
Customizing Bibliographic Style Files

Patrick W. Daly

This paper describes program makebst

version 4.1 from 2003/09/08∗

(including additions by Arthur Ogawa, ogawa@teleport.com)

1 Introduction

This TEX program is meant to be used together with generic bibliographic style
files to produce customized .bst files for running with BibTEX. The generic,
or master file, can be processed by docstrip with selected options to achieve the
desired bibliographic style. To this end, a docstrip batch job should be made up.
However, because of the large number of options available, an interactive, dialogue
system would be more convenient.

This program, makebst, accomplishes this goal. It defines macros to establish
such a docstrip batch job file, and to organize a menu of options. The menu infor-
mation is contained, however, in the master file itself, since the two are intimately
related. Thus different master files with totally different option structures may be
accommodated.

The batch job could in fact be made up with an editor without calling makebst,
but this program does simplify the task.

Incidentally, the docstrip run can only be carried out by means of a batch job.
Running docstrip interactively inserts default pre- and postambles in the text, the
latter including an \endinput command that BibTEX will not understand.

2 The Master File

The master file is a BibTEX bibliographic style file containing alternative coding
depending on docstrip options. The options are selected when docstrip is run,
either interactively or through a batch job.

Suppose that one of the options is called xyz. Then the following alternatives are
possible:

∗Work on custom-bib 4.00 was supported by the American Physical Society

1

CUSTOMIZING BIBLIOGRAPHIES 2

%<xyz> one line of coding

includes the single line of coding;

%<!xyz> one line of coding

excludes the single line;

%<*xyz>
several lines of coding
%</xyz>

includes all the bracketed lines;

%<*!xyz>
several lines of coding
%</!xyz>

excludes all the bracketed lines.

Options may be logically combined: the symbol | is a logical or, & a logical and,
! a logical not; parentheses (and) may be used to group options.

2.1 Using with docstrip

(The docstrip command syntax shown here is that for version 2.4 and later, released
December, 1996.)

In order to generate a true BibTEX style file with selected options from the master
file, it is necessary to run a docstrip batch job. Suppose that the master file is
named master.mbs, the resulting BibTEX style file is to be silly.bst, and the
batch job file itself is called silly.dbj. To produce this with options, say, xyz
and abc, the batch job would look something like:

\input docstrip

\preamble

This is for Journal of Silly Results

\endpreamble

\postamble

End of customized bst file

\endpostamble

\keepsilent

\askforoverwritefalse

CUSTOMIZING BIBLIOGRAPHIES 3

\generate{\file{silly.bst}{\from{master.mbs}{xyz,abc}}}

\endbatchfile

A preamble is not necessary, although it is advisable to include some statement
about the application of the bibliographic style. A postamble is vital, otherwise
the default will add \endinput at the end of the file, something that BibTEX will
not understand. The \keepsilent is optional and just suppresses docstrip output
during processing. Similarly the \askforoverwritefalse suppresses the warning
that a file of the same name is to be overwritten.

2.2 The Menu File

This program, makebst, simplifies the creation of the batch job file. To do that,
it needs information on the available options. This information must be stored in
a special format, in the master file itself. Alternatively, that information may be
extracted and stored in a file with the same root name but extension .opt. This
feature is not recommended since it can lead to inconsistencies! The format of the
menu information is illustrated below in Section 4.

In the master file, this information must be enclosed within docstrip options
%<*options> . . . %</options> and must be ended by an \endoptions command.
It may also include any number of comments. The rest of the file must be enclosed
within %<*!options> . . . %</!options> to exclude it when the menu information
is extracted with docstrip.

A sample menu in the master file to select one or none of options xyz or zyx
would look thus:

%<*options>

\mes{Select one of these}

\optdef{f}{xyz}{Option forword}{to do forward stuff}

\optdef{r}{zyx}{Option reverse}{to do reverse stuff}

\optdef{*}{}{None of the above}{}

\getans

\endoptions

%</options>

%<*!options>

.

%</!options>

An explanation of these commands is to be found in Section 4.

The menu information may be extracted from the master file by means of docstrip
and stored in a file with extension .opt. If this file is present, makebst offers to
read it instead of the master file, although this is not recommended, as explained
above.

