
Tree
for linguists

Tex macros for typesetting complex trees

C2

. . .

C1

. . .

ubil
kolko

studenti
ot

koi strani

User’s Guide
John Frampton

j.frampton@neu.edu

17 September 2006
Version 2.3

Contents

1 Introduction . 1

2 The Tree description language (JTDL) 2

2.1 The description of right branching trees 3

2.2 Tree adjunction . 4

2.3 The colon construction 6

2.4 Inline adjunction . 7

3 Parameters . 8

4 Labels . 11

5 Branches . 15

6 Triangles and vartriangles 17

6.1 Vartriangles . 18

7 @tags . 20

8 The colon construction in more detail 22

8.1 The syntax of the tree description language 23

9 Expansion and evaluation of control sequences in tree parsing . . . 24

9.1 The " escape from tree parsing 24

9.2 Control sequence expansion 25

10 Bells and whistles . 26

10.1 baretopadjust . 26

10.2 treevshift . 26

10.3 everytree . 26

10.4 Custom branches . 27

10.5 The pseudo-parameters dirA and dirB 28

11 How to build complex trees 29

12 The bounding box . 32

13 Nodes and connections between them 33

14 Examples . 37

15 Compatibility issues . 61

A Installation and working environment 62

Index . 65

1. Introduction

Complex trees that linguists often need to display are difficult to represent linearly
in a fashion that allows a human to readily grasp the intended hierarchical structure.
This makes it difficult to write Tex code in such a way that it can be easily debugged
or modified a year after it was first written, or that portions of it can be copied for
use in a different environment. Tree was designed to overcome these problems.

As usual, it is much easier to design a good tool for a task if the task is fairly
narrow. So my aim was to write a tree formatter that would be particularly good
for the kind of trees that I most often encounter. In the syntax that most interests
me, trees are often fairly deep, with a depth of embedding at least 5. Example 9
in Section 14 has depth 19. Using parentheses or brackets to encode embedding is
not a viable option if the Tex code is to have the desired characteristics. In spite of
being deep, however, the trees I usually want to typeset are simple in some other
ways; they are generally binary branching and tend strongly to have their complex
branching to the right. Tree is designed to be particularly good at typesetting such
trees. Obviously, this represents a particular point of view about syntactic theory.

Tree is based on the widely used PSTricks macro package. Many of the
more advanced features of Tree require a willingness to learn a certain amount
of PSTricks. Linguists will find much in PSTricks that is useful, even outside the
context of displaying and annotating trees. Most of the commands take parameters
which are defined and explained in the PSTricks documentation. For information
about PSTricks, see http://www.tug.org/applications/PSTricks/ . Tree also requires
the PST-XKey package, which has become the standard mechanism for handling
parameters in PSTricks based packages. See Appendix A for information on
installing the PSTricks, PST-XKey, and Tree packages.

Some tree formatters attempt to make many decisions about placement
automatically, in order to make the formater easy and foolproof to use. The
downside is that complex trees are generally quite difficult to typeset because
some effort is required to undo the automatic help provided by the formatter. The
approach of Tree is to do very little automatically, but to make what is done very
transparent and very easy to adjust. Many features of tree construction in Tree
are controlled by parameters, whose default settings usually suffice, but which
are available for fine-grained control when necessary. The core of Tree is a tree
description language. We begin by discussing that language.

2

2. The Tree description language (JTDL)

There are two components: 1. a simple way to describe right branching trees
(which I take to be trees whose left branches do not branch); and 2. a mechanism
for adjoining one tree onto another. Consider the following tree, for example:

is rotten
the

cheese
that

ate t
the

rat
that

John
killed t

This tree can be described by a sequence of three right branching trees and
instructions for how to combine them.

(1) 1.

P1 is rotten

2. adjoin at P1:
the

cheese
that

P2 ate t

3. adjoin at P2:
the

rat
that

John
killed t

We first address the question of describing right branching trees, then a mechanism
for combining them.

3

2.1. The description of right branching trees

Some trees are essentially a linear sequence of branches and nodes.

(2) a. A

B

C

D

E

b. A

B

C

D

c. A

B

C

Such a tree can be described as a sequence of branches and labels, each one simply
attached to the one before it in the obvious way.

a. A 〈left〉 B 〈right〉 C 〈right〉 D 〈right〉 E .

b. A 〈left〉 B C 〈right〉 D .

c. A 〈left〉 〈right〉 〈left〉 B 〈right〉 C .

If this language is extended by adding an operator ˆ which shifts the attachment
point to the start of the previous branch, then right branching trees can be described.
The trees (3) are described by the sequences (4).

(3) a. A

B C

D E

b. A

B C D

E F G

H I J

(4) a. A

〈left〉 B ˆ 〈right〉 C

〈left〉 D ˆ 〈right〉 E .

b. A

〈left〉 B ˆ 〈vert〉 C ˆ 〈right〉 D

〈left〉 E ˆ 〈vert〉 F ˆ 〈right〉 G

〈left〉 H ˆ 〈vert〉 I ˆ 〈right〉 J .

4

A parser for such descriptions needs to keep track of just two positions. At the
start, P and Q are both set to some default starting point. After a label or branch is
parsed, P is updated to be the current point. When a branch is parsed, Q is updated
to be its starting point. When ˆ is parsed, P is set to Q.

2.2. Tree adjunction

This language can be extended by adding the notion of an adjunction point, and
the syntax for adjoining one tree to another at a specified adjunction point. The
decomposition (5b) of the tree (5a) is described by (5c).

(5) a. A

B

D E

C

F G

b. A

B

!a

C

F G

adjoin at !a

D E

c. A

〈wideleft〉 B !a ˆ 〈wideright〉 C

〈left〉 F ˆ 〈right〉 G .

!a = 〈left〉 D ˆ 〈right〉 E .

When the parser encounters an adjunction point, it records P and names it so
that it can be accessed in the future. In the Tree implementation of this tree
description language, the names of adjunction points, called !tags, are character
strings beginning with ! and followed by a space. The tree that is described is a
physical tree, not an abstract tree. Branches are objects which have dimensions and
are identified by a name. The branch denoted by <wideleft> above, for example,
has different dimensions than the branch denoted by <left>.

Tree is based on this tree description language. Facilities are provided for defining
and naming branches of various kinds and for drawing trees specified in JTDL
format. How a tree is rendered will depend not only on its description, but on
numerous parameter settings, font choices, etc. The Tex code for rendering a tree
has the form:

\jtree

preliminary definitions. parameter settings
\! = simple tree description.
definitions, parameter settings, dimensionless graphics

5

\!a = simple tree description.
definitions, parameter settings, dimensionless graphics
\!b = simple tree description.
dimensionless graphics
\endjtree

When \jtree is executed, it establishes an adjunction point named !. The macro
\! is defined so that executing \!xxx = sets P and Q to the point named !xxx
(xxx can be empty, so the point can be named !) and parsing the tree description
which follows is initiated, terminating when a period is encountered. For example:

\jtree

\! = <left>{A}!a ˆ<right>{B}.

\!a = <left>{C}!b ˆ<right>{D}.

\!b = <left>{E} ˆ<right>{F}.

\endjtree

A B

C D

E F

The following code produces identical results.

