always represent a
 line break as a CRLF sequence. Similarly, any occurrence of CRLF in
 MIME "text" MUST represent a line break. Use of CR and LF outside of
 line break sequences is also forbidden.

 This rule applies regardless of format or character set or sets
 involved.

 NOTE: The proper interpretation of line breaks when a body is
 displayed depends on the media type. In particular, while it is
 appropriate to treat a line break as a transition to a new line when
 displaying a "text/plain" body, this treatment is actually incorrect
 for other subtypes of "text" like "text/enriched" [RFC-1896].
 Similarly, whether or not line breaks should be added during display
 operations is also a function of the media type. It should not be
 necessary to add any line breaks to display "text/plain" correctly,
 whereas proper display of "text/enriched" requires the appropriate
 addition of line breaks.

 NOTE: Some protocols defines a maximum line length. E.g. SMTP [RFC-
 821] allows a maximum of 998 octets before the next CRLF sequence.
 To be transported by such protocols, data which includes too long
 segments without CRLF sequences must be encoded with a suitable
 content-transfer-encoding.

4.1.2. Charset Parameter

 A critical parameter that may be specified in the Content-Type field
 for "text/plain" data is the character set. This is specified with a
 "charset" parameter, as in:

 Content-type: text/plain; charset=iso-8859-1

 Unlike some other parameter values, the values of the charset
 parameter are NOT case sensitive. The default character set, which
 must be assumed in the absence of a charset parameter, is US-ASCII.

 The specification for any future subtypes of "text" must specify
 whether or not they will also utilize a "charset" parameter, and may
 possibly restrict its values as well. For other subtypes of "text"
 than "text/plain", the semantics of the "charset" parameter should be
 defined to be identical to those specified here for "text/plain",
 i.e., the body consists entirely of characters in the given charset.
 In particular, definers of future "text" subtypes should pay close
 attention to the implications of multioctet character sets for their
 subtype definitions.

Freed & Borenstein Standards Track [Page 7]
�
RFC 2046 Media Types November 1996

 The charset parameter for subtypes of "text" gives a name of a
 character set, as "character set" is defined in RFC 2045. The rules
 regarding line breaks detailed in the previous section must also be
 observed -- a character set whose definition does not conform to
 these rules cannot be used in a MIME "text" subtype.

 An initial list of predefined character set names can be found at the
 end of this section. Additional character sets may be registered
 with IANA.

 Other media types than subtypes of "text" might choose to employ the
 charset parameter as defined here, but with the CRLF/line break
 restriction removed. Therefore, all character sets that conform to
 the general definition of "character set" in RFC 2045 can be
 registered for MIME use.

 Note that if the specified character set includes 8-bit characters
 and such characters are used in the body, a Content-Transfer-Encoding
 header field and a corresponding encoding on the data are required in
 order to transmit the body via some mail transfer protocols, such as
 SMTP [RFC-821].

 The default character set, US-ASCII, has been the subject of some
 confusion and ambiguity in the past. Not only were there some
 ambiguities in the definition, there have been wide variations in
 practice. In order to eliminate such ambiguity and variations in the
 future, it is strongly recommended that new user agents explicitly
 specify a character set as a media type parameter in the Content-Type
 header field. "US-ASCII" does not indicate an arbitrary 7-bit
 character set, but specifies that all octets in the body must be
 interpreted as characters according to the US-ASCII character set.
 National and application-oriented versions of ISO 646 [ISO-646] are
 usually NOT identical to US-ASCII, and in that case their use in
 Internet mail is explicitly discouraged. The omission of the ISO 646
 character set from this document is deliberate in this regard. The
 character set name of "US-ASCII" explicitly refers to the character
 set defined in ANSI X3.4-1986 [US- ASCII]. The new international
 reference version (IRV) of the 1991 edition of ISO 646 is identical
 to US-ASCII. The character set name "ASCII" is reserved and must not
 be used for any purpose.

 NOTE: RFC 821 explicitly specifies "ASCII", and references an earlier
 version of the American Standard. Insofar as one of the purposes of
 specifying a media type and character set is to permit the receiver
 to unambiguously determine how the sender intended the coded message
 to be interpreted, assuming anything other than "strict ASCII" as the
 default would risk unintentional and incompatible changes to the
 semantics of messages now being transmitted. This also implies that

Freed & Borenstein Standards Track [Page 8]
�
RFC 2046 Media Types November 1996

 messages containing characters coded according to other versions of
 ISO 646 than US-ASCII and the 1991 IRV, or using code-switching
 procedures (e.g., those of ISO 2022), as well as 8bit or multiple
 octet character encodings MUST use an appropriate character set
 specification to be consistent with MIME.

 The complete US-ASCII character set is listed in ANSI X3.4- 1986.
 Note that the control characters including DEL (0-31, 127) have no
 defined meaning in apart from the combination CRLF (US-ASCII values
 13 and 10) indicating a new line. Two of the characters have de
 facto meanings in wide use: FF (12) often means "start subsequent
 text on the beginning of a new page"; and TAB or HT (9) often (though
 not always) means "move the cursor to the next available column after
 the current position where the column number is a multiple of 8
 (counting the first column as column 0)." Aside from these
 conventions, any use of the control characters or DEL in a body must
 either occur

 (1) because a subtype of text other than "plain"
 specifically assigns some additional meaning, or

 (2) within the context of a private agreement between the
 sender and recipient. Such private agreements are
 discouraged and should be replaced by the other
 capabilities of this document.

 NOTE: An enormous proliferation of character sets exist beyond US-
 ASCII. A large number of partially or totally overlapping character
 sets is NOT a good thing. A SINGLE character set that can be used
 universally for representing all of the world's languages in Internet
 mail would be preferrable. Unfortunately, existing practice in
 several communities seems to point to the continued use of multiple
 character sets in the near future. A small number of standard
 character sets are, therefore, defined for Internet use in this
 document.

 The defined charset values are:

 (1) US-ASCII -- as defined in ANSI X3.4-1986 [US-ASCII].

 (2) ISO-8859-X -- where "X" is to be replaced, as
 necessary, for the parts of ISO-8859 [ISO-8859]. Note
 that the ISO 646 character sets have deliberately been
 omitted in favor of their 8859 replacements, which are
 the designated character sets for Internet mail. As of
 the publication of this document, the legitimate values
 for "X" are the digits 1 through 10.

Freed & Borenstein Standards Track [Page 9]
�
RFC 2046 Media Types November 1996

 Characters in the range 128-159 has no assigned meaning in ISO-8859-
 X. Characters with values below 128 in ISO-8859-X have the same
 assigned meaning as they do in US-ASCII.

 Part 6 of ISO 8859 (Latin/Arabic alphabet) and part 8 (Latin/Hebrew
 alphabet) includes both characters for which the normal writing
 direction is right to left and characters for which it is left to
 right, but do not define a canonical ordering method for representing
 bi-directional text. The charset values "ISO-8859-6" and "ISO-8859-
 8", however, specify that the visual method is used [RFC-1556].

 All of these character sets are used as pure 7bit or 8bit sets
 without any shift or escape functions. The meaning of shift and
 escape sequences in these character sets is not defined.

 The character sets specified above are the ones that were relatively
 uncontroversial during the drafting of MIME. This document does not
 endorse the use of any particular character set other than US-ASCII,
 and recognizes that the future evolution of world character sets
 remains unclear.

 Note that the character set used, if anything other than US- ASCII,
 must always be explicitly specified in the Content-Type field.

 No character set name other than those defined above may be used in
 Internet mail without the publication of a formal specification and
 its registration with IANA, or by private agreement, in which case
 the character set name must begin with "X-".

 Implementors are discouraged from defining new character sets unless
 absolutely necessary.

 The "charset" parameter has been defined primarily for the purpose of
 textual data, and is described in this section for that reason.
 However, it is conceivable that non-textual data might also wish to
 specify a charset value for some purpose, in which case the same
 syntax and values should be used.

 In general, composition software should always use the "lowest common
 denominator" character set possible. For example, if a body contains
 only US-ASCII characters, it SHOULD be marked as being in the US-
 ASCII character set, not ISO-8859-1, which, like all the ISO-8859
 family of character sets, is a superset of US-ASCII. More generally,
 if a widely-used character set is a subset of another character set,
 and a body contains only characters in the widely-used subset, it
 should be labelled as being in that subset. This will increase the
 chances that the recipient will be able to view the resulting entity
 correctly.

Freed & Borenstein Standards Track [Page 10]
�
RFC 2046 Media Types November 1996

4.1.3. Plain Subtype

 The simplest and most important subtype of "text" is "plain". This
 indicates plain text that does not contain any formatting commands or
 directives. Plain text is intended to be displayed "as-is", that is,
 no interpretation of embedded formatting commands, font attribute
 specifications, processing instructions, interpretation directives,
 or content markup should be necessary for proper display. The
 default media type of "text/plain; charset=us-ascii" for Internet
 mail describes existing Internet practice. That is, it is the type
 of body defined by RFC 822.