CUSTOMIZING BIBLIOGRAPHIES 4

3 The Program makebst

3.1 Installing makebst

The makebst program comes as a documented source file named makebst.dtx,
which needs to be processed by docstrip to extract the actual ‘program’ file
makebst.tex. The easiest way to do this is simply to process the installation
batch file makebst.ins with TEX or LATEX, as

tex makebst.ins
or

latex makebst.ins

There are in fact three variants of makebst that may be extracted: the basic
one lists by default only those options that have been selected; the more refined
one (and the default) lists all options offered with the rejected ones commented
out; the third version also adds more detailed comments. Even in the first two
versions, the user will be asked interactively if s/he wants the additional features
of the others.

One can select the variant by editing makebst.ins.

Another choice that can be made is whether the .dbj files are to conform to
docstrip version 2.4 syntax or not. By default, makebst.ins tests the current
version and automatically configures makebst.tex to write the correct syntax.
This too may be overridden by editing makebst.ins. (Note that the older syntax
is still understood by the newer version of docstrip.)

Reminder: the older syntax requires \def\batchfile{〈filename〉} as the first line
in a docstrip batch job, where filename is the name of the batch file itself. The
newer syntax does not need this line, but requires \endbatchfile at the very end
instead. The advantage of the new syntax is that one can edit and rename such
a file without having to change its name in the first line. The old syntax leads to
great frustration if one forgets to change filename.

Another difference in the syntaxes (actually introduced in version 2.3 in June,
1996) is the use of the command \generate instead of \generateFile. Its ad-
vantage is that it permits multiple files to be extracted in one pass, something
that is not exploited at all by makebst.

3.2 Running makebst

This is actually a TEX program, although it will also run under LATEX. In that
sense, it is like docstrip itself. Thus run the program with (something like)

tex makebst
or

latex makebst

CUSTOMIZING BIBLIOGRAPHIES 5

The program first asks for the name of the master file. This is the file containing all
possible bibliographic style commands, with docstrip options for selective output.
A default name is offered, as well as a default extension (.mbs).

Next, the program asks for the name of the output file, the .bst file. The extension
here is optional, defaulting to .bst. This name also determines the name of the
batch job file, which will have the same root name with the extension .dbj, for
the docstrip batch job.

The actual interrogation then begins. All the information for the menus is con-
tained in the master bibliographic style file. The reason for this is that the menu
information must conform to the available options in the master file, so it makes
sense that one file should contain both. The master file is only read up to the
\endoptions command.

Finally, the batch job file is closed, and the user is asked if it should be run. If he
does not take up this offer, or if he later edits the batch job, then it may be run
manually with (something like)

tex bstname.dbj

4 The Menu Information

The set of questions in the interrogation must fit the available options in the
master file. For this reason, the menu information is contained in the master file
itself. The program makebst supplies the macros that are used in the menu file
to simplify writing and processing menu information.

To print a message to the terminal, use \mes{〈text〉}. A new line may be forced\mes

within text by means of ^^J.

To interrogate the user for a response, use \ask{\com}{〈text〉}, which writes text\ask

to the terminal, and puts the response in the command \com.

Almost all interrogations will consist of a list of mutually exclusive options, one\optdef

of which is the default. For each item in the list, one must specify the keyboard
response that is to select it, the actual name of the docstrip option that realizes
it, and two pieces of explanatory text. For example,

\optdef{a}{abr}{Abbreviations}{of such words}

means that abr is the true docstrip option name that is selected by typing a. The
two explanatory texts are written to the terminal immediately as part of the menu,
but only the first text is echoed when the selection is made (for confirmation) and
is also written to the batch job file (as comment).

The default option must have the response *.

A menu is written to the terminal, first with a \mes command to state the subject
matter, and then with a sequence of \optdef statements, each of which also

CUSTOMIZING BIBLIOGRAPHIES 6

writes the texts to the terminal. The response is then read in and processed with\getans

\getans, which writes the reply to the command \ans and writes the appropriate
docstrip option to the batch job file. If the response does not correspond to any
of those in the menu list, it is set to *; if there is no * in the list, then \ans is set
to the last entry. The command \ans is still available afterwards for any extra
testing that might be needed.