\jtree

\! = <left>{A}!a ˆ<right>{B}.

\!a = <left>{C}!a ˆ<right>{D}.

\!a = <left>{E} ˆ<right>{F}.

\endjtree

A B

C D

E F

The name !a created in the main tree, is no longer needed (in this example) after
the first subtree is initiated and can therefore be reassigned. It is even possible to
say:

\jtree

\! = <left>{A}! ˆ<right>{B}.

\! = <left>{C}! ˆ<right>{D}.

\! = <left>{E} ˆ<right>{F}.

\endjtree

A B

C D

E F

There is nothing special about the name ! that \jtree assigns other than it is
assigned before tree construction commences.

6

2.3. The colon construction

The combination <left>labelˆ<right> occurs frequently in the descriptions
of binary trees. JTDL provides a shortcut for this. :label is interpreted as
<left> labelˆ<right>. Using this:

\jtree

\! = {a}

:{b} {c}

:{d} {e}

:{f} {g}

:{h} {i}.

\endjtree

a

b c

d e

f g

h i

The formatting is for readability. The following code produces the same tree:

\jtree\! ={a}:{b}{c}:{d}{e}:{f}{g}:{h}{i}.\endjtree

One more example:

\jtree

\! = :{a} :{b} :{c} :{d} {e}.

\endjtree
a

b
c

d e

For expository reasons, the description above was oversimplified. Actually,
: label is shorthand for <colonA> labelˆ<colonB>. pst-jtree defines the branches
<colonA> and <left> identically, and the branches <colonB> and <right>
identically. The user, however, is free to redefine any of these branches. For
example.

\jtree

\defbranch<colonB>(1)(-.5)

\! = {a}

:{b} {c}

:{d} {e}

:{f} {g}.

\endjtree

a

b c

d e

f g

7

A later section will give the details of how branches are defined. Suffice it to say
here that a branch is defined by giving its height and slope. Labels are recognized
by the Tree parser as {stuff }, where the “stuff” is anything that can go in a Tex
hbox. We also defer to a later section automatic space that is inserted over and
under labels and how this is specified and adjusted.

The example below uses the colon shortcut extensively.

(6) \jtree
\defbranch<Left>(2.3)(1)

\! = <Left>!a ˆ<right> :{is} {rotten}.

\!a = :{the} :{cheese} :{that}

<Left>!b ˆ<right> :{ate} {\it t}.

\!b = :{the} :{rat} :{that}

<Left>!c ˆ<right> :{killed} {\it t}.

\!c = :{the} :{cat} :{that} :{John} :{owned} {\it t}.

\endjtree

is rotten
the

cheese
that

ate t
the

rat
that

killed t
the

cat
that

John
owned t

2.4. Inline adjunction

In addition to the : operator, Tree provides one other shortcut. It provides an
alternative to adjunction in the code below.

8

\jtree[xunit=2.8em,yunit=1em]

\! = {S}

:{NP}!a {VP}

:{V}!b {NP}

<vert>{Tom}.

\!a = <vert>{Mary}.

\!b = <vert>{saw}.

\endjtree

S

NP VP

V NP

Tom

Mary

saw

This can be written:

\jtree[xunit=2.8em,yunit=1em]

\! = {S}

:{NP}(<vert>{Mary}) {VP}

:{V}(<vert>{saw}) {NP}<vert>{Tom}.

\endjtree

Effectively, interpreting (. . .) carries out inline adjunction, without the need to
explicitly name the adjunction point. In practice, description by inline adjunction
should be avoided for all but very simple nonterminals (as in this example) since
it can quickly lead to opaque code and the hornet’s nest of parentheses that JTDL
was designed to avoid.

3. Parameters

Many Tree items take which control various aspects of typesetting. pst-jtree
contains the definitions:

\defbranch<left>(1)(1)

\defbranch<right>(1)(-1)

(Quotations from pst-jtree will be displayed in a box, as above.) This defines
<left> to be a branch with height 1 psyunit and slope is 1, and <right> to be
a branch with height 1 psyunit and slope −1. The specification of branches will
be discussed in more detail in Section 4, but for now it is sufficient to know that
<left> and <right> are drawn as shown below:

(7)

1 psxunit

1
ps

yu
ni

t

<left>

1 psxunit

1
ps

yu
ni

t

<right>

9

The fact that the dimensions of branches can be specified in psunits, with the
xunits independent of the yunits, coupled with the fact that branches are rendered
in physical (Tex) units, produces a great deal of flexibility. The three trees below
were produced with exactly the same Tree code, but with \psset{unit=1em},
psset{unit=2em}, and psset{xunit=2em,yunit=1em}.

(8) a. VP

Bill V′

sawMary

b. VP

Bill V′

saw Mary

c. VP

Bill V′

saw Mary

\jtree accepts parameters directly, so you can say:

\jtree[xunit=1.5em,yunit=1em]

\! = {VP}

<left>{Bill} ˆ<right>{V$’$}

<left>{saw} ˆ<right>{Mary}.

\endjtree

VP

Bill V′

saw Mary

Individual branches also take parameters, so you can say:

\jtree[xunit=1.5em,yunit=1em]

\! = {VP}

<left>{Bill} ˆ<right>[xunit=3em]{V$’$}

<left>{saw} ˆ<right>{Mary}.

\endjtree

VP

Bill V′

saw Mary

The parameters unit, xunit, and yunit are defined by PSTricks. Tree
defines some of its own parameters. A parameter scaleby is provided.
\psset{scaleby=x y} causes branches to be drawn as if

\psset{xunit=x\psxunit,yunit=y\psyunit}

had been executed (but the psunits are not actually changed).

\psset{scaleby=x} is equivalent to \psset{scaleby=x x}.

The following are then possible:

10

\jtree[xunit=1.5em,yunit=1em]

\! = {VP}

:[scaleby=2]{Bill} {V$’$}

:{saw} {Mary}.

\endjtree

VP

Bill
V′

saw Mary

\jtree[xunit=1.5em,yunit=1em]

\! = {VP}

<left>{Bill} ˆ<right>[scaleby=2 1]{V$’$}

:{saw} {Mary}.

\endjtree

VP

Bill V′

saw Mary

Tree defines a dozen or so parameters in all. They can be set by \psset, but more
importantly, can be attached to particular instances of \jtree and the branches
and labels that appear inside \jtree environments.

Modifying branches by standard PSTricks parameters is often useful.

\jtree[xunit=3em,yunit=3em]

\! = <left>[scaleby=2 1,

arrows=->]{a}

ˆ<left>[linewidth=2pt]{b}

ˆ<right>[scaleby=1 2,

linestyle=dashed]{c}

ˆ<right>[scaleby=1.5 1,

linestyle=dotted,linewidth=1pt]{d}

ˆ<right>[scaleby=2 .5,doubleline=true]{e}.

\endjtree

a b

c

d

e

The PSTricks documentation can be consulted for many other line and arrow
parameters which offer further control over how branches are drawn.