 No other "text" subtype is defined by this document.

4.1.4. Unrecognized Subtypes

 Unrecognized subtypes of "text" should be treated as subtype "plain"
 as long as the MIME implementation knows how to handle the charset.
 Unrecognized subtypes which also specify an unrecognized charset
 should be treated as "application/octet- stream".

4.2. Image Media Type

 A media type of "image" indicates that the body contains an image.
 The subtype names the specific image format. These names are not
 case sensitive. An initial subtype is "jpeg" for the JPEG format
 using JFIF encoding [JPEG].

 The list of "image" subtypes given here is neither exclusive nor
 exhaustive, and is expected to grow as more types are registered with
 IANA, as described in RFC 2048.

 Unrecognized subtypes of "image" should at a miniumum be treated as
 "application/octet-stream". Implementations may optionally elect to
 pass subtypes of "image" that they do not specifically recognize to a
 secure and robust general-purpose image viewing application, if such
 an application is available.

 NOTE: Using of a generic-purpose image viewing application this way
 inherits the security problems of the most dangerous type supported
 by the application.

4.3. Audio Media Type

 A media type of "audio" indicates that the body contains audio data.
 Although there is not yet a consensus on an "ideal" audio format for
 use with computers, there is a pressing need for a format capable of
 providing interoperable behavior.

Freed & Borenstein Standards Track [Page 11]
�
RFC 2046 Media Types November 1996

 The initial subtype of "basic" is specified to meet this requirement
 by providing an absolutely minimal lowest common denominator audio
 format. It is expected that richer formats for higher quality and/or
 lower bandwidth audio will be defined by a later document.

 The content of the "audio/basic" subtype is single channel audio
 encoded using 8bit ISDN mu-law [PCM] at a sample rate of 8000 Hz.

 Unrecognized subtypes of "audio" should at a miniumum be treated as
 "application/octet-stream". Implementations may optionally elect to
 pass subtypes of "audio" that they do not specifically recognize to a
 robust general-purpose audio playing application, if such an
 application is available.

4.4. Video Media Type

 A media type of "video" indicates that the body contains a time-
 varying-picture image, possibly with color and coordinated sound.
 The term 'video' is used in its most generic sense, rather than with
 reference to any particular technology or format, and is not meant to
 preclude subtypes such as animated drawings encoded compactly. The
 subtype "mpeg" refers to video coded according to the MPEG standard
 [MPEG].

 Note that although in general this document strongly discourages the
 mixing of multiple media in a single body, it is recognized that many
 so-called video formats include a representation for synchronized
 audio, and this is explicitly permitted for subtypes of "video".

 Unrecognized subtypes of "video" should at a minumum be treated as
 "application/octet-stream". Implementations may optionally elect to
 pass subtypes of "video" that they do not specifically recognize to a
 robust general-purpose video display application, if such an
 application is available.

4.5. Application Media Type

 The "application" media type is to be used for discrete data which do
 not fit in any of the other categories, and particularly for data to
 be processed by some type of application program. This is
 information which must be processed by an application before it is
 viewable or usable by a user. Expected uses for the "application"
 media type include file transfer, spreadsheets, data for mail-based
 scheduling systems, and languages for "active" (computational)
 material. (The latter, in particular, can pose security problems
 which must be understood by implementors, and are considered in
 detail in the discussion of the "application/PostScript" media type.)

Freed & Borenstein Standards Track [Page 12]
�
RFC 2046 Media Types November 1996

 For example, a meeting scheduler might define a standard
 representation for information about proposed meeting dates. An
 intelligent user agent would use this information to conduct a dialog
 with the user, and might then send additional material based on that
 dialog. More generally, there have been several "active" messaging
 languages developed in which programs in a suitably specialized
 language are transported to a remote location and automatically run
 in the recipient's environment.

 Such applications may be defined as subtypes of the "application"
 media type. This document defines two subtypes:

 octet-stream, and PostScript.

 The subtype of "application" will often be either the name or include
 part of the name of the application for which the data are intended.
 This does not mean, however, that any application program name may be
 used freely as a subtype of "application".

4.5.1. Octet-Stream Subtype

 The "octet-stream" subtype is used to indicate that a body contains
 arbitrary binary data. The set of currently defined parameters is:

 (1) TYPE -- the general type or category of binary data.
 This is intended as information for the human recipient
 rather than for any automatic processing.

 (2) PADDING -- the number of bits of padding that were
 appended to the bit-stream comprising the actual
 contents to produce the enclosed 8bit byte-oriented
 data. This is useful for enclosing a bit-stream in a
 body when the total number of bits is not a multiple of
 8.

 Both of these parameters are optional.

 An additional parameter, "CONVERSIONS", was defined in RFC 1341 but
 has since been removed. RFC 1341 also defined the use of a "NAME"
 parameter which gave a suggested file name to be used if the data
 were to be written to a file. This has been deprecated in
 anticipation of a separate Content-Disposition header field, to be
 defined in a subsequent RFC.

 The recommended action for an implementation that receives an
 "application/octet-stream" entity is to simply offer to put the data
 in a file, with any Content-Transfer-Encoding undone, or perhaps to
 use it as input to a user-specified process.

Freed & Borenstein Standards Track [Page 13]
�
RFC 2046 Media Types November 1996

 To reduce the danger of transmitting rogue programs, it is strongly
 recommended that implementations NOT implement a path-search
 mechanism whereby an arbitrary program named in the Content-Type
 parameter (e.g., an "interpreter=" parameter) is found and executed
 using the message body as input.

4.5.2. PostScript Subtype

 A media type of "application/postscript" indicates a PostScript
 program. Currently two variants of the PostScript language are
 allowed; the original level 1 variant is described in [POSTSCRIPT]
 and the more recent level 2 variant is described in [POSTSCRIPT2].

 PostScript is a registered trademark of Adobe Systems, Inc. Use of
 the MIME media type "application/postscript" implies recognition of
 that trademark and all the rights it entails.

 The PostScript language definition provides facilities for internal
 labelling of the specific language features a given program uses.
 This labelling, called the PostScript document structuring
 conventions, or DSC, is very general and provides substantially more
 information than just the language level. The use of document
 structuring conventions, while not required, is strongly recommended
 as an aid to interoperability. Documents which lack proper
 structuring conventions cannot be tested to see whether or not they
 will work in a given environment. As such, some systems may assume
 the worst and refuse to process unstructured documents.

 The execution of general-purpose PostScript interpreters entails
 serious security risks, and implementors are discouraged from simply
 sending PostScript bodies to "off- the-shelf" interpreters. While it
 is usually safe to send PostScript to a printer, where the potential
 for harm is greatly constrained by typical printer environments,
 implementors should consider all of the following before they add
 interactive display of PostScript bodies to their MIME readers.

 The remainder of this section outlines some, though probably not all,
 of the possible problems with the transport of PostScript entities.

 (1) Dangerous operations in the PostScript language
 include, but may not be limited to, the PostScript
 operators "deletefile", "renamefile", "filenameforall",
 and "file". "File" is only dangerous when applied to
 something other than standard input or output.
 Implementations may also define additional nonstandard
 file operators; these may also pose a threat to
 security. "Filenameforall", the wildcard file search
 operator, may appear at first glance to be harmless.

Freed & Borenstein Standards Track [Page 14]
�
RFC 2046 Media Types November 1996

 Note, however, that this operator has the potential to
 reveal information about what files the recipient has
 access to, and this information may itself be
 sensitive. Message senders should avoid the use of
 potentially dangerous file operators, since these
 operators are quite likely to be unavailable in secure
 PostScript implementations. Message receiving and
 displaying software should either completely disable
 all potentially dangerous file operators or take
 special care not to delegate any special authority to
 their operation. These operators should be viewed as
 being done by an outside agency when interpreting
 PostScript documents. Such disabling and/or checking
 should be done completely outside of the reach of the
 PostScript language itself; care should be taken to
 insure that no method exists for re-enabling full-
 function versions of these operators.

 (2) The PostScript language provides facilities for exiting
 the normal interpreter, or server, loop. Changes made
 in this "outer" environment are customarily retained
 across documents, and may in some cases be retained
 semipermanently in nonvolatile memory. The operators
 associated with exiting the interpreter loop have the
 potential to interfere with subsequent document
 processing. As such, their unrestrained use
 constitutes a threat of service denial. PostScript
 operators that exit the interpreter loop include, but
 may not be limited to, the exitserver and startjob
 operators. Message sending software should not
 generate PostScript that depends on exiting the
 interpreter loop to operate, since the ability to exit
 will probably be unavailable in secure PostScript
 implementations. Message receiving and displaying
 software should completely disable the ability to make
 retained changes to the PostScript environment by
 eliminating or disabling the "startjob" and
 "exitserver" operations. If these operations cannot be
 eliminated or completely disabled the password
 associated with them should at least be set to a hard-
 to-guess value.