An example menu appears as follows:

\mes{^^JJOURNAL VOLUME NUMBER:}

\optdef{*}{}{Volume plain}{as vol(num)}

\optdef{i}{vol-it}{Volume italic}%

{as {\string\em\space vol}(num)}

\optdef{b}{vol-bf}{Volume bold}%

{as {\string\bf\space vol}(num)}

\optdef{d}{vol-2bf}{Volume and number bold}%

{as {\string\bf\space vol(num)}}

\getans

Further structure for the interrogation is provided by the \beginoptiongroup\beginoptiongroup

. . . \endoptiongroup sequence, which should act as a container for the \mes

. . . \optdef . . . \getans commands described above. For example:

\beginoptiongroup{JOURNAL VOLUME NUMBER:}{}

\optdef{*}{}{Volume plain}{as vol(num)}

\optdef{i}{vol-it}{Volume italic}%

{as {\string\em\space vol}(num)}

\optdef{b}{vol-bf}{Volume bold}%

{as {\string\bf\space vol}(num)}

\optdef{d}{vol-2bf}{Volume and number bold}%

{as {\string\bf\space vol(num)}}

\getans

\endoptiongroup

presents the same effect as the previous example. The virtue of the option group
is in providing a single markup for all interrogations and having a consistent
appearance in the generated file.

This feature has been added with version 4.0 of makebst.

5 More Complex Batch Jobs

Version 3.0 of makebst allows the master file to define more sophisticated batch
jobs, such as additional master files with their own options. This is made possible
because the options are not written directly in the \generate command, as in ear-
lier versions, but to a command \MBopts. The batch file then contains something
like:

CUSTOMIZING BIBLIOGRAPHIES 7

\def\MBopts{\from{〈source.ext〉}{%
lines from menu session
}}

\generate{\file{〈output.ext〉}{\MBopts}}

Normally the lines from menu session contain just the docstrip options. However,
the master file could add other things to the definition of \MBopts, even closing
it and starting a new definition. It just has to make sure that the braces are
balanced.

A number a macros are provided, which are used by makebst itself, to simplify\MBaskfile

making complex menus. To ask for the name of a file interactively,

\MBaskfile{〈Prompting text〉}(〈root.ext〉){〈io〉}\fname

may be given, where root.ext is the default name of the file, io is i (for input)
if the file must already exist, and \fname is the command that receives the file
name. The root name will be in \froot, the extension in \fext.

Text is written to the batch job file with\wr

\wr{〈text〉}

Any commands in text that are to be written literally must be preceded by
\string.

Since any braces in text must be balanced, something special must be done to\MBswitch

permit them to be printed as normal characters. The command \MBswitch ac-
complishes this; the parentheses () replace { } as the delimiters. This should
always be given within \begingroup . . . \endgroup.

As an example, suppose the master file contains only half the coding for the .bst
file, the other half being in one of several other master files. We must prompt
for this second file, include it for its options, and make sure that \MBopts knows
about it. The following code in the master file will do this.

\MBaskfile{Name of second master file}(aa.mbs)i\xfile
\begingroup\MBswitch
\wr(\string\MBopta})
\wr(\string\from{\xfile}{\string\MBoptb}})
\wr(\string\def\string\MBopta{\pc)
\endgroup
regular menu information for first file
\begingroup\MBswitch
\wr(}\string\def\string\MBoptb{\pc)
\endgroup
\input\xfile\relax
\begingroup\MBswitch
\wr({\pc)

CUSTOMIZING BIBLIOGRAPHIES 8

\endgroup
\endoptions

The resulting .dbj file contains

\def\MBopts{\from{first.mbs}{%
\MBopta}
\from{second.mbs}{\MBoptb}}
\def\MBopta{%
first set of options
}\def\MBoptb{%
second set of options
{%
}}

\generate{\file{sample.bst}{\MBopts}}

6 Coding

This section presents and explains the actual coding of the macros. It is nested
between %<*program> and %</program>, which are indicators to docstrip that this
coding belongs to the program file.

6.1 Preliminaries

The first thing is to open up i/o devices for communicating with the terminal and
files. (Some of this has been borrowed from docstrip.) The terminal input and
output are \ttyin and \ttyout respectively, while the output file if \outfile.

1 〈∗program〉
2 \newwrite\outfile

3 \newread\ttyin

4 \newread\infile

5 \newwrite\ttyout

\mes

\wr

\umes

The commands for outputting text are defined: \mes writes to the terminal, \wr
writes it argument directly to the output file, while \umes writes to the terminal
and adds its argument as a comment to the output file.