11

4. Labels

In tree descriptions, material in {. . . } is typeset in an hbox, called a label box. After
the label box is added to a structure with current point P, a new point P′ becomes
the current point. The issues addressed in this section are the relative positions of
P, the label box, and P′. The position of the label box is specified by giving the
position of the center of its baseline, called Q here. The relative positions depend
upon the height h and depth d of the label box, and five different parameters:
labelgapt, labelgapb, labelstrutt, labelstrutb, and labeloffset. The
beginning user should not be discouraged by the apparent complexity. Various
defaults are set in pst-jtree and the issue can be largely ignored unless some special
effect is desired. When the time comes that a complex positioning problem arises,
the flexibility will be both understandable and welcome. The positioning rules are
given below, with |parameter| representing the value of the parameter.

(9)

Q

P

P′
y2

y1

x1

x1 = |labeloffset|
y1 = Max(h, |labelstrutt|)

+|labelgapt|
y2 = Max(d, |labelstrutb|)

+|labelgapb|

A consequence of these rules is that the top of a label box will be at a distance of at
least |labelgapt| below the terminus of the branch or label that it follows, and the
baseline of a label box will be at a distance |labelstrutt| + |labelgapt| below
that terminus unless the label box is unusually high (i.e. h > |labelstrutt|). This
means that label boxes never get too close to the branches or labels they follow,
and the baselines of label boxes on different branches of the same height will be
aligned, unless the label boxes are exceptionally high. The same considerations
apply to the relative positions of the label box and P′.
There is also a parameter normallabelstrut which can be set to true or false. If
set to true, every time that \jtree is executed the dimensions of the label strut are
set to the dimensions of the current Tex strut. Specifically,

\psset{labelstrut={\the\ht\strutbox} {\the\dp\strutbox}}

is executed when \jtree is invoked. \psset{labelstrut=x y} is equivalent
to \psset{labelstrutt=x,labelstrutb=y}. Users do not have to be
concerned with setting label strut unless they desire some special effect since
pst-jtree sets normallabelstrut to true. The default settings for the top
and bottom label gaps are .35 ex. \psset{labelgap=x} is equivalent to
\psset{labelgapt=x,labelgapb=x}.

The effect of this scheme is shown below with normallabelstrut set to true and
labelgapt and labelgapb set to .6 ex. The size of the labels is as shown, with

12

the baselines shown. If the height of the label does not exceed |labelstrutt|, the
baselines of the labels are aligned, otherwise the top of the label box is at a distance
|labelgapt| below the terminus of the branch it follows.

Sometimes it is useful to set labelstrutt to 0. In that case, the result is:

Many users will probably leave normallabelstrut set to true and forget about it.
But most users will want to change the label gaps from time to time. Contrast the
following, for example. In some applications, the second might be preferable.

\jtree

\! = {A}

<vert>{\psframebox{B}}

:{C}{D}.

\endjtree

A

B

C D

\jtree

\! = {A}

<vert>{\psframebox{B}}[labelgap=0]

:{C}{D}.

\endjtree

A

B

C D

This is used in typesetting (15) in Section 11.

The following contrast is also interesting, in part because it uses a negative label
gap.

13

\jtree

\! = :({the}{(article)}) {dog}{(noun)}.

\endjtree
the

(article)

dog

(noun)

\jtree

\! = :({the}{(article)}[labelgapt=-3pt])

{dog}{(noun)}[labelgapt=-3pt].

\endjtree

the
(article)

dog
(noun)

See examples 3 and 4 in Section 14 for applications of this trick, which often
eliminates the need for complex multiline labels.

The label box can be positioned horizontally using labeloffset.

\jtree

\! = {musketeer}

<vert>{musketeer}[labeloffset=1ex]

<vert>{musketeer}[labeloffset=2ex].

\endjtree

musketeer

musketeer

musketeer

See example 1 in Section 14 for an illustration of how changing labeloffset can
solve certain spacing problems between labels.

There is one other parameter that is relevant to labels. The material specified by
everylabel is put into a token list and the token list is inserted at the beginning of
every label.

\jtree[everylabel=\sl]

\! = {a}

:{a} {p}

:{a} {(e)}.

\endjtree

a

a p

a (e)

If a label is {\omit. . . } or {\pnode. . . }, then the vertical positioning algorithm
discussed above is bypassed and the label is positioned with its top edge at the level
of P and P′ is positioned directly under P at the level of the bottom edge of the
label box. labeloffset still operates. Contrast the following:

14

\jtree[everylabel=\strut,labelgap=3pt]

\! = :{a} {\omit\psframebox{dog\strut}}

:{a} {\pnode{A1}}

:{a} {a}.

\endjtree

a dog

a
a a

\jtree[everylabel=\strut,labelgap=3pt]

\! = :{a} {\psframebox{dog\strut}}

:{a} {}

:{a} {a}.

\endjtree

a dog

a

a a

15

5. Branches

Most tree formatting schemes format the array of labels, then connect them with
branches. The dimensions of the branches are determined by the location of the
labels they must connect. A Tree branch, on the other hand, has dimensions
specified in its definition and determines the location of the material it points to.
Branches are defined by giving their height and slope. The syntax is:

\defbranch<name>(height)(slope)

The height can have Tex dimensions (pt, ex, em, in, cm, etc.), or it can be purely
numerical. If numeric, it is taken to be the height measured in psyunits. The
slope is the ratio of the vertical dimension measured in psyunits to the horizontal
dimension measured in psxunits. Lines going from the lower left to the upper
right have positive slopes and lines going from the upper left to the bottom right
have negative slopes. Usually, the slope can be expressed as a decimal number.
If the horizontal dimension is zero, as it is with a vertical line, a decimal slope is
impossible (because division by zero is) and the slope must be expressed as a ratio.

\jtree[unit=2.5em]

\defbranch<1;3/10>(1)(3/10)

\defbranch<1;.5>(1)(.5)

\defbranch<1;1/1>(1)(1/1)

\defbranch<1;1/0>(1)(1/0)

\defbranch<1;-1>(1)(-1)

\defbranch<1;-1/2>(1)(-1/2)

\! = <1;3/10>{$3/10$}

ˆ<1;.5>{$.5$}

ˆ<1;1/1>{$1/1$}

ˆ<1;1/0>{$1/0$}

ˆ<1;-1>{-1}

ˆ<1;-1/2>{$-1/2$}.

\endjtree

3/10 .5 1/1 1/0 −1 −1/2

Note that the characters appearing in a branch name are not restricted to alphabetical
characters.

I have never found a use for defining branches with the height specified in physical
units, but someone might.

16

\jtree[xunit=2em,yunit=1em]

\defbranch<Right>(2em)(-1)

\! = <left>{a} ˆ<Right>{b}

<left>{c} ˆ<right>{d}.

\endjtree

a
b

c d

Finally, note that the slope specification of a branch will not match the slope of the
line which is drawn on paper unless the xunits and yunits are equal. One is the ratio
of psyunits to psxunits, the other is the ratio of physical units. The branch <right>
is specified to have slope −1, but:

\jtree[xunit=.5em,

yunit=2em]

\! = {a}<right>{b}.

\endjtree

a

b

\jtree[xunit=4em,

yunit=2em]

\! = {a}<right>{b}.