 (3) PostScript provides operators for setting system-wide
 and device-specific parameters. These parameter
 settings may be retained across jobs and may
 potentially pose a threat to the correct operation of
 the interpreter. The PostScript operators that set
 system and device parameters include, but may not be

Freed & Borenstein Standards Track [Page 15]
�
RFC 2046 Media Types November 1996

 limited to, the "setsystemparams" and "setdevparams"
 operators. Message sending software should not
 generate PostScript that depends on the setting of
 system or device parameters to operate correctly. The
 ability to set these parameters will probably be
 unavailable in secure PostScript implementations.
 Message receiving and displaying software should
 disable the ability to change system and device
 parameters. If these operators cannot be completely
 disabled the password associated with them should at
 least be set to a hard-to-guess value.

 (4) Some PostScript implementations provide nonstandard
 facilities for the direct loading and execution of
 machine code. Such facilities are quite obviously open
 to substantial abuse. Message sending software should
 not make use of such features. Besides being totally
 hardware-specific, they are also likely to be
 unavailable in secure implementations of PostScript.
 Message receiving and displaying software should not
 allow such operators to be used if they exist.

 (5) PostScript is an extensible language, and many, if not
 most, implementations of it provide a number of their
 own extensions. This document does not deal with such
 extensions explicitly since they constitute an unknown
 factor. Message sending software should not make use
 of nonstandard extensions; they are likely to be
 missing from some implementations. Message receiving
 and displaying software should make sure that any
 nonstandard PostScript operators are secure and don't
 present any kind of threat.

 (6) It is possible to write PostScript that consumes huge
 amounts of various system resources. It is also
 possible to write PostScript programs that loop
 indefinitely. Both types of programs have the
 potential to cause damage if sent to unsuspecting
 recipients. Message-sending software should avoid the
 construction and dissemination of such programs, which
 is antisocial. Message receiving and displaying
 software should provide appropriate mechanisms to abort
 processing after a reasonable amount of time has
 elapsed. In addition, PostScript interpreters should be
 limited to the consumption of only a reasonable amount
 of any given system resource.

Freed & Borenstein Standards Track [Page 16]
�
RFC 2046 Media Types November 1996

 (7) It is possible to include raw binary information inside
 PostScript in various forms. This is not recommended
 for use in Internet mail, both because it is not
 supported by all PostScript interpreters and because it
 significantly complicates the use of a MIME Content-
 Transfer-Encoding. (Without such binary, PostScript
 may typically be viewed as line-oriented data. The
 treatment of CRLF sequences becomes extremely
 problematic if binary and line-oriented data are mixed
 in a single Postscript data stream.)

 (8) Finally, bugs may exist in some PostScript interpreters
 which could possibly be exploited to gain unauthorized
 access to a recipient's system. Apart from noting this
 possibility, there is no specific action to take to
 prevent this, apart from the timely correction of such
 bugs if any are found.

4.5.3. Other Application Subtypes

 It is expected that many other subtypes of "application" will be
 defined in the future. MIME implementations must at a minimum treat
 any unrecognized subtypes as being equivalent to "application/octet-
 stream".

5. Composite Media Type Values

 The remaining two of the seven initial Content-Type values refer to
 composite entities. Composite entities are handled using MIME
 mechanisms -- a MIME processor typically handles the body directly.

5.1. Multipart Media Type

 In the case of multipart entities, in which one or more different
 sets of data are combined in a single body, a "multipart" media type
 field must appear in the entity's header. The body must then contain
 one or more body parts, each preceded by a boundary delimiter line,
 and the last one followed by a closing boundary delimiter line.
 After its boundary delimiter line, each body part then consists of a
 header area, a blank line, and a body area. Thus a body part is
 similar to an RFC 822 message in syntax, but different in meaning.

 A body part is an entity and hence is NOT to be interpreted as
 actually being an RFC 822 message. To begin with, NO header fields
 are actually required in body parts. A body part that starts with a
 blank line, therefore, is allowed and is a body part for which all
 default values are to be assumed. In such a case, the absence of a
 Content-Type header usually indicates that the corresponding body has

Freed & Borenstein Standards Track [Page 17]
�
RFC 2046 Media Types November 1996

 a content-type of "text/plain; charset=US-ASCII".

 The only header fields that have defined meaning for body parts are
 those the names of which begin with "Content-". All other header
 fields may be ignored in body parts. Although they should generally
 be retained if at all possible, they may be discarded by gateways if
 necessary. Such other fields are permitted to appear in body parts
 but must not be depended on. "X-" fields may be created for
 experimental or private purposes, with the recognition that the
 information they contain may be lost at some gateways.

 NOTE: The distinction between an RFC 822 message and a body part is
 subtle, but important. A gateway between Internet and X.400 mail,
 for example, must be able to tell the difference between a body part
 that contains an image and a body part that contains an encapsulated
 message, the body of which is a JPEG image. In order to represent
 the latter, the body part must have "Content-Type: message/rfc822",
 and its body (after the blank line) must be the encapsulated message,
 with its own "Content-Type: image/jpeg" header field. The use of
 similar syntax facilitates the conversion of messages to body parts,
 and vice versa, but the distinction between the two must be
 understood by implementors. (For the special case in which parts
 actually are messages, a "digest" subtype is also defined.)

 As stated previously, each body part is preceded by a boundary
 delimiter line that contains the boundary delimiter. The boundary
 delimiter MUST NOT appear inside any of the encapsulated parts, on a
 line by itself or as the prefix of any line. This implies that it is
 crucial that the composing agent be able to choose and specify a
 unique boundary parameter value that does not contain the boundary
 parameter value of an enclosing multipart as a prefix.

 All present and future subtypes of the "multipart" type must use an
 identical syntax. Subtypes may differ in their semantics, and may
 impose additional restrictions on syntax, but must conform to the
 required syntax for the "multipart" type. This requirement ensures
 that all conformant user agents will at least be able to recognize
 and separate the parts of any multipart entity, even those of an
 unrecognized subtype.

 As stated in the definition of the Content-Transfer-Encoding field
 [RFC 2045], no encoding other than "7bit", "8bit", or "binary" is
 permitted for entities of type "multipart". The "multipart" boundary
 delimiters and header fields are always represented as 7bit US-ASCII
 in any case (though the header fields may encode non-US-ASCII header
 text as per RFC 2047) and data within the body parts can be encoded
 on a part-by-part basis, with Content-Transfer-Encoding fields for
 each appropriate body part.

Freed & Borenstein Standards Track [Page 18]
�
RFC 2046 Media Types November 1996

5.1.1. Common Syntax

 This section defines a common syntax for subtypes of "multipart".
 All subtypes of "multipart" must use this syntax. A simple example
 of a multipart message also appears in this section. An example of a
 more complex multipart message is given in RFC 2049.

 The Content-Type field for multipart entities requires one parameter,
 "boundary". The boundary delimiter line is then defined as a line
 consisting entirely of two hyphen characters ("-", decimal value 45)
 followed by the boundary parameter value from the Content-Type header
 field, optional linear whitespace, and a terminating CRLF.

 NOTE: The hyphens are for rough compatibility with the earlier RFC
 934 method of message encapsulation, and for ease of searching for
 the boundaries in some implementations. However, it should be noted
 that multipart messages are NOT completely compatible with RFC 934
 encapsulations; in particular, they do not obey RFC 934 quoting
 conventions for embedded lines that begin with hyphens. This
 mechanism was chosen over the RFC 934 mechanism because the latter
 causes lines to grow with each level of quoting. The combination of
 this growth with the fact that SMTP implementations sometimes wrap
 long lines made the RFC 934 mechanism unsuitable for use in the event
 that deeply-nested multipart structuring is ever desired.

 WARNING TO IMPLEMENTORS: The grammar for parameters on the Content-
 type field is such that it is often necessary to enclose the boundary
 parameter values in quotes on the Content-type line. This is not
 always necessary, but never hurts. Implementors should be sure to
 study the grammar carefully in order to avoid producing invalid
 Content-type fields. Thus, a typical "multipart" Content-Type header
 field might look like this:

 Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p

 But the following is not valid:

 Content-Type: multipart/mixed; boundary=gc0pJq0M:08jU534c0p

 (because of the colon) and must instead be represented as

 Content-Type: multipart/mixed; boundary="gc0pJq0M:08jU534c0p"

 This Content-Type value indicates that the content consists of one or
 more parts, each with a structure that is syntactically identical to
 an RFC 822 message, except that the header area is allowed to be
 completely empty, and that the parts are each preceded by the line

Freed & Borenstein Standards Track [Page 19]
�
RFC 2046 Media Types November 1996

 --gc0pJq0M:08jU534c0p

 The boundary delimiter MUST occur at the beginning of a line, i.e.,
 following a CRLF, and the initial CRLF is considered to be attached
 to the boundary delimiter line rather than part of the preceding
 part. The boundary may be followed by zero or more characters of
 linear whitespace. It is then terminated by either another CRLF and
 the header fields for the next part, or by two CRLFs, in which case
 there are no header fields for the next part. If no Content-Type
 field is present it is assumed to be "message/rfc822" in a
 "multipart/digest" and "text/plain" otherwise.