6 \def\mes{\immediate\write\ttyout}

7 \def\wr#1{\immediate\write\outfile{#1}}

8 \def\umes#1{\mes{^^J#1}\wr{\pc#1}}%

To assist inserting new lines in the middle of text, define a newline symbol.

9 \newlinechar=‘\^^J

CUSTOMIZING BIBLIOGRAPHIES 9

\MBswitch There are times when we need to write a line of code to the output file with
unbalanced braces in that line. (They are balanced in another line.) Such lines
are written with \wr{...}. If the braces in the argument are not balanced, then
there will be trouble. To get around this, change the category codes of the braces
to ‘other’ and let parentheses take their place.

10 \def\MBswitch{\catcode‘\{=12 \catcode‘\}=12

11 \catcode‘\(=1 \catcode‘\)=2\relax}

The way to employ this is as

\begingroup\MBswitch

\wr(..{..)

\endgroup

\ask To get a response from the terminal, use \ask. However, there are some complica-
tions here. If only carriage-return is pressed, then the response command is equal
to \par; for anything else, a typed-in text includes a trailing blank. We must test
for \par and remove the blank if it is there.

12 \def\defpar{\par}

13 \def\remblk#1 @@{#1}

14 \def\ask#1#2{\mes{#2}\read\ttyin to #1\ifx#1\defpar\def#1{}\else

15 \edef#1{\expandafter\remblk#1@@}\fi}

\getroot

\getext

To parse the name of a file into root and extension, use commands \getroot and
\getext.

16 \def\groot#1.#2@@{#1}

17 \def\getroot#1{\expandafter\groot#1.@@}

18 \def\gext#1.#2.#3@@{#2}

19 \def\getext#1{\expandafter\gext#1..@@}

\MBaskfile Several times it is necessary to ask for a file name interactively, and maybe test if
it exists. This might even be done in the .mbs file, so provide a macro to simplify
this task. The syntax is

\MBaskfile{〈Prompting text〉}(〈root.ext〉){〈io〉}\fname

where root.ext is the default name for the file sought, and \fname is the command
that contains the final file name. The commands \froot and \fext will contain
the root and extensions of the file name, if they are needed for further parsing. If
io=i (for input), then the resulting file must already exist, else the macro loops
again. If root is blank, then only the extension is given as default, but a file root
name must be entered.

20 \def\MBaskfile#1(#2.#3)#4#5{%

21 \loop

CUSTOMIZING BIBLIOGRAPHIES 10

22 \def\ans{#2.#3}

23 \if!#2!

24 \if!#3!\ask{#5}{#1}\fi

25 \ask{#5}{#1 (default extension=#3)}\else

26 \ask{#5}{#1 (default=\ans)}

27 \fi

28 \ifx#5\empty \edef#5{\ans}\fi

29 \edef\froot{\getroot#5}

30 \edef\fext{\getext#5}

31 \ifx\fext\empty \def\fext{#3}\fi

32 \edef#5{\froot.\fext}

33 \if#4i

34 \def\temp{Cannot find file ‘#5’}

35 \openin\infile#5\relax

36 \ifeof\infile \def\ans{}\fi \closein\infile

37 \else

38 \def\temp{There is no default}

39 \ifx\froot\empty \def\ans{}\fi

40 \fi

41 \ifx\ans\empty \mes{*** \temp}

42 \repeat}

\pc

\pcpc

\spsp

Now for some special commands to simplify outputting % signs and double spaces
to the output file.

43 {\catcode‘\%=12

44 \gdef\pc{%}

45 \gdef\pcpc{%% }

46 }

47 \def\spsp{\space\space}

\Now In order to date-and-time-stamp the resulting batch job file, we need macros to
produce the current date and time. (In TEX there is no \today command.)

48 \newcount\hours

49 \newcount\minutes

50 \def\SetTime{\hours=\time

51 \global\divide\hours by 60

52 \minutes=\hours

53 \multiply\minutes by 60

54 \advance\minutes by-\time

55 \global\multiply\minutes by-1 }

56 \SetTime

57 \def\now{\number\hours:\ifnum\minutes<10 0\fi\number\minutes}

58 \def\today{\number\year/\ifnum\month<10 0\fi\number\month

59 /\ifnum\day<10 0\fi\number\day}

60 \def\Now{\today\space at \now}

CUSTOMIZING BIBLIOGRAPHIES 11

6.2 Menu Macros

\optdef For each menu, a general text is written with \mes, followed by a list of available
options. The information that will be needed is

1. the response letter to select the option,

2. the actual docstrip option name, as defined in the master bibliographic style
file,

3. a piece of text that is printed in the menu list, to be echoed in confirmation
of the choice, and also to be written to batch job file as a comment,

4. a second piece of text that is only written to the menu, to enhance the
explanation.