\endjtree

a

b

Tree specializes in binary trees, but pst-jtree predefines some branches which make
it relatively easy to make bushier trees. The entire inventory of predefined branches
is:

\defbranch<left>(1)(1)

\defbranch<right>(1)(-1)

\defbranch<4wideleft>(1)(2/3)

\defbranch<4left>(1)(2)

\defbranch<4right>(1)(-2)

\defbranch<4wideright>(1)(-2/3)

\defbranch<wideleft>(1)(1/2)

\defbranch<wideright>(1)(-1/2)

\defbranch<bigleft>(2)(1)

\defbranch<bigright>(2)(-1)

\defbranch<vert>(1)(1/0)

\defbranch<shortvert>(.5)(1/0)

\defbranch<colonA>(1)(1)

\defbranch<colonB>(1)(-1)

17

Of course, users can define whatever branches they find need for. <colonA> and
<colonB> are the branches used by the colon macro. They are defined to be the
same as <left> and <right>, but can be redefined to be whatever is convenient.

\jtree

\! = {X}

<left>{a} ˆ<vert>{b} ˆ<right>{c}.

\endjtree

X

a b c

\jtree

\! = {X}

<4wideleft>{a} ˆ<4left>{b}

ˆ<4right>{c} ˆ<4wideright>{d}.

\endjtree

X

a b c d

\jtree

\! = {X}

<wideleft>{a} ˆ<left>{b} ˆ<vert>{c}

ˆ<right>{c} ˆ<wideright>{d}.

\endjtree

X

a b c c d

6. Triangles and vartriangles

Triangles can be defined. The definition syntax is:

\deftriangle<name>(height)(slopeA)(slopeB)

One triangle comes predefined.

\deftriangle<tri>(1)(1)(-1)

<tri> can be used like any other branch.

\jtree

\! = :{a} <tri>{b} <vert>{c}.

\endjtree
a

b

c

pst-jtree defines the parameter triratio, which can be used to adjust where the
new current point is positioned along the bottom edge of the triangle. If width is the
width of the triangle, the new current point is at distance x = triratio ×width to the
right of the left corner of the triangle. The display above is set with triratio=.5,
the default, which puts the current point in the center of the bottom edge.

18

\jtree

\! = :{a} <tri>[triratio=.8]{b} <vert>{c}.

\endjtree
a

b

c

When a triangle is evaluated, its width is computed and a macro \triwd is defined
which evaluates to this width. pst-jtree contains:

\def\triline#1{\hbox to\triwd{#1}}

A construction like the following is sometimes useful:

\jtree

\! = :{a} <tri>{\triline{e\hfil f}}.

\endjtree
a

e f

Remember as well that branches can be overwritten. Something along the lines of
the following is sometimes useful.

\jtree

\! = :{a} <tri> ˆ:{e} {f} <vert>{c}.

\endjtree
a

e f

c

6.1. Vartriangles

Vartriangles adjust their width to fit the label that they point to. A vartriangle is
specified by giving a height. The definition syntax is:

\defvartriangle<name>(height)

Tree predefines one vartriangle.

\defvartriangle<vartri>(1)

\jtree

\! = :{a} <vartri>{whatever width}.

\endjtree
a
whatever width

19

The parameter triratio has a different meaning for vartriangles than it has
for ordinary triangles. It determines where the center of the bottom edge of the
vartriangle is with respect to the top vertex. The center of the bottom edge is a
distance triratio × width to the right of its left edge. It is easier to illustrate (done
below) than to give the formula.

\jtree

\! = :{a} <vartri>

[triratio=.3]{whatever width}.

\endjtree

a
whatever width

\jtree

\! = :{a}

<vartri>[triratio=0]{whatever width}.

\endjtree

a
whatever width

\jtree

\! = :{a}

<vartri>[triratio=-.1,scaleby=2]

{whatever width}.

\endjtree

a

whatever width

Generally, there is no branching from the label following a vartriangle, so no
provision is made for adjusting the termination point of the label that follows
vartriangles. It is at the center of the base.

\jtree

\! = :{a} <vartri>

[triratio=.1]{whatever width}

<vert>{b}.

\endjtree

a
whatever width

b

Another branch can follow a branch, but since the width of a vartriangle depends
on the width of the label which follows it, a vartriangle (with optional parameters)
must be followed immediately by a label. An error results if it is not.

20

7. @tags

Tree includes direct support for PSTricks’ powerful pst-node package. Even in
linear structures, pst-node is very useful to linguists. The ability to define nodes
and to connect them with arrowed curves of various kinds allows the user to easily
code things like:

\rnode{A1}{Who} \rnode{B1}{did}

Jack \rnode{B2}{\sl t\/}

see \rnode{A2}{\sl t\/}?}

\psset{linearc=2pt}

\ncbar[angle=-90]{->}{A2}{A1}

\ncbar[angle=90]{->}{B2}{B1}

Who did Jack t see t?

In tree structures, the pst-node macro \nccurve is particularly useful. Careful:
Nodes refer to named structures defined by pst-node commands, not to tree nodes.

\jtree

\! = :{\rnode{A1}{who}}

:{\rnode{B1}{did}} :{Jack}

:{\rnode{B2}{\sl t}} :{see}

{\rnode{A2}{\sl t}}.

\psset{arrows=->,angleA=-150,

angleB=-90}

\nccurve{A2}{A1}

\nccurve{B2}{B1}

\endjtree

who
did

Jack
t

see t

Tree facilitates the use of pst-node by means of what are called @tags, as illustrated
below.

\jtree

\! = :{who}@A1 :{did}@B1 :{Jack}

:{\sl t}@B2 :{see} {\sl t}@A2 .

\psset{arrows=->,angleA=-150,

angleB=-90}

\nccurve{A2}{A1}

\nccurve{B2}{B1}

\endjtree

who
did

Jack
t

see t

A Tree @tag consists of @ followed by any sequence of characters that is a valid
PSTricks node name, followed by a space. If a @tag follows a label (parameters

21

are part of the label), then three nodes are created. If the @tag is @P2, for example,
point nodes named P2:t, P2, and P2:b are created. P2:t is at the point that was
current before the label was added to the structure, and P2:b is at the point that
becomes the current point after the label is added to the structure. P2 is a box node
consisting of the label box, with the reference point at its center. With respect to
P2, {stuff }@P2 is equivalent to {\rnode{P2}{stuff }}. If a @tag does not follow
a label, then a single point node is created at the current position P.

These ideas are illustrated below:

\jtree

\! = @AA

<vert>{A}

<vert>{B}[labelgapt=12pt]@P2

<vert>{C}.

\psset{arrows=->,angleA=0,angleB=0,

ncurv=1.4}

\nccurve[nodesep=0]{AA}{P2:t}

\nccurve[nodesepA=0]{AA}{P2}

\nccurve[nodesep=0,ncurv=1.6]{AA}{P2:b}

\endjtree

A

B

C

\jtree[scaleby=1 2,labelgap=1.2ex]

\! = :{and}@A

{whatever}[labeloffset=1em]@AA .

\psset{linestyle=dashed,arrows=->}

\ncline{A}{AA:t}

\ncline{A}{AA:b}

\nccurve[angleA=-90,angleB=-90,ncurv=1]{A}{AA}

\endjtree

and whatever

There is some further information about nodes and the use of \nccurve in
Section 13.