 NOTE: The CRLF preceding the boundary delimiter line is conceptually
 attached to the boundary so that it is possible to have a part that
 does not end with a CRLF (line break). Body parts that must be
 considered to end with line breaks, therefore, must have two CRLFs
 preceding the boundary delimiter line, the first of which is part of
 the preceding body part, and the second of which is part of the
 encapsulation boundary.

 Boundary delimiters must not appear within the encapsulated material,
 and must be no longer than 70 characters, not counting the two
 leading hyphens.

 The boundary delimiter line following the last body part is a
 distinguished delimiter that indicates that no further body parts
 will follow. Such a delimiter line is identical to the previous
 delimiter lines, with the addition of two more hyphens after the
 boundary parameter value.

 --gc0pJq0M:08jU534c0p--

 NOTE TO IMPLEMENTORS: Boundary string comparisons must compare the
 boundary value with the beginning of each candidate line. An exact
 match of the entire candidate line is not required; it is sufficient
 that the boundary appear in its entirety following the CRLF.

 There appears to be room for additional information prior to the
 first boundary delimiter line and following the final boundary
 delimiter line. These areas should generally be left blank, and
 implementations must ignore anything that appears before the first
 boundary delimiter line or after the last one.

 NOTE: These "preamble" and "epilogue" areas are generally not used
 because of the lack of proper typing of these parts and the lack of
 clear semantics for handling these areas at gateways, particularly
 X.400 gateways. However, rather than leaving the preamble area
 blank, many MIME implementations have found this to be a convenient

Freed & Borenstein Standards Track [Page 20]
�
RFC 2046 Media Types November 1996

 place to insert an explanatory note for recipients who read the
 message with pre-MIME software, since such notes will be ignored by
 MIME-compliant software.

 NOTE: Because boundary delimiters must not appear in the body parts
 being encapsulated, a user agent must exercise care to choose a
 unique boundary parameter value. The boundary parameter value in the
 example above could have been the result of an algorithm designed to
 produce boundary delimiters with a very low probability of already
 existing in the data to be encapsulated without having to prescan the
 data. Alternate algorithms might result in more "readable" boundary
 delimiters for a recipient with an old user agent, but would require
 more attention to the possibility that the boundary delimiter might
 appear at the beginning of some line in the encapsulated part. The
 simplest boundary delimiter line possible is something like "---",
 with a closing boundary delimiter line of "-----".

 As a very simple example, the following multipart message has two
 parts, both of them plain text, one of them explicitly typed and one
 of them implicitly typed:

 From: Nathaniel Borenstein <nsb@bellcore.com>
 To: Ned Freed <ned@innosoft.com>
 Date: Sun, 21 Mar 1993 23:56:48 -0800 (PST)
 Subject: Sample message
 MIME-Version: 1.0
 Content-type: multipart/mixed; boundary="simple boundary"

 This is the preamble. It is to be ignored, though it
 is a handy place for composition agents to include an
 explanatory note to non-MIME conformant readers.

 --simple boundary

 This is implicitly typed plain US-ASCII text.
 It does NOT end with a linebreak.
 --simple boundary
 Content-type: text/plain; charset=us-ascii

 This is explicitly typed plain US-ASCII text.
 It DOES end with a linebreak.

 --simple boundary--

 This is the epilogue. It is also to be ignored.

Freed & Borenstein Standards Track [Page 21]
�
RFC 2046 Media Types November 1996

 The use of a media type of "multipart" in a body part within another
 "multipart" entity is explicitly allowed. In such cases, for obvious
 reasons, care must be taken to ensure that each nested "multipart"
 entity uses a different boundary delimiter. See RFC 2049 for an
 example of nested "multipart" entities.

 The use of the "multipart" media type with only a single body part
 may be useful in certain contexts, and is explicitly permitted.

 NOTE: Experience has shown that a "multipart" media type with a
 single body part is useful for sending non-text media types. It has
 the advantage of providing the preamble as a place to include
 decoding instructions. In addition, a number of SMTP gateways move
 or remove the MIME headers, and a clever MIME decoder can take a good
 guess at multipart boundaries even in the absence of the Content-Type
 header and thereby successfully decode the message.

 The only mandatory global parameter for the "multipart" media type is
 the boundary parameter, which consists of 1 to 70 characters from a
 set of characters known to be very robust through mail gateways, and
 NOT ending with white space. (If a boundary delimiter line appears to
 end with white space, the white space must be presumed to have been
 added by a gateway, and must be deleted.) It is formally specified
 by the following BNF:

 boundary := 0*69<bchars> bcharsnospace

 bchars := bcharsnospace / " "

 bcharsnospace := DIGIT / ALPHA / "'" / "(" / ")" /
 "+" / "_" / "," / "-" / "." /
 "/" / ":" / "=" / "?"

 Overall, the body of a "multipart" entity may be specified as
 follows:

 dash-boundary := "--" boundary
 ; boundary taken from the value of
 ; boundary parameter of the
 ; Content-Type field.

 multipart-body := [preamble CRLF]
 dash-boundary transport-padding CRLF
 body-part *encapsulation
 close-delimiter transport-padding
 [CRLF epilogue]

Freed & Borenstein Standards Track [Page 22]
�
RFC 2046 Media Types November 1996

 transport-padding := *LWSP-char
 ; Composers MUST NOT generate
 ; non-zero length transport
 ; padding, but receivers MUST
 ; be able to handle padding
 ; added by message transports.

 encapsulation := delimiter transport-padding
 CRLF body-part

 delimiter := CRLF dash-boundary

 close-delimiter := delimiter "--"

 preamble := discard-text

 epilogue := discard-text

 discard-text := *(*text CRLF) *text
 ; May be ignored or discarded.

 body-part := MIME-part-headers [CRLF *OCTET]
 ; Lines in a body-part must not start
 ; with the specified dash-boundary and
 ; the delimiter must not appear anywhere
 ; in the body part. Note that the
 ; semantics of a body-part differ from
 ; the semantics of a message, as
 ; described in the text.

 OCTET := <any 0-255 octet value>

 IMPORTANT: The free insertion of linear-white-space and RFC 822
 comments between the elements shown in this BNF is NOT allowed since
 this BNF does not specify a structured header field.

 NOTE: In certain transport enclaves, RFC 822 restrictions such as
 the one that limits bodies to printable US-ASCII characters may not
 be in force. (That is, the transport domains may exist that resemble
 standard Internet mail transport as specified in RFC 821 and assumed
 by RFC 822, but without certain restrictions.) The relaxation of
 these restrictions should be construed as locally extending the
 definition of bodies, for example to include octets outside of the
 US-ASCII range, as long as these extensions are supported by the
 transport and adequately documented in the Content- Transfer-Encoding
 header field. However, in no event are headers (either message
 headers or body part headers) allowed to contain anything other than
 US-ASCII characters.

Freed & Borenstein Standards Track [Page 23]
�
RFC 2046 Media Types November 1996

 NOTE: Conspicuously missing from the "multipart" type is a notion of
 structured, related body parts. It is recommended that those wishing
 to provide more structured or integrated multipart messaging
 facilities should define subtypes of multipart that are syntactically
 identical but define relationships between the various parts. For
 example, subtypes of multipart could be defined that include a
 distinguished part which in turn is used to specify the relationships
 between the other parts, probably referring to them by their
 Content-ID field. Old implementations will not recognize the new
 subtype if this approach is used, but will treat it as
 multipart/mixed and will thus be able to show the user the parts that
 are recognized.

5.1.2. Handling Nested Messages and Multiparts

 The "message/rfc822" subtype defined in a subsequent section of this
 document has no terminating condition other than running out of data.
 Similarly, an improperly truncated "multipart" entity may not have
 any terminating boundary marker, and can turn up operationally due to
 mail system malfunctions.

 It is essential that such entities be handled correctly when they are
 themselves imbedded inside of another "multipart" structure. MIME
 implementations are therefore required to recognize outer level
 boundary markers at ANY level of inner nesting. It is not sufficient
 to only check for the next expected marker or other terminating
 condition.

5.1.3. Mixed Subtype

 The "mixed" subtype of "multipart" is intended for use when the body
 parts are independent and need to be bundled in a particular order.
 Any "multipart" subtypes that an implementation does not recognize
 must be treated as being of subtype "mixed".

5.1.4. Alternative Subtype

 The "multipart/alternative" type is syntactically identical to
 "multipart/mixed", but the semantics are different. In particular,
 each of the body parts is an "alternative" version of the same
 information.