The true option name and the two pieces of text are stored as commands prefixed
by \opt@, \txt@, and \cmt@ respectively, followed by the response letter. Each
option response letter is also stored in a list \optlist which is initialized to empty.
The commands \nxtopt and \rstopt are used to extract the next and remaining
options from the list.

61 \def\optdef#1#2#3#4{%

62 \expandafter\def\csname opt@#1\endcsname{#2}%

63 \expandafter\def\csname txt@#1\endcsname{#3}%

64 \expandafter\def\csname cmt@#1\endcsname{#4}%

65 \edef\optlist{\optlist#1,}%

66 \def\OptAns{#1}%

67 \mes{(#1) #3\space #4}%

68 }

69 \def\optlist{}

70 \def\nxtopt#1,#2@@{#1} \def\rstopt#1,#2@@{#2}

\getans The user selection is read in with \getans, into the command \ans. It then
processes the response by first checking if there is an option corresponding to it;
if not, the response \ans is set to the default *. If no star response exists, then it
takes the last one entered as the default response. It then calls \wropt to write the
necessary docstrip option and explanatory comment to the batch job file. Finally,
it uses the option list \optlist to clear all the \opt@ commands. This last step
is necessary to avoid conflicts with previous menus: without it, a response that is
not in the current list might however exist from an earlier menu.

Note that prior to version 4.0 of this code, the \optlist was built via head accre-
tion and traversed from the head back, that is, in LIFO order. As of version 4.0
it is processed in FIFO order. This way, the comments in the .dbj file are in
the same order as the \optdef statements in the master file. The flag character
(to terminate parsing the \optlist) is now a %12, which cannot be entered as
a response by the user, and is appended to the list at the beginning of \getans
processing.

CUSTOMIZING BIBLIOGRAPHIES 12

71 \newif\ifsw

72 \def\getans{%

73 \edef\optlist{\optlist\pc,}%

74 \ask{\ans}{\spsp Select:}%

75 \expandafter\ifx\csname opt@\ans\endcsname\relax

76 \def\ans{*}%

77 \fi

78 \expandafter\ifx\csname opt@\ans\endcsname\relax

79 \let\ans\OptAns

80 \fi

81 \edef\ansx{\csname opt@\ans\endcsname}

82 \swtrue \loop

83 \edef\temp{\expandafter\nxtopt\optlist@@}%

84 \edef\optlist{\expandafter\rstopt\optlist@@}%

85 \if\temp\pc\swfalse\else

86 \if\temp\ans

87 \wropt\ans

88 \else

89 \ifoptlist\wrxopt\temp\fi

90 \fi

91 \expandafter\let\csname opt@\temp\endcsname\relax

92 \fi

93 \ifsw \repeat

94 \def\optlist{}%

95 \ifoptverbose

96 \wr{\pc------\string\ans=\ans (==\ansx)-------}%

97 \else

98 \ifoptlist

99 \wr{\pc--------------------}%

100 \fi

101 \fi

102 }

A special request from Frank Mittelbach asks if a list of unused options cannot be
added to the batch job file, to assist editing it by hand. In this way, one knows
what the docstrip options are immediately without having to search for them in
the .mbs documentation.

This feature was added in version 2.1, but by means of a docstrip option, so it
could be turned off if necessary. Thus the extracted makebst.tex file produced
either the full list or only the selected options. Here ‘full list’ means only those
options that were offered. Any options that were conditionally offered, depending
on previous selections, could be missing.

For version 4.0, Arthur Ogawa changed this so that the full option list is switched
on with the \ifoptlist flag, and not by an option at docstrip extraction time.
He also added an \ifoptverbose flag to include even more comments in the .dtx
file. The user is asked at run time if s/he wants to activate these features.