22

8. The colon construction in more detail

There are some details of the syntax of the colon construction that have been left
vague to this point. The idea of the colon construction is simple enough; the
colon is replaced by the branch <colonA> and then, after some material has been
processed, ˆ<colonB> is inserted. But some precision is needed in specifying
exactly where this later insertion takes place. For example, where is ˆ<colonB>
inserted in the expression below?

:{a} [labelgap=0] @AA !a @BB {c}

The rule is this. The template below is filled out a fully as possible, then : is
replaced by <colonA> and ˆ<colonB> is inserted after the target.

(10) : [pars] {stuff } [pars] @tag

(
(. . .)

!tag

)
︸ ︷︷ ︸

target

There are two restrictions. First, the target cannot be completely empty.
:<left>. . . or ::. . . , for example, is impossible. Second, since parameters
must be parameters of something, the [pars] term in the target can only be present
if there is a {stuff } term.

Consider the following examples:

(11) a. \jtree
\! = :[scaleby=2]{a} {b}.

\endjtree a
b

b. \jtree
\! = :{a} [scaleby=2]{b}.

\endjtree
a b

You might expect the right branch to be scaled in (11b). The reason that it is not
is that [scaleby=2] goes into the target. It is parsed, according to (10), as label
parameters and <colonB> is inserted after the target. As label parameters, it has
no effect. In Section 14, the following idiom is frequently used to ensure that
parameters are not interpreted as label parameters.

(12) \jtree

\! = :{a}() [scaleby=2]{b}.

\endjtree
a

b

The template (10) is filled out with target {a}(), so <colonB> is inserted before
[scaleby=2].

The following contrast is interesting. In (13a), the target is {a}(:{b}{c}), so
inline adjunction occurs on the left branch. In (13b), on the other hand, !a fills the

23

adjunction slot in the template, so the target is {a}!a and the adjunction is on the
right branch.

(13) a. \jtree
\! = :{a} (:{b}{c}) {d}.

\endjtree
a

b c

d

b. \jtree
\! = :{a}!a (:{b}{c}){d}.

\endjtree
a

b c
d

Note in (13b) that the inline adjunction leaves the current point P unchanged, so it
is overwritten by the label which follows.

A target can consist entirely of a @tag.

(14) \jtree
\! = :@A @B .

\nccurve[angleA=-60,

angleB=240]{->}{A}{B}

\endjtree

For the sake of completeness, a full account of the tree description grammar
follows.

8.1. The syntax of the tree description language

The well formed tree descriptions are specified by a context free grammar and
some assumptions about how the parser operates. We first consider the grammar.
The term string which occurs in a number of expansions is a string of characters
which can be put into a Tex control sequence. Various conditions on the strings
which can appear in different contexts are discussed below.

tree description → simple tree description (tree description)

simple tree description → \!string = (tree body) .

tree body → tree item (tree body)

tree item → sprout, target, vartri group, colon group, operator

sprout → < string > ([pars])

target →
(
label
@tag

) (
!tag

inline adjunction

)

label → { stuff } ([pars]) (@tag)

inline adjunction → (tree body)

vartri group → < string > (parameters) label

colon group → : ([pars]) target ([pars])

24

@tag → @ string

!tag → ! string

operator → ˆ

pars → valid PSTricks parameter settings, ∅
The boxed characters above are symbols in the tree description language, not the
grammar description language. “Stuff” is anything that will go in a Tex \hbox.
Note that an empty parameter specification [] is permitted, and is actually useful
at times. This is an extension of the PSTricks parameter system, which disallows
empty parameters.

The string which follows \! must be such that !string is the name of an adjunction
point that has already been defined, either by \jtree or by a !tag in a previously
parsed target. The <string> which occurs in a sprout must be the name of a branch
or triangle, and the <string> which occurs in a vartri group must be the name of a
vartriangle. A name with an empty string or a string containing spaces is permitted,
but not advised. The string which occurs in a @tag must be a valid PSTricks node
name, with the additional restriction that it cannot contain a space. The string
which occurs in a !tag, preceded by !, becomes the name of an adjunction point.
It cannot contain a space. Note that !tags and @tags must be followed by a space.
Otherwise, Tree is tolerant of spaces or their absence between items.

Parsing is unique under the assumption that targets and labels are always maximized
in left to right parsing and are never empty. Labels are never empty in any event
since they contain { and }.

9. Expansion and evaluation of control sequences in tree parsing

9.1. The " escape from tree parsing

If the parser encounters ", it evaluates the next token or group and continues
the parse. Evaluation should contribute no material, since it is not parsed. But
evaluation can change parameter settings, which affects how the remaining material
is typeset. For example:

\jtree

\! = {a} :{b}!! {c}

"{\psset{scaleby=.5 1}} :{f} {g}.

\!! = :{d} {e}.

\endjtree

a

b c

f gd e

\! does not establish an implicit group, so the change in scale persists to the
subsequent subtree.

25

The same effect can be achieved without using " if rescaling is done outside tree
parsing.

\jtree

\! = {a} :{b}!a {c}!b .

\psset{scaleby=.5 1}

\!a = :{d} {e}.

\!b = :{f} {g}.

\endjtree

a

b c

d e f g

9.2. Control sequence expansion

If the parser encounters a control sequence or active character in a tree description,
it is replaced by its expansion before the parse continues. The expansion is parsed
without further expansion of the initial token, which prevents an infinite loop if the
expansion yields an unexpandable control sequence.

\jtree

\def\Colon{:[scaleby=2.3]}%

\! = \Colon !a :{c} :{d} {e}.

\!a = :{a} {b}.

\endjtree

c
d ea b

pst-jtree contains the definition \def\jtlong{[scaleby=2.3]}, so we could
also write:

\jtree

\! = :\jtlong !a :{c} :{d} {e}.

\!a = :{a} {b}.

\endjtree
c

d ea b

This technique makes some code much more transparent. (6) on page 7, for
example, can be written:

\jtree[xunit=2.2em,yunit=1em]

\! = :\jtlong !a :{is} {rotten}.

\!a = :{the} :{cheese} :{that} :\jtlong !b :{ate} {\it t}.

\!b = :{the} :{rat} :{that} :\jtlong !c :{killed} {\it t}.

\!c = :{the} :{cat} :{that} :{John} :{owned} {\it t}.

\endjtree

26

The complete list of parameter changes that are encoded in macros in pst-jtree is:

\def\jtlong{[scaleby=2.3]}

\def\jtshort{[scaleby=.5]}

\def\jtwide{[scaleby=2 1]}

\def\jtbig{[scaleby=2]}

\def\jtjot{[scaleby=1.3]}

Of course, users should define whatever similar macros are useful in their own
work.

10. Bells and whistles

10.1. baretopadjust

The baseline of the box created by \jtree...\endjtree is normally the baseline
of the root label. If, however, the root label is empty, that puts the baseline too low,
at least for my taste. Contrast the trees below:

a. A

B C

b.

B C

Tree takes corrective action by raising the tree diagram if the root label is empty
by the amount specified by the parameter baretopadjust. The default setting is
1.4ex, but you can set it to whatever you want. With the default setting:

a. A

B C

b.
B C

10.2. treevshift

Tree also provides the parameter treevshift, which is set to 0 by default. It is
independent of baretopadjust and can be used to move the tree diagram up and
down, if desired.