 Systems should recognize that the content of the various parts are
 interchangeable. Systems should choose the "best" type based on the
 local environment and references, in some cases even through user
 interaction. As with "multipart/mixed", the order of body parts is
 significant. In this case, the alternatives appear in an order of
 increasing faithfulness to the original content. In general, the

Freed & Borenstein Standards Track [Page 24]
�
RFC 2046 Media Types November 1996

 best choice is the LAST part of a type supported by the recipient
 system's local environment.

 "Multipart/alternative" may be used, for example, to send a message
 in a fancy text format in such a way that it can easily be displayed
 anywhere:

 From: Nathaniel Borenstein <nsb@bellcore.com>
 To: Ned Freed <ned@innosoft.com>
 Date: Mon, 22 Mar 1993 09:41:09 -0800 (PST)
 Subject: Formatted text mail
 MIME-Version: 1.0
 Content-Type: multipart/alternative; boundary=boundary42

 --boundary42
 Content-Type: text/plain; charset=us-ascii

 ... plain text version of message goes here ...

 --boundary42
 Content-Type: text/enriched

 ... RFC 1896 text/enriched version of same message
 goes here ...

 --boundary42
 Content-Type: application/x-whatever

 ... fanciest version of same message goes here ...

 --boundary42--

 In this example, users whose mail systems understood the
 "application/x-whatever" format would see only the fancy version,
 while other users would see only the enriched or plain text version,
 depending on the capabilities of their system.

 In general, user agents that compose "multipart/alternative" entities
 must place the body parts in increasing order of preference, that is,
 with the preferred format last. For fancy text, the sending user
 agent should put the plainest format first and the richest format
 last. Receiving user agents should pick and display the last format
 they are capable of displaying. In the case where one of the
 alternatives is itself of type "multipart" and contains unrecognized
 sub-parts, the user agent may choose either to show that alternative,
 an earlier alternative, or both.

Freed & Borenstein Standards Track [Page 25]
�
RFC 2046 Media Types November 1996

 NOTE: From an implementor's perspective, it might seem more sensible
 to reverse this ordering, and have the plainest alternative last.
 However, placing the plainest alternative first is the friendliest
 possible option when "multipart/alternative" entities are viewed
 using a non-MIME-conformant viewer. While this approach does impose
 some burden on conformant MIME viewers, interoperability with older
 mail readers was deemed to be more important in this case.

 It may be the case that some user agents, if they can recognize more
 than one of the formats, will prefer to offer the user the choice of
 which format to view. This makes sense, for example, if a message
 includes both a nicely- formatted image version and an easily-edited
 text version. What is most critical, however, is that the user not
 automatically be shown multiple versions of the same data. Either
 the user should be shown the last recognized version or should be
 given the choice.

 THE SEMANTICS OF CONTENT-ID IN MULTIPART/ALTERNATIVE: Each part of a
 "multipart/alternative" entity represents the same data, but the
 mappings between the two are not necessarily without information
 loss. For example, information is lost when translating ODA to
 PostScript or plain text. It is recommended that each part should
 have a different Content-ID value in the case where the information
 content of the two parts is not identical. And when the information
 content is identical -- for example, where several parts of type
 "message/external-body" specify alternate ways to access the
 identical data -- the same Content-ID field value should be used, to
 optimize any caching mechanisms that might be present on the
 recipient's end. However, the Content-ID values used by the parts
 should NOT be the same Content-ID value that describes the
 "multipart/alternative" as a whole, if there is any such Content-ID
 field. That is, one Content-ID value will refer to the
 "multipart/alternative" entity, while one or more other Content-ID
 values will refer to the parts inside it.

5.1.5. Digest Subtype

 This document defines a "digest" subtype of the "multipart" Content-
 Type. This type is syntactically identical to "multipart/mixed", but
 the semantics are different. In particular, in a digest, the default
 Content-Type value for a body part is changed from "text/plain" to
 "message/rfc822". This is done to allow a more readable digest
 format that is largely compatible (except for the quoting convention)
 with RFC 934.

 Note: Though it is possible to specify a Content-Type value for a
 body part in a digest which is other than "message/rfc822", such as a
 "text/plain" part containing a description of the material in the

Freed & Borenstein Standards Track [Page 26]
�
RFC 2046 Media Types November 1996

 digest, actually doing so is undesireble. The "multipart/digest"
 Content-Type is intended to be used to send collections of messages.
 If a "text/plain" part is needed, it should be included as a seperate
 part of a "multipart/mixed" message.

 A digest in this format might, then, look something like this:

 From: Moderator-Address
 To: Recipient-List
 Date: Mon, 22 Mar 1994 13:34:51 +0000
 Subject: Internet Digest, volume 42
 MIME-Version: 1.0
 Content-Type: multipart/mixed;
 boundary="---- main boundary ----"

 ------ main boundary ----

 ...Introductory text or table of contents...

 ------ main boundary ----
 Content-Type: multipart/digest;
 boundary="---- next message ----"

 ------ next message ----

 From: someone-else
 Date: Fri, 26 Mar 1993 11:13:32 +0200
 Subject: my opinion

 ...body goes here ...

 ------ next message ----

 From: someone-else-again
 Date: Fri, 26 Mar 1993 10:07:13 -0500
 Subject: my different opinion

 ... another body goes here ...

 ------ next message ------

 ------ main boundary ------

5.1.6. Parallel Subtype

 This document defines a "parallel" subtype of the "multipart"
 Content-Type. This type is syntactically identical to
 "multipart/mixed", but the semantics are different. In particular,

Freed & Borenstein Standards Track [Page 27]
�
RFC 2046 Media Types November 1996

 in a parallel entity, the order of body parts is not significant.

 A common presentation of this type is to display all of the parts
 simultaneously on hardware and software that are capable of doing so.
 However, composing agents should be aware that many mail readers will
 lack this capability and will show the parts serially in any event.

5.1.7. Other Multipart Subtypes

 Other "multipart" subtypes are expected in the future. MIME
 implementations must in general treat unrecognized subtypes of
 "multipart" as being equivalent to "multipart/mixed".

5.2. Message Media Type

 It is frequently desirable, in sending mail, to encapsulate another
 mail message. A special media type, "message", is defined to
 facilitate this. In particular, the "rfc822" subtype of "message" is
 used to encapsulate RFC 822 messages.

 NOTE: It has been suggested that subtypes of "message" might be
 defined for forwarded or rejected messages. However, forwarded and
 rejected messages can be handled as multipart messages in which the
 first part contains any control or descriptive information, and a
 second part, of type "message/rfc822", is the forwarded or rejected
 message. Composing rejection and forwarding messages in this manner
 will preserve the type information on the original message and allow
 it to be correctly presented to the recipient, and hence is strongly
 encouraged.

 Subtypes of "message" often impose restrictions on what encodings are
 allowed. These restrictions are described in conjunction with each
 specific subtype.

 Mail gateways, relays, and other mail handling agents are commonly
 known to alter the top-level header of an RFC 822 message. In
 particular, they frequently add, remove, or reorder header fields.
 These operations are explicitly forbidden for the encapsulated
 headers embedded in the bodies of messages of type "message."

5.2.1. RFC822 Subtype

 A media type of "message/rfc822" indicates that the body contains an
 encapsulated message, with the syntax of an RFC 822 message.
 However, unlike top-level RFC 822 messages, the restriction that each
 "message/rfc822" body must include a "From", "Date", and at least one
 destination header is removed and replaced with the requirement that
 at least one of "From", "Subject", or "Date" must be present.

Freed & Borenstein Standards Track [Page 28]
�
RFC 2046 Media Types November 1996

 It should be noted that, despite the use of the numbers "822", a
 "message/rfc822" entity isn't restricted to material in strict
 conformance to RFC822, nor are the semantics of "message/rfc822"
 objects restricted to the semantics defined in RFC822. More
 specifically, a "message/rfc822" message could well be a News article
 or a MIME message.

 No encoding other than "7bit", "8bit", or "binary" is permitted for
 the body of a "message/rfc822" entity. The message header fields are
 always US-ASCII in any case, and data within the body can still be
 encoded, in which case the Content-Transfer-Encoding header field in
 the encapsulated message will reflect this. Non-US-ASCII text in the
 headers of an encapsulated message can be specified using the
 mechanisms described in RFC 2047.

5.2.2. Partial Subtype

 The "partial" subtype is defined to allow large entities to be
 delivered as several separate pieces of mail and automatically
 reassembled by a receiving user agent. (The concept is similar to IP
 fragmentation and reassembly in the basic Internet Protocols.) This
 mechanism can be used when intermediate transport agents limit the
 size of individual messages that can be sent. The media type
 "message/partial" thus indicates that the body contains a fragment of
 a larger entity.