CUSTOMIZING BIBLIOGRAPHIES 13

Furthermore, one can use the \beginoptiongroup . . . \endoptiongroup idiom to
handle cases where options should be offered only contingent upon some condition.
By doing so, the unused options are still presented as comments in the batch job
file, along with a comment showing the dependency and a matching comment
showing the scope.

Finally, there are still docstrip options optlist and optverbose which produce
makebst.tex with the corresponding flags already set, in which case the features
are always activated and the user interrogation is suppressed.

\wropt The actual outputting of the option command to the batch job file is done by
\wropt. It tests if the option name is blank (a default in the master bibliographic
style, which need not be the menu default), writes out the option name, if present,
and adds the explanatory comment.

103 \def\wropt#1{%

104 \edef\tempx{\csname opt@#1\endcsname}%

105 \if!\tempx!

106 \wr{\spsp\spsp\pc: (def)

107 \csname txt@#1\endcsname

108 \ifoptverbose\space\csname cmt@#1\endcsname\fi

109 }%

110 \else

111 \wr{\spsp\tempx,\pc:

112 \csname txt@#1\endcsname

113 \ifoptverbose\space\csname cmt@#1\endcsname\fi

114 }%

115 \fi

116 \mes{\spsp You have selected: \csname txt@#1\endcsname}%

117 }

\wrxopt Writing the unused options to the batch job file is done with the \wrxopt com-
mand, which is heavily controlled by the flags \ifoptlist and \ifoptverbose.

118 \def\wrxopt#1{%

119 \edef\tempx{\csname opt@#1\endcsname}%

120 \if!\tempx!

121 \wr{\pc\space\spsp\pc: (def)

122 \csname txt@#1\endcsname

123 \ifoptverbose\space\csname cmt@#1\endcsname\fi

124 }%

125 \else

126 \wr{\pc\space\tempx,\pc:

127 \csname txt@#1\endcsname

128 \ifoptverbose\space\csname cmt@#1\endcsname\fi

129 }%

130 \fi

131 }

\beginoptiongroup

\endoptiongroup

One can structure the master file using the commands \beginoptiongroup

CUSTOMIZING BIBLIOGRAPHIES 14

. . . \endoptiongroup. The \beginoptiongroup command takes two arguments,
the prompt text and a control expression.

\beginoptiongroup
{CITATION NUMBERS (if numerical references)}
{\ifnumerical*\fi}

\optdef{*}{}{arabic numbers}
{references are numbered 1, 2, 3, etc.}

\optdef{d}{d’nai}{d’nai numerals}
{references are numbered base-25}

\getans
more commands and option groups
\endoptiongroup

In the above example, the master file has defined a \newif switch called
\ifnumerical, and now uses this flag to enable the processing encapsulated
within the option group: the control expression executes the active * command
if \ifnumerical is true. More complex expressions are possible; use plain TEX
constructions to expand the star.

The prompt text is output to the console and is also recorded as a comment in
the generated .dbj file.

If the control expression executes the active *, then the statements within the
option group are executed as usual. If false, then the .dbj file will simply contain
a record of the options that the user would have been able to chose from. In effect,
the interrogation never comes: all the options are unused and are recorded (via
\wrxopt) as comments.

By this means, one can structure the .dbj file so that all options are made visible,
even if some of them would not be accessible because of internal dependencies.
The .dbj file will show as much detail about the menus of the master file as is
possible.

To enable a common idiom, we have caused the value of \ans to persist past the
end of the option group. This means that one may safely test the value of \ans
after the \endoptiongroup. If processing was turned off within the option group,
then the value of \ans is the untypeable $12.

If the second argument is either nil or is a star, then the option group will be
executed normally. Therefore you can employ this structure for all the processing
involving the commonly used idiom. If the master file has statements like:

\mes{PROMPT:}

\optdef{*}{}{default}{extended comment}%

\optdef{a}{opt-a}{option a}{another extended comment}%

\optdef{b}{opt-b}{option b}{more extended comments}%

\getans

\if\ans a\whatever\fi

CUSTOMIZING BIBLIOGRAPHIES 15

they should be converted to:

\beginoptiongroup{PROMPT:}{}

\optdef{*}{}{default}{extended comment}%

\optdef{a}{opt-a}{option a}{another extended comment}%

\optdef{b}{opt-b}{option b}{more extended comments}%

\getans

\endoptiongroup

\if\ans a\whatever\fi

The benefit of this syntax is a single markup for all interrogations and a consistent
appearance in the generated file.