\to\qquad

\jtree[treevshift=1.2em]

\! = {A} :{B} {C}.

\endjtree

→
A

B C

10.3. everytree

If you say, for example, \psset{everytree=\psset{style=treestyle}},
and if you have defined treestyle using a PSTricks style definition, then your

27

trees will done in that style. \psset{everytree=x} puts x into the token list
\jteverytree which is inserted at the beginning of every \jtree. . . \endjtree
construction. It is grouped, so that its scope is limited to the tree construction. It is
inserted before the \jtree parameters take effect, so that it will be overridden by
parameter settings.

If you want, you can set \jteverytree directly. The same is true, by the way, for
everylabel, which uses the token list \jteverylabel.

10.4. Custom branches

Tree ordinarily draws branches using the PSTricks macro \psline, but it does this
in an indirect way. It actually calls the macro \branch@type to do the drawing;
and Tree contains the line \let\branch@type=\psline. If the user says
\psset{branch=\customline}, then \branch@type is made \customline
instead of \pslinewith the usual locality. If \customline is suitably defined then
it will be used to draw branches. A few alternative macros for drawing branches
are included in Tree. The enterprising user might want to define appropriate zigzag
or coil macros, following the PSTricks model. Tree provides \blank (see example
10 in Section 14 for an illustration of its use), \brokenbranch (see example 14 in
Section 14), and \etcbranch (see example 13 in Section 14).

\jtree[xunit=3em,yunit=2em]

\! = :{normal}()

[branch=\brokenbranch]{broken}

:[branch=\blank]{blank}()

[branch=\etcbranch]{etc}.

\endjtree

normal

. . .

broken

blank etc

The proportion of the “etc branch” that is dotted is controlled by a parameter
etcratio. pst-jtree contains \psset{etcratio=.75}, but the user is free to
change this if desired. The style for the dotted portion is defined by

\newpsstyle{etc}{nodesepB=0,nodesepA=1pt,linestyle=dotted,

linewidth=1.2pt,dotsep=2pt}

The user can also overwrite the specification of this style with a new specification,
if desired.

pst-jtree contains the macro definition:

\def\etc{[branch=\etcbranch,scaleby=.7]}

So you can write:

28

\jtree

\! = :{A} :{B} :{C}() \etc.

\endjtree
A

B
C

10.5. The pseudo-parameters dirA and dirB

Suppose that you wish to use \nccurve to draw a curve which leaves a node
A in the same direction that a standard left branch would leave A. You need to
set angleA to the appropriate value. The appropriate angle can be calculated
using some simple trigonometry, but the calculation depends on the ratio of the
psxunits to the psyunits. It is desirable both to avoid having to do a trig calculation
on the side and to code a tree so that unit changes do not alter the geometry in
an undesirable fashion. dirA and dirB were introduced to solve this problem.
\psset{dirA=(-1:-1)} will cause angleA to be set so that a path drawn by
\nccurve will leave the starting node in the direction of the vector (−1,−1).
It is called a pseudo-parameter (my terminology) because \psset{dirA=x} is
executed for its effect on the parameter angleA, not dirA. Note that a colon is
used, so that the \psset parser is not confused. dirB works almost the same
way for angleB, but the vector which sets dirB should point backwards along the
curve, which is the direction which angleB measures.

Use of dirA below ensures that the “curved branch” lines up with the straight ones.
Note that the curve is made fairly stiff (a high value of ncurv) so that it bows out
sufficiently.

\jtree

\! = @A1

<right>

:{B}

:{C} {D}@A2 .

\nccurve[dirA=(-1:-1),angleB=200,

ncurv=2,nodesepA=0]{A1}{A2}

\endjtree\kern1em

B
C D

The example in 14 is a good illustration of the use of this parameter.

29

11. How to build complex trees

Tree has several features which make it easy to build trees incrementally. In
complex trees, this is a big advantage, because the software does not make it easy
to pinpoint the source of errors in the code. Consider, for example, the tree that
is used to illustrate the features of qtree, a popular tree-drawing macro package
(available on CTAN) written by Avery Andrews.

(15) The cup slid from John to Mary
GO

(
cup, [Path FROM(John),TO(Mary)]

)
IP

Fracture

The cup
cup
NP

slid from John to Mary
GO

(
x, [Path FROM(John),TO(Mary)]

)
IP

Fracture

...
...

Fracture

The
⊥
NSPEC

cup
cup
N

We proceed, as usual, by starting with the right branching spine of the tree, putting
in adjunction points for complex material on left branches that must be added.
Similar to adjunction points, Tree allows for tags to be inserted for “stuff” that can
be filled in later. Macros \stuff and \defstuff are defined in pst-jtree and used
as shown below.

\jtree

\def\fracture{\psframebox{Fracture}}

\! = {\stuff[a]}

<vert>{\fracture}

:\jtbig{\stuff[b]}!a

\jtbig{\stuff[c]}

<vert>{\fracture}

:{\vdots} {\vdots}.

\endjtree

[a]

Fracture

[b] [c]

Fracture

...
...

We then proceed to complete the structure at the tagged positions, fill in the missing
stuff, and to make whatever other changes are needed to get a good looking tree.

30

Some things are already apparent: there is too much whitespace under “Fracture”
inside the box; the tree branches do not meet the “fracture box”, and the tree needs
to be stretched in the x-direction. We delay filling in most of the missing stuff until
the end, and concentrate on fixing the problems noted above and getting the tree
structure right. This produces:

\jtree[xunit=3em,yunit=1em]

\def\Fracture{<vert>{\omit\psframebox[boxsep=.4ex]

{Fracture$\vphantom j$}}}%

\! = {\stuff[a]}

\Fracture

:\jtbig{\stuff[b]}!a

\jtbig{\stuff[c]}

\Fracture

:{\vdots}

{\vdots}.

\!a = \Fracture

:{\stuff[d]}

{\stuff[e]}.

\endjtree

[a]

Fracture

[b] [c]

Fracture

...
...

Fracture

[d] [e]

We now are ready to fill in the stuff. Since the go-path construction is complicated,
appears twice, and is probably useful for this kind of work, it has been generalized
to a macro. pst-jtree contains the \multiline and \endmultiline macros to
help construct complex multiline labels. \multiline starts a vbox and begins
\halign{\hfil#\hfil\cr. \endmultiline closes up the construction. Some
care is taken with the vertical spacing. The full code for (15) is:

\def\GO#1#2#3{$\rm GO\bigl({#1},[_{Path}\,

FROM({#2}),TO({#3})]\bigr)$}

\jtree[xunit=3em,yunit=1em]

\defstuff[a]{\multiline

\it The cup slid from John to Mary\cr

\GO{\bf cup}{\bf John}{\bf Mary}\cr

IP\endmultiline}

\defstuff[b]{\multiline

\it The cup\cr

\bf cup\cr

NP\endmultiline}

\defstuff[c]{\multiline

\it slid from John to Mary\cr

\GO{\mit x}{\bf John}{\bf Mary}\cr

IP\endmultiline}

\defstuff[d]{\multiline

31

\it The\cr

\perp\cr

\quad N$\rm _{SPEC}$\endmultiline}

\defstuff[e]{\multiline

\it cup\cr

\bf cup\cr

N\endmultiline}

\def\Fracture{<vert>{\omit\psframebox[boxsep=.4ex]

{Fracture$\vphantom j$}}}%

\! = {\stuff[a]}

\Fracture

:\jtbig{\stuff[b]}!a \jtbig{\stuff[c]}

\Fracture

:{\vdots} {\vdots}.