 Because data of type "message" may never be encoded in base64 or
 quoted-printable, a problem might arise if "message/partial" entities
 are constructed in an environment that supports binary or 8bit
 transport. The problem is that the binary data would be split into
 multiple "message/partial" messages, each of them requiring binary
 transport. If such messages were encountered at a gateway into a
 7bit transport environment, there would be no way to properly encode
 them for the 7bit world, aside from waiting for all of the fragments,
 reassembling the inner message, and then encoding the reassembled
 data in base64 or quoted-printable. Since it is possible that
 different fragments might go through different gateways, even this is
 not an acceptable solution. For this reason, it is specified that
 entities of type "message/partial" must always have a content-
 transfer-encoding of 7bit (the default). In particular, even in
 environments that support binary or 8bit transport, the use of a
 content- transfer-encoding of "8bit" or "binary" is explicitly
 prohibited for MIME entities of type "message/partial". This in turn
 implies that the inner message must not use "8bit" or "binary"
 encoding.

Freed & Borenstein Standards Track [Page 29]
�
RFC 2046 Media Types November 1996

 Because some message transfer agents may choose to automatically
 fragment large messages, and because such agents may use very
 different fragmentation thresholds, it is possible that the pieces of
 a partial message, upon reassembly, may prove themselves to comprise
 a partial message. This is explicitly permitted.

 Three parameters must be specified in the Content-Type field of type
 "message/partial": The first, "id", is a unique identifier, as close
 to a world-unique identifier as possible, to be used to match the
 fragments together. (In general, the identifier is essentially a
 message-id; if placed in double quotes, it can be ANY message-id, in
 accordance with the BNF for "parameter" given in RFC 2045.) The
 second, "number", an integer, is the fragment number, which indicates
 where this fragment fits into the sequence of fragments. The third,
 "total", another integer, is the total number of fragments. This
 third subfield is required on the final fragment, and is optional
 (though encouraged) on the earlier fragments. Note also that these
 parameters may be given in any order.

 Thus, the second piece of a 3-piece message may have either of the
 following header fields:

 Content-Type: Message/Partial; number=2; total=3;
 id="oc=jpbe0M2Yt4s@thumper.bellcore.com"

 Content-Type: Message/Partial;
 id="oc=jpbe0M2Yt4s@thumper.bellcore.com";
 number=2

 But the third piece MUST specify the total number of fragments:

 Content-Type: Message/Partial; number=3; total=3;
 id="oc=jpbe0M2Yt4s@thumper.bellcore.com"

 Note that fragment numbering begins with 1, not 0.

 When the fragments of an entity broken up in this manner are put
 together, the result is always a complete MIME entity, which may have
 its own Content-Type header field, and thus may contain any other
 data type.

5.2.2.1. Message Fragmentation and Reassembly

 The semantics of a reassembled partial message must be those of the
 "inner" message, rather than of a message containing the inner
 message. This makes it possible, for example, to send a large audio
 message as several partial messages, and still have it appear to the
 recipient as a simple audio message rather than as an encapsulated

Freed & Borenstein Standards Track [Page 30]
�
RFC 2046 Media Types November 1996

 message containing an audio message. That is, the encapsulation of
 the message is considered to be "transparent".

 When generating and reassembling the pieces of a "message/partial"
 message, the headers of the encapsulated message must be merged with
 the headers of the enclosing entities. In this process the following
 rules must be observed:

 (1) Fragmentation agents must split messages at line
 boundaries only. This restriction is imposed because
 splits at points other than the ends of lines in turn
 depends on message transports being able to preserve
 the semantics of messages that don't end with a CRLF
 sequence. Many transports are incapable of preserving
 such semantics.

 (2) All of the header fields from the initial enclosing
 message, except those that start with "Content-" and
 the specific header fields "Subject", "Message-ID",
 "Encrypted", and "MIME-Version", must be copied, in
 order, to the new message.

 (3) The header fields in the enclosed message which start
 with "Content-", plus the "Subject", "Message-ID",
 "Encrypted", and "MIME-Version" fields, must be
 appended, in order, to the header fields of the new
 message. Any header fields in the enclosed message
 which do not start with "Content-" (except for the
 "Subject", "Message-ID", "Encrypted", and "MIME-
 Version" fields) will be ignored and dropped.

 (4) All of the header fields from the second and any
 subsequent enclosing messages are discarded by the
 reassembly process.

5.2.2.2. Fragmentation and Reassembly Example

 If an audio message is broken into two pieces, the first piece might
 look something like this:

 X-Weird-Header-1: Foo
 From: Bill@host.com
 To: joe@otherhost.com
 Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
 Subject: Audio mail (part 1 of 2)
 Message-ID: <id1@host.com>
 MIME-Version: 1.0
 Content-type: message/partial; id="ABC@host.com";

Freed & Borenstein Standards Track [Page 31]
�
RFC 2046 Media Types November 1996

 number=1; total=2

 X-Weird-Header-1: Bar
 X-Weird-Header-2: Hello
 Message-ID: <anotherid@foo.com>
 Subject: Audio mail
 MIME-Version: 1.0
 Content-type: audio/basic
 Content-transfer-encoding: base64

 ... first half of encoded audio data goes here ...

 and the second half might look something like this:

 From: Bill@host.com
 To: joe@otherhost.com
 Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
 Subject: Audio mail (part 2 of 2)
 MIME-Version: 1.0
 Message-ID: <id2@host.com>
 Content-type: message/partial;
 id="ABC@host.com"; number=2; total=2

 ... second half of encoded audio data goes here ...

 Then, when the fragmented message is reassembled, the resulting
 message to be displayed to the user should look something like this:

 X-Weird-Header-1: Foo
 From: Bill@host.com
 To: joe@otherhost.com
 Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
 Subject: Audio mail
 Message-ID: <anotherid@foo.com>
 MIME-Version: 1.0
 Content-type: audio/basic
 Content-transfer-encoding: base64

 ... first half of encoded audio data goes here ...
 ... second half of encoded audio data goes here ...

 The inclusion of a "References" field in the headers of the second
 and subsequent pieces of a fragmented message that references the
 Message-Id on the previous piece may be of benefit to mail readers
 that understand and track references. However, the generation of
 such "References" fields is entirely optional.

Freed & Borenstein Standards Track [Page 32]
�
RFC 2046 Media Types November 1996

 Finally, it should be noted that the "Encrypted" header field has
 been made obsolete by Privacy Enhanced Messaging (PEM) [RFC-1421,
 RFC-1422, RFC-1423, RFC-1424], but the rules above are nevertheless
 believed to describe the correct way to treat it if it is encountered
 in the context of conversion to and from "message/partial" fragments.

5.2.3. External-Body Subtype

 The external-body subtype indicates that the actual body data are not
 included, but merely referenced. In this case, the parameters
 describe a mechanism for accessing the external data.

 When a MIME entity is of type "message/external-body", it consists of
 a header, two consecutive CRLFs, and the message header for the
 encapsulated message. If another pair of consecutive CRLFs appears,
 this of course ends the message header for the encapsulated message.
 However, since the encapsulated message's body is itself external, it
 does NOT appear in the area that follows. For example, consider the
 following message:

 Content-type: message/external-body;
 access-type=local-file;
 name="/u/nsb/Me.jpeg"

 Content-type: image/jpeg
 Content-ID: <id42@guppylake.bellcore.com>
 Content-Transfer-Encoding: binary

 THIS IS NOT REALLY THE BODY!

 The area at the end, which might be called the "phantom body", is
 ignored for most external-body messages. However, it may be used to
 contain auxiliary information for some such messages, as indeed it is
 when the access-type is "mail- server". The only access-type defined
 in this document that uses the phantom body is "mail-server", but
 other access-types may be defined in the future in other
 specifications that use this area.

 The encapsulated headers in ALL "message/external-body" entities MUST
 include a Content-ID header field to give a unique identifier by
 which to reference the data. This identifier may be used for caching
 mechanisms, and for recognizing the receipt of the data when the
 access-type is "mail-server".

 Note that, as specified here, the tokens that describe external-body
 data, such as file names and mail server commands, are required to be
 in the US-ASCII character set.

Freed & Borenstein Standards Track [Page 33]
�
RFC 2046 Media Types November 1996

 If this proves problematic in practice, a new mechanism may be
 required as a future extension to MIME, either as newly defined
 access-types for "message/external-body" or by some other mechanism.

 As with "message/partial", MIME entities of type "message/external-
 body" MUST have a content-transfer-encoding of 7bit (the default).
 In particular, even in environments that support binary or 8bit
 transport, the use of a content- transfer-encoding of "8bit" or
 "binary" is explicitly prohibited for entities of type
 "message/external-body".

5.2.3.1. General External-Body Parameters

 The parameters that may be used with any "message/external- body"
 are:

 (1) ACCESS-TYPE -- A word indicating the supported access
 mechanism by which the file or data may be obtained.
 This word is not case sensitive. Values include, but
 are not limited to, "FTP", "ANON-FTP", "TFTP", "LOCAL-
 FILE", and "MAIL-SERVER". Future values, except for
 experimental values beginning with "X-", must be
 registered with IANA, as described in RFC 2048.
 This parameter is unconditionally mandatory and MUST be
 present on EVERY "message/external-body".