132 \def\beginoptiongroup#1{\begingroup\activatestar\OGcontinue{#1}}%

133 \def\OGcontinue#1#2{%

134 \endgroup

135 \begingroup

136 \let\OGswitch\secondoftwo\def\tempa{#2}%

137 \ifx\tempa\empty\expandafter\firstoftwo\else\expandafter\secondoftwo\fi

138 {%

139 \activestar

140 }{%

141 \tempa

142 }%

143 \OGswitch{}{%

144 \let\wropt\wrxopt

145 \let\ask\nilans

146 \def\mes##1{}%

147 }%

148 \def\OGmessage{#1}%

149 \umes{\ifoptverbose<<\fi\OGmessage}%

150 }

151 \def\endoptiongroup{%

152 \ifoptverbose\umes{>>\OGmessage}\fi

153 \aftergroup\let\aftergroup\ans\expandafter

154 \endgroup

155 \ans

156 }

157 \def\activestar{\let\OGswitch\firstoftwo}

158 \def\activatestar{\catcode‘*13\relax}

159 {\activatestar\gdef*{\activestar}}

160 \def\firstoftwo#1#2{#1}

161 \def\secondoftwo#1#2{#2}

162 {\catcode‘\$=12\gdef\nilans#1#2{\def\ans{$}}}

For more examples of using option groups, see the file merlin.mbs.

CUSTOMIZING BIBLIOGRAPHIES 16

6.3 Initial Messages

The program can now start working. It first introduces itself and asks if the user
wants an explanation of how the menus work.

163 \mes{***********************************^^J%

164 * This is Make Bibliography Style *^^J%

165 ***********************************^^J%

166 It makes up a docstrip batch job to produce^^J%

167 a customized .bst file for running with BibTeX}

168

169 \ask{\yn}{Do you want a description of the usage? (NO)}

170

171 \if!\yn!\else\if\yn n\else\if\yn N\else

172 \mes{In the interactive dialogue that follows,^^J%

173 you will be presented with a series of menus.^^J%

174 In each case, one answer is the default, marked as (*),^^J%

175 and a mere carriage-return is sufficient to select it.^^J%

176 (If there is no * choice, then the default is the last choice.)^^J%

177 For the other choices, a letter is indicated^^J%

178 in brackets for selecting that option. If you select^^J%

179 a letter not in the list, default is taken.^^J^^J%

180 The final output is a file containing a batch job^^J%

181 which may be (La)TeXed to produce the desired BibTeX^^J%

182 bibliography style file. The batch job may be edited^^J%

183 to make minor changes, rather than running this program^^J%

184 once again.}

185 \fi\fi\fi

Ask for the name of the master bibliographic style file, suggesting a default name.
Test if the file exist (argument i). The name of the master file is split up into root
and extension.

186 \MBaskfile{^^JEnter the name of the MASTER file}(merlin.mbs)i\mfile

187 \let\mroot=\froot

188 \let\mext=\fext

Originally, I intended the menu information to be in an .opt file, but this is
dangerous: that file may not be consistent with the master. So now, issue a
warning if an .opt file exists, substituting it only if explicitly requested. (This is
useful for me when testing changes to makebst and I only want a short menu.)

189 \edef\temp{\mroot.opt}

190 \openin\infile\temp\relax

191 \let\mnext=\mext

192 \ifeof\infile\else

193 \ask{\yn}{** Warning: a file ‘\temp’ also exists^^J

194 \spsp Shall I read it for the menu information? (NO)^^J

195 \spsp (Answer ‘yes’ only if you really know what you are doing)}

196 \if\yn y\def\mnext{opt}\else\if\yn Y\def\mnext{opt}\fi\fi

197 \mes{Menu information read from ‘\mroot.\mnext’}

CUSTOMIZING BIBLIOGRAPHIES 17

198 \fi

199 \closein\infile

Next, the name of the output .bst file is asked for. Here there is to be no default
for the root part, although the extension defaults to .bst.

200 \MBaskfile{^^JName of the final OUTPUT .bst file?}(.bst)o\ofile

201 \let\oroot=\froot

202 \let\oext=\fext

A comment line of text is asked for. This will go into the preamble of the final
.bst file and should describe the nature of the bibliographic style, i.e., for which
journal(s) it is meant to apply.