\!a = \Fracture

:{\stuff[d]} {\stuff[e]}.

\endjtree

32

12. The bounding box

PSTricks creates dimensionless graphics, but Tree goes to a lot of trouble to figure
out the sizes of the trees that it generates and to put them in appropriately sized
boxes. For example:

\psframebox[boxsep=0]{\jtree

\! = {X} :{a} :{a} :{a}

{\multiline

this and\cr

that\endmultiline}.

\endjtree}

X

a
a

a this and
that

The sizing is not perfect. Tree is not clever enough to recognize the white space
due to labelgapt, labelgapb, labelstrutt, and labelstrutb. But it is not
bad.

If PSTricks is used to draw arrows, they often extend outside the Tree bounding
box.

\psframebox[boxsep=0]{\jtree

\! = {X}@A1

<right>

:{a}

:{a}

{\multiline

this and\cr

that\endmultiline}@A2 .

\nccurve[angleA=210,angleB=200,

ncurv=2,nodesepA=0]{->}{A1:b}{A2}

\endjtree}

X

a
a this and

that

This has to be fixed by hand by inserting appropriate kerning.

33

\psframebox[boxsep=0]{\kern2.4em

\jtree

\! = {X}@A1

<right>

:{a}

:{a}

{\multiline

this and\cr

that\endmultiline}@A2 .

\nccurve[angleA=210,angleB=200,

ncurv=2,nodesepA=0]{->}{A1:b}{A2}

\endjtree}

X

a
a this and

that

13. Nodes and connections between them

Nodes have a shape, a reference point, and a name. pst-node allows the user to
define box, elliptical, circular, and point nodes. In addition to a shape, nodes have
a reference point. It is at the center of an elliptical, circular, or point node. It can
be at the center of a box node, but there are other options for box nodes: the ends
and centers of the edges and the baseline. pst-node has a number of commands
for drawing curves of various kinds between nodes. Various features of how these
curves are rendered (linewidth, linestyle, arrows, etc.) can be specified. The most
useful curve drawing command for annotating tree structures is \nccurve. The
main point of this section is to explain how \nccurve works.

Suppose there is a box node and a point node as shown below. The dots are the
reference points.

B

A

The diagram below illustrates how

\nccurve[angleA=50,angleB=110]{A}{B}

is drawn.

34

50◦

110◦

This simple picture can be modified by a number of parameters. In addition to the
usual parameters like linewidth, linestyle and arrows which determine how a
geometrical curve is rendered, there are six parameters which modify the geometry
of the curve itself: ncurvA, ncurvB, nodesepA, nodesepB, offsetA, and
offsetB. The parameters can be set individually or in pairs. \psset{nodesep=x}
induces \psset{nodesepA=x,nodesepB=x}. ncurv and offset work the same
way. We will examine the parameters in turn.

\psset{nodesepA=x} causes the dimensions of the node box to be adjusted by x
before the curve is determined.

The effect of ncurv is the most subtle. One can imagine that the curve is “pulled”
in the directions of the arrows below. You can think of ncurv as setting the strength
of the pulls. The default is .67. The picture below shows the curves that are drawn
with various settings of ncurv.

.4

.67

1

1.4

35

Here is a simple illustration of the use of ncurv. There is a typesetting problem
with the pointer below which must be fixed.

\jtree[unit=2em]

\! = :{A}@A :{B} {C}@C .

\nccurve[angleA=210,angleB=-80]{->}{C}{A}

\endjtree
A

B C

One way to fix the problem is to increase the value of the ncurv parameter.

\jtree[unit=2em,nodesep=.6ex]

\! = :{A}@A :{B} {C}@C .

\nccurve[angleA=210,angleB=-80,

ncurv=1.1]{->}{C}{A}

\endjtree

A

B C

\psset{ncurv=x} has the effect \psset{ncurvA=x,ncurvB=x}. Sometimes
it is advantageous to set the parameters to different values. Experimentation will
quickly give you a feel for how this works.

Finally, we come to the two offset parameters. \psset{offsetA=x} causes the
starting point to be offset a distance x perpindicular to the starting direction. The
direction is to the left (looking in the starting direction) if x is positive.

\psset{offsetB=x} causes the finishing point to be displaced a distance x
perpindicular to the finishing direction, to the left. Remember that the finishing
direction points toward the node, not back along the curve.

36

Here is a simple application that might be appropriate for some special emphasis.

\jtree[xunit=3em,yunit=2em]

\! = :{A}@A {B} <vert>{C}@C .

\psset{angleA=-90,angleB=180}

\nccurve[offsetA=.5ex]{->}{A}{C}

\nccurve[offsetA=-.5ex]{A}{C}

\endjtree

A B

C

This construction is used several times in example 6 in Section 14.

37

14. Examples

This section, the last, presents a series of examples with complete code, which
illustrate techniques for solving various problems that arise in typesetting complex
trees. Examples 1 and 2 illustrate various techniques for solving spacing problems.
The remainder of the examples illustrate the cooperation between pst-jtree and
pst-node, with its suite of macros for creating nodes and connecting them in various
ways.

Example 1

John walks from Boston to Detroit, t, 4

John, T walk from Boston to Detroit, IV,7

walk from Boston, IV,7

to Detroit, IV/IV, 5

to, IAV/T Detroit, T

walk, IV from Boston, IV/IV, 5

from, IAV/T Boston, T

(Dowty, David. 1979. Word Meaning and Montague Grammar, p. 215.)

\jtree[xunit=4em,yunit=2em,everylabel=\strut\it]

\! = {John walks from Boston to Detroit\rm, t, 4}

:{John\rm, T} {walk from Boston

to Detroit\rm, IV,7}[labeloffset=1.5em] 1

:\jtlong{walk from Boston\rm, IV,7}!a

{to Detroit\rm, IV/IV, 5}

:[scaleby=.8]{to\rm, IAV/T}() [scaleby=.8]{Detroit\rm, T}. 2

\!a = :{walk\rm, IV} {from Boston\rm, IV/IV, 5}

:{from\rm, IAV/T} {Boston\rm, T}.

\endjtree

1. The label is offset to improve the spacing. The label is off center, but not so
much as to be a distraction.

2. The null inline adjunction () keeps [scaleby=.8] from being interpreted as a
parameter associated with the preceding label.

38

Example 2

CP1

CP2

C′

was + Q TP

hei willing to discuss [which claim]k

[which claim]k CP2

that Johni made [which claim]k

(Nunes, Jairo. 2004. Linearization of Chains and Sideward Movement, p. 149.)

\jtree[xunit=3em,yunit=1.4em]

\def\what{[which claim]$_k$}%

\! = {CP$_1$}

:[scaleby=1.7]{CP$_2$}!a [scaleby=2.5]{C$’$} 1

:{$\rm was+Q$} {TP}

<vartri>[scaleby=1.6,triratio=.4] 2

{he$_i$ willing to discuss \what}.