 (2) EXPIRATION -- The date (in the RFC 822 "date-time"
 syntax, as extended by RFC 1123 to permit 4 digits in
 the year field) after which the existence of the
 external data is not guaranteed. This parameter may be
 used with ANY access-type and is ALWAYS optional.

 (3) SIZE -- The size (in octets) of the data. The intent
 of this parameter is to help the recipient decide
 whether or not to expend the necessary resources to
 retrieve the external data. Note that this describes
 the size of the data in its canonical form, that is,
 before any Content-Transfer-Encoding has been applied
 or after the data have been decoded. This parameter
 may be used with ANY access-type and is ALWAYS
 optional.

 (4) PERMISSION -- A case-insensitive field that indicates
 whether or not it is expected that clients might also
 attempt to overwrite the data. By default, or if
 permission is "read", the assumption is that they are
 not, and that if the data is retrieved once, it is
 never needed again. If PERMISSION is "read-write",

Freed & Borenstein Standards Track [Page 34]
�
RFC 2046 Media Types November 1996

 this assumption is invalid, and any local copy must be
 considered no more than a cache. "Read" and "Read-
 write" are the only defined values of permission. This
 parameter may be used with ANY access-type and is
 ALWAYS optional.

 The precise semantics of the access-types defined here are described
 in the sections that follow.

5.2.3.2. The 'ftp' and 'tftp' Access-Types

 An access-type of FTP or TFTP indicates that the message body is
 accessible as a file using the FTP [RFC-959] or TFTP [RFC- 783]
 protocols, respectively. For these access-types, the following
 additional parameters are mandatory:

 (1) NAME -- The name of the file that contains the actual
 body data.

 (2) SITE -- A machine from which the file may be obtained,
 using the given protocol. This must be a fully
 qualified domain name, not a nickname.

 (3) Before any data are retrieved, using FTP, the user will
 generally need to be asked to provide a login id and a
 password for the machine named by the site parameter.
 For security reasons, such an id and password are not
 specified as content-type parameters, but must be
 obtained from the user.

 In addition, the following parameters are optional:

 (1) DIRECTORY -- A directory from which the data named by
 NAME should be retrieved.

 (2) MODE -- A case-insensitive string indicating the mode
 to be used when retrieving the information. The valid
 values for access-type "TFTP" are "NETASCII", "OCTET",
 and "MAIL", as specified by the TFTP protocol [RFC-
 783]. The valid values for access-type "FTP" are
 "ASCII", "EBCDIC", "IMAGE", and "LOCALn" where "n" is a
 decimal integer, typically 8. These correspond to the
 representation types "A" "E" "I" and "L n" as specified
 by the FTP protocol [RFC-959]. Note that "BINARY" and
 "TENEX" are not valid values for MODE and that "OCTET"
 or "IMAGE" or "LOCAL8" should be used instead. IF MODE
 is not specified, the default value is "NETASCII" for
 TFTP and "ASCII" otherwise.

Freed & Borenstein Standards Track [Page 35]
�
RFC 2046 Media Types November 1996

5.2.3.3. The 'anon-ftp' Access-Type

 The "anon-ftp" access-type is identical to the "ftp" access type,
 except that the user need not be asked to provide a name and password
 for the specified site. Instead, the ftp protocol will be used with
 login "anonymous" and a password that corresponds to the user's mail
 address.

5.2.3.4. The 'local-file' Access-Type

 An access-type of "local-file" indicates that the actual body is
 accessible as a file on the local machine. Two additional parameters
 are defined for this access type:

 (1) NAME -- The name of the file that contains the actual
 body data. This parameter is mandatory for the
 "local-file" access-type.

 (2) SITE -- A domain specifier for a machine or set of
 machines that are known to have access to the data
 file. This optional parameter is used to describe the
 locality of reference for the data, that is, the site
 or sites at which the file is expected to be visible.
 Asterisks may be used for wildcard matching to a part
 of a domain name, such as "*.bellcore.com", to indicate
 a set of machines on which the data should be directly
 visible, while a single asterisk may be used to
 indicate a file that is expected to be universally
 available, e.g., via a global file system.

5.2.3.5. The 'mail-server' Access-Type

 The "mail-server" access-type indicates that the actual body is
 available from a mail server. Two additional parameters are defined
 for this access-type:

 (1) SERVER -- The addr-spec of the mail server from which
 the actual body data can be obtained. This parameter
 is mandatory for the "mail-server" access-type.

 (2) SUBJECT -- The subject that is to be used in the mail
 that is sent to obtain the data. Note that keying mail
 servers on Subject lines is NOT recommended, but such
 mail servers are known to exist. This is an optional
 parameter.

Freed & Borenstein Standards Track [Page 36]
�
RFC 2046 Media Types November 1996

 Because mail servers accept a variety of syntaxes, some of which is
 multiline, the full command to be sent to a mail server is not
 included as a parameter in the content-type header field. Instead,
 it is provided as the "phantom body" when the media type is
 "message/external-body" and the access-type is mail-server.

 Note that MIME does not define a mail server syntax. Rather, it
 allows the inclusion of arbitrary mail server commands in the phantom
 body. Implementations must include the phantom body in the body of
 the message it sends to the mail server address to retrieve the
 relevant data.

 Unlike other access-types, mail-server access is asynchronous and
 will happen at an unpredictable time in the future. For this reason,
 it is important that there be a mechanism by which the returned data
 can be matched up with the original "message/external-body" entity.
 MIME mail servers must use the same Content-ID field on the returned
 message that was used in the original "message/external-body"
 entities, to facilitate such matching.

5.2.3.6. External-Body Security Issues

 "Message/external-body" entities give rise to two important security
 issues:

 (1) Accessing data via a "message/external-body" reference
 effectively results in the message recipient performing
 an operation that was specified by the message
 originator. It is therefore possible for the message
 originator to trick a recipient into doing something
 they would not have done otherwise. For example, an
 originator could specify a action that attempts
 retrieval of material that the recipient is not
 authorized to obtain, causing the recipient to
 unwittingly violate some security policy. For this
 reason, user agents capable of resolving external
 references must always take steps to describe the
 action they are to take to the recipient and ask for
 explicit permisssion prior to performing it.

 The 'mail-server' access-type is particularly
 vulnerable, in that it causes the recipient to send a
 new message whose contents are specified by the
 original message's originator. Given the potential for
 abuse, any such request messages that are constructed
 should contain a clear indication that they were
 generated automatically (e.g. in a Comments: header
 field) in an attempt to resolve a MIME

Freed & Borenstein Standards Track [Page 37]
�
RFC 2046 Media Types November 1996

 "message/external-body" reference.

 (2) MIME will sometimes be used in environments that
 provide some guarantee of message integrity and
 authenticity. If present, such guarantees may apply
 only to the actual direct content of messages -- they
 may or may not apply to data accessed through MIME's
 "message/external-body" mechanism. In particular, it
 may be possible to subvert certain access mechanisms
 even when the messaging system itself is secure.

 It should be noted that this problem exists either with
 or without the availabilty of MIME mechanisms. A
 casual reference to an FTP site containing a document
 in the text of a secure message brings up similar
 issues -- the only difference is that MIME provides for
 automatic retrieval of such material, and users may
 place unwarranted trust is such automatic retrieval
 mechanisms.

5.2.3.7. Examples and Further Explanations

 When the external-body mechanism is used in conjunction with the
 "multipart/alternative" media type it extends the functionality of
 "multipart/alternative" to include the case where the same entity is
 provided in the same format but via different accces mechanisms.
 When this is done the originator of the message must order the parts
 first in terms of preferred formats and then by preferred access
 mechanisms. The recipient's viewer should then evaluate the list
 both in terms of format and access mechanisms.

 With the emerging possibility of very wide-area file systems, it
 becomes very hard to know in advance the set of machines where a file
 will and will not be accessible directly from the file system.
 Therefore it may make sense to provide both a file name, to be tried
 directly, and the name of one or more sites from which the file is
 known to be accessible. An implementation can try to retrieve remote
 files using FTP or any other protocol, using anonymous file retrieval
 or prompting the user for the necessary name and password. If an
 external body is accessible via multiple mechanisms, the sender may
 include multiple entities of type "message/external-body" within the
 body parts of an enclosing "multipart/alternative" entity.

 However, the external-body mechanism is not intended to be limited to
 file retrieval, as shown by the mail-server access-type. Beyond
 this, one can imagine, for example, using a video server for external
 references to video clips.