203 \ask{\ans}{^^JGive a comment line to include in the style file.^^J%

204 Something like for which journals it is applicable.}

The output batch job file is to have the same root name as the output file, but
with the extension .dbj, for docstrip batch job. This file is opened and the initial
contents are written.

205 \immediate\openout\outfile\oroot.dbj

206 \wr{\pcpc Driver file to produce \oroot.\oext\space from \mroot.\mext}

207 \wr{\pcpc Generated with \filename, version \fileversion\space (\filedate)}

208 \wr{\pcpc Produced on \Now}

209 \wr{\pcpc}

210 \wr{\string\input\space docstrip}

211 \wr{}

212 \wr{\string\preamble}

213 \wr{--}

214 \wr{*** \ans\space ***}

215 \wr{}

216 \wr{\string\endpreamble}

217 \wr{}

218 \wr{\string\postamble}

219 \wr{End of customized bst file}

220 \wr{\string\endpostamble}

221 \wr{}

222 \wr{\string\keepsilent}

223 \wr{}

224 \wr{\string\askforoverwritefalse}

The options will be written to the output file during the interrogation when the
master file is input. These options are stored in \MBopts.

Note: it is necessary to change the catagory codes of { and } temporarily, and to
find substitutes, so that mismatched curly braces could be included in the output
text. The same thing is done again at the end to close the braces finally. This is
done with \MBswitch.

225 \begingroup\MBswitch

226 \wr(\string\def\string\MBopts{\string\from{\mroot.\mext}{\pc)

CUSTOMIZING BIBLIOGRAPHIES 18

227 \endgroup

Now each selected option is written on a single line.

6.4 The Interrogation

The menu information is read in from the master file, or from a file with extension
.opt, but only if one has explicitly requested this. (This is expert stuff; the .opt
files should be avoided since they might not be up-to-date. Previously they were
the default, but this has been changed in version 2.1 to avoid confusion.)

228 \newif\ifoptlist

229 〈optlist | optverbose〉\optlisttrue
230 \ifoptlist\else

231 \ask\yn{Do you want the unused option lines^^J%

232 \spsp to appear as comments in the output? (NO)}

233 \if!\yn!\else\if\yn n\else\if\yn N\else\optlisttrue\fi\fi\fi

234 \fi

235 \newif\ifoptverbose

236 〈optverbose〉\optverbosetrue
237 \ifoptlist

238 \ifoptverbose\else

239 \ask\yn{Do you want verbose comments? (NO)}

240 \if!\yn!\else\if\yn n\else\if\yn N\else\optverbosetrue\fi\fi\fi

241 \fi

242 \fi

243 \edef\temp{\mroot.\mnext}

244 \let\endoptions=\endinput

245 \input\temp

Note that it is necessary to equate \endoptions to \endinput in case the master
file is read in. An \endinput command in the master file would interfere with the
docstrip operation, but this indirect method gets around that problem.

7 Closing the Output File

The output file is closed by writing the final line that closes the braces that were
opened at the beginning. To this end, the catagory codes of { and } must be
temporarily altered, as before.

246 \begingroup\MBswitch

247 \wr(\spsp}})

248 \endgroup

Now write the line that processes the options stored in \MBopts. The batch job
file is finished and may be closed.

249 \wr{\string\generate{\string\file{\oroot.\oext}{\string\MBopts}}}

CUSTOMIZING BIBLIOGRAPHIES 19

250 \wr{\string\endbatchfile}

251

252 \immediate\closeout\outfile

253 \mes{^^JFinished!!^^J%

254 Batch job written to file ‘\oroot.dbj’}

The batch job may now be run. It is only necessary to input the file. However,
the inputting should not occur with a group or within an \if . . . \fi clause.
Furthermore, under LATEX, the \end command causes problems, because it has
been redefined; the command \@@end contains the original \end.

255 \def\ofile{\oroot.dbj}

256 \ask{\yn}{Shall I now run this batch job? (NO)}

257 \def\temp{\relax}

258 \if!\yn!\else\if\yn n\else\if\yn N\else

259 \def\temp{\input\ofile}\fi\fi\fi

260 {\catcode‘\@=11 \ifx\@@end\undefined\else

261 \global\let\end=\@@end\fi}

262 \temp

263 \end

264 〈/program〉