Freed & Borenstein Standards Track [Page 38]
�
RFC 2046 Media Types November 1996

 The embedded message header fields which appear in the body of the
 "message/external-body" data must be used to declare the media type
 of the external body if it is anything other than plain US-ASCII
 text, since the external body does not have a header section to
 declare its type. Similarly, any Content-transfer-encoding other
 than "7bit" must also be declared here. Thus a complete
 "message/external-body" message, referring to an object in PostScript
 format, might look like this:

 From: Whomever
 To: Someone
 Date: Whenever
 Subject: whatever
 MIME-Version: 1.0
 Message-ID: <id1@host.com>
 Content-Type: multipart/alternative; boundary=42
 Content-ID: <id001@guppylake.bellcore.com>

 --42
 Content-Type: message/external-body; name="BodyFormats.ps";
 site="thumper.bellcore.com"; mode="image";
 access-type=ANON-FTP; directory="pub";
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

 Content-type: application/postscript
 Content-ID: <id42@guppylake.bellcore.com>

 --42
 Content-Type: message/external-body; access-type=local-file;
 name="/u/nsb/writing/rfcs/RFC-MIME.ps";
 site="thumper.bellcore.com";
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

 Content-type: application/postscript
 Content-ID: <id42@guppylake.bellcore.com>

 --42
 Content-Type: message/external-body;
 access-type=mail-server
 server="listserv@bogus.bitnet";
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

 Content-type: application/postscript
 Content-ID: <id42@guppylake.bellcore.com>

 get RFC-MIME.DOC

 --42--

Freed & Borenstein Standards Track [Page 39]
�
RFC 2046 Media Types November 1996

 Note that in the above examples, the default Content-transfer-
 encoding of "7bit" is assumed for the external postscript data.

 Like the "message/partial" type, the "message/external-body" media
 type is intended to be transparent, that is, to convey the data type
 in the external body rather than to convey a message with a body of
 that type. Thus the headers on the outer and inner parts must be
 merged using the same rules as for "message/partial". In particular,
 this means that the Content-type and Subject fields are overridden,
 but the From field is preserved.

 Note that since the external bodies are not transported along with
 the external body reference, they need not conform to transport
 limitations that apply to the reference itself. In particular,
 Internet mail transports may impose 7bit and line length limits, but
 these do not automatically apply to binary external body references.
 Thus a Content-Transfer-Encoding is not generally necessary, though
 it is permitted.

 Note that the body of a message of type "message/external-body" is
 governed by the basic syntax for an RFC 822 message. In particular,
 anything before the first consecutive pair of CRLFs is header
 information, while anything after it is body information, which is
 ignored for most access-types.

5.2.4. Other Message Subtypes

 MIME implementations must in general treat unrecognized subtypes of
 "message" as being equivalent to "application/octet-stream".

 Future subtypes of "message" intended for use with email should be
 restricted to "7bit" encoding. A type other than "message" should be
 used if restriction to "7bit" is not possible.

6. Experimental Media Type Values

 A media type value beginning with the characters "X-" is a private
 value, to be used by consenting systems by mutual agreement. Any
 format without a rigorous and public definition must be named with an
 "X-" prefix, and publicly specified values shall never begin with
 "X-". (Older versions of the widely used Andrew system use the "X-
 BE2" name, so new systems should probably choose a different name.)

 In general, the use of "X-" top-level types is strongly discouraged.
 Implementors should invent subtypes of the existing types whenever
 possible. In many cases, a subtype of "application" will be more
 appropriate than a new top-level type.

Freed & Borenstein Standards Track [Page 40]
�
RFC 2046 Media Types November 1996

7. Summary

 The five discrete media types provide provide a standardized
 mechanism for tagging entities as "audio", "image", or several other
 kinds of data. The composite "multipart" and "message" media types
 allow mixing and hierarchical structuring of entities of different
 types in a single message. A distinguished parameter syntax allows
 further specification of data format details, particularly the
 specification of alternate character sets. Additional optional
 header fields provide mechanisms for certain extensions deemed
 desirable by many implementors. Finally, a number of useful media
 types are defined for general use by consenting user agents, notably
 "message/partial" and "message/external-body".

9. Security Considerations

 Security issues are discussed in the context of the
 "application/postscript" type, the "message/external-body" type, and
 in RFC 2048. Implementors should pay special attention to the
 security implications of any media types that can cause the remote
 execution of any actions in the recipient's environment. In such
 cases, the discussion of the "application/postscript" type may serve
 as a model for considering other media types with remote execution
 capabilities.

Freed & Borenstein Standards Track [Page 41]
�
RFC 2046 Media Types November 1996

9. Authors' Addresses

 For more information, the authors of this document are best contacted
 via Internet mail:

 Ned Freed
 Innosoft International, Inc.
 1050 East Garvey Avenue South
 West Covina, CA 91790
 USA

 Phone: +1 818 919 3600
 Fax: +1 818 919 3614
 EMail: ned@innosoft.com

 Nathaniel S. Borenstein
 First Virtual Holdings
 25 Washington Avenue
 Morristown, NJ 07960
 USA

 Phone: +1 201 540 8967
 Fax: +1 201 993 3032
 EMail: nsb@nsb.fv.com

 MIME is a result of the work of the Internet Engineering Task Force
 Working Group on RFC 822 Extensions. The chairman of that group,
 Greg Vaudreuil, may be reached at:

 Gregory M. Vaudreuil
 Octel Network Services
 17080 Dallas Parkway
 Dallas, TX 75248-1905
 USA

 EMail: Greg.Vaudreuil@Octel.Com

Freed & Borenstein Standards Track [Page 42]
�
RFC 2046 Media Types November 1996

Appendix A -- Collected Grammar

 This appendix contains the complete BNF grammar for all the syntax
 specified by this document.

 By itself, however, this grammar is incomplete. It refers by name to
 several syntax rules that are defined by RFC 822. Rather than
 reproduce those definitions here, and risk unintentional differences
 between the two, this document simply refers the reader to RFC 822
 for the remaining definitions. Wherever a term is undefined, it
 refers to the RFC 822 definition.

 boundary := 0*69<bchars> bcharsnospace

 bchars := bcharsnospace / " "

 bcharsnospace := DIGIT / ALPHA / "'" / "(" / ")" /
 "+" / "_" / "," / "-" / "." /
 "/" / ":" / "=" / "?"

 body-part := <"message" as defined in RFC 822, with all
 header fields optional, not starting with the
 specified dash-boundary, and with the
 delimiter not occurring anywhere in the
 body part. Note that the semantics of a
 part differ from the semantics of a message,
 as described in the text.>

 close-delimiter := delimiter "--"

 dash-boundary := "--" boundary
 ; boundary taken from the value of
 ; boundary parameter of the
 ; Content-Type field.

 delimiter := CRLF dash-boundary

 discard-text := *(*text CRLF)
 ; May be ignored or discarded.

 encapsulation := delimiter transport-padding
 CRLF body-part

 epilogue := discard-text

 multipart-body := [preamble CRLF]
 dash-boundary transport-padding CRLF
 body-part *encapsulation

Freed & Borenstein Standards Track [Page 43]
�
RFC 2046 Media Types November 1996

 close-delimiter transport-padding
 [CRLF epilogue]

 preamble := discard-text

 transport-padding := *LWSP-char
 ; Composers MUST NOT generate
 ; non-zero length transport
 ; padding, but receivers MUST
 ; be able to handle padding
 ; added by message transports.

Freed & Borenstein Standards Track [Page 44]
�

@manual{xcolor,
 title = "Extending \LaTeX’s color facilities: the {\sffamily xcolor} package",
 author = "Dr. Uwe Kern",
 year = 2007,
 month = jan,
 note = "\\\link{http://www.ctan.org/get/macros/latex/contrib/xcolor/xcolor.pdf}"
 }
@manual{pdfref,
 title = "PDF Reference",
 organization = "Adobe Systems Incorporated",
 edition = "sixth",
 year = 2006,
 month = nov,
 note = "Adobe\registered Portable Document Format Version 1.7"
 }
@manual{rfc1321,
 author = "R. Rivest",
 title = "The MD5 Message-Digest Algorithm",
 series = "Request for Comments",
 number = "1321",
 howpublished = "RFC 1321 (Informational)",
 publisher = "IETF",
 organisation = "Internet Engineering Task Force",
 year = 1992,
 month = apr,
 url = "http://www.ietf.org/rfc/rfc1321.txt",
 note = "\\\link{http://tools.ietf.org/html/rfc1321}"
}
@manual{rfc2046,
 author = "N. Freed and N. Borenstein",
 title = "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types",
 series = "Request for Comments",
 number = "2046",
 howpublished = "RFC 2046 (Draft Standard)",
 publisher = "IETF",
 organisation = "Internet Engineering Task Force",
 year = 1996,
 month = nov,
 url = "http://www.ietf.org/rfc/rfc2046.txt",
 note = "Updated by RFCs 2646, 3798 and 5147. \\\link{http://tools.ietf.org/html/rfc2046}"
}