\!a = :{\what} {CP$_2$}

<vartri>[scaleby=1.6,triratio=.6] 2

{that John$_i$ made \what}.

\endjtree

1. The two legs are not scaled equally because the structure is not (linguistically)
symmetrical. Keeping the left branch shorter helps visually to identify the high
C-specifier.

2. The settings of triratio allow for a much more compact display.

39

Example 3

S

NP
that book

S/NP

NP
I

VP/NP

V
want

VP/NP

to VP/NP

V
ask

NP
Mary

VP/NP

to VP/NP

V
tell

NP
Tom

VP/NP

to VP/NP

V
read

NP/NP
e

(This is an adaptation of an example in the documentation to Avery Andrew’s tree
formatting preprocessor.)

\jtree[xunit=2.2em,yunit=.7em]

\def\\{[labelgapb=-.5ex]}%

\! = {S}

:({NP}\\{that book}@A1) \jtwide{S/NP}

:({NP}\\{I}) {VP/NP}

:({V}\\{want}) {VP/NP}

:{\it to} {VP/NP}

<left>({V}\\{ask}) ˆ<vert>({NP}\\{Mary}) ˆ<wideright>{VP/NP}

:{\it to} {VP/NP}

<left>({V}\\{tell}) ˆ<vert>({NP}\\{Tom}) ˆ<wideright>{VP/NP}

:{\it to} {VP/NP}

:({V}\\{read}) {NP/NP}\\{e}@A2 .

\nccurve[angleA=210,angleB=-90]{->}{A2}{A1}

\endjtree

40

Some may prefer the following formatting style. The code is almost identical to the
code for the style above. \\ has a different definition and <vartri> is used instead
of \\ in one place.

S

NP

that book

S/NP

NP

I

VP/NP

V

want

VP/NP

to VP/NP

V

ask

NP

Mary

VP/NP

to VP/NP

V

tell

NP

Tom

VP/NP

to VP/NP

V

read

NP/NP

e

\jtree[xunit=2.2em,yunit=.7em]

\def\\{<shortvert>}%

\! = {S}

:({NP}<vartri>{that book}@A1) \jtwide{S/NP}

:({NP}\\{I}) {VP/NP}

:({V}\\{want}) {VP/NP}

:{\it to} {VP/NP}

<left>({V}\\{ask}) ˆ<vert>({NP}\\{Mary}) ˆ<wideright>{VP/NP}

:{\it to} {VP/NP}

<left>({V}\\{tell}) ˆ<vert>({NP}\\{Tom}) ˆ<wideright>{VP/NP}

:{\it to} {VP/NP}

:({V}\\{read}) {NP/NP}\\{e}@A2 .

\nccurve[angleA=210,angleB=-90]{->}{A2}{A1}

\endjtree

41

Example 4

The contrast illustrates the two main varieties of pointers that PSTricks makes
available for relating nodes in a tree. My preference is (a), since it more clearly
distinguishes the relation expressed by the pointer from tree relations. Tastes may
vary.

a. CP

XP
[wh]

C′

C0

[wh,Q]
〈TP 〉

. . . t . . .

b. CP

XP
[wh]

C′

C0

[wh,Q]
〈TP 〉

. . . t . . .

(The version on the right is from a paper by Jason Merchant.)

The code for (a) is:

\jtree[xunit=2.6em,yunit=1em]

\def\\{[labelgapb=-1.2ex]}% 1

\everymath={\rm}%

\! = {CP}

:({XP}\\{$\scriptstyle [wh]$}@A1) {$C’$}

:({$Cˆ0$}\\{$\scriptstyle [wh,Q]$})

{$\langle\, TP\,\rangle$}

<tri>{\dots\quad\rnode[b]{A2}{\it t}\quad\dots}. 2

\nccurve[angleA=-150,angleB=-90,ncurv=1]{->}{A2}{A1}

\endjtree

1. \\ is used to close up the gap between category labels and features underneath
them.

2. The node A2 is inserted via \rnode rather than by using @A2 because it is not
a pointer from the whole label, but from the trace inside the label. \rnode[b] is
used, which places the reference point at the bottom of the box that the trace is put
in. This works better visually, since it keeps the pointer from coming too close to
the ellipsis.

For (b), substitute the following for the \nccurve pointer.

\ncbar[angleA=-90,angleB=-90,armA=1em,

armB=1em,linearc=.6ex]{->}{A2}{A1}

42

Example 5

a. CP

CP

CP

wh

b. CP

CP

CP

wh

(Chung, Sandy. 1998. The Design of Agreement, p. 365.)

\jtree

\! = {CP}

<left>@A1 ˆ<tri>[triratio=.65]{CP} 1

<left>@A2 ˆ<tri>[triratio=.65]{CP}

<tri>{\it wh}@A3 .

\psset{angleB=-90,arrows=->}

\nccurve[angleA=190,ncurv=1.3]{A3}{A2}

\nccurve[angleA=160]{A2}{A1}

\endjtree

\jtree

\! = {CP}

<left>@A1 ˆ<tri>[triratio=.65]{CP}

<tri>[triratio=.65]{CP}

<tri>{\it wh}@A3 .

\nccurve[angleA=190,angleB=-90,ncurv=1.3]{->}{A3}{A1}

\endjtree

1. The <left>...ˆ<tri> construction is used so that the @tag following
<left> and the label following <tri> can be independently positioned. The
triangle simply overwrites the left branch. In other situations, something like
<left>[branch=\blank] might be appropriate.

43

Example 6

CP

WH C′

V CP

t C′

V CP

t C′

V

(Chung, Sandy. 1998. The Design of Agreement, p. 246.)

\jtree[xunit=2em,yunit=1.4em,labelgapb=0,triratio=0] 1

\deftriangle<tri>(1.8)(1)(-.5)

\defbranch<colonB>(1)(-.5)

\! = {CP}

:{\sc WH}@A {C$’$}

<tri>{\rlap{V}}@AA ˆ<tri>[triratio=.55]{CP} 2

:{\it t}@B {C$’$}

<tri>{\rlap{V}}@BB ˆ<tri>[triratio=.55]{CP}

:{\it t}@C {C$’$}

<tri>{\rlap{V}}@CC .

\psset{linewidth=1pt,ncurvB=1.1,nodesepA=1ex,

angleA=-90,angleB=180,offsetA=.5ex}

\nccurve{A}{AA}

\nccurve{B}{BB}

\nccurve{C}{CC}

\psset{offsetA=-.5ex,arrows=->}

\nccurve{A}{AA}

\nccurve{B}{BB}

\nccurve{C}{CC}

\endjtree

1. Since all the node labels are uppercase, and therefore do not descend below the
baseline, spacing is improved by labelgapb=0. triratio is set to 0 in order to
properly position the instances of V.

44

2. The triangle is overwritten so that both V and CP can be positioned indepen-
dently, using different values of triratio.

Here is a less elegant approach which achieves the same effect without using
an offset.

\jtree[xunit=2em,yunit=1.4em,labelgapb=0,triratio=0]

\deftriangle<tri>(1.8)(1)(-.5)

\defbranch<colonB>(1)(-.5)

\def\gap{\hskip1ex}%

\def\\{[labelstrutb=0]}%

\! = {CP}

:{\sc WH}\\({\pnode{A1}\gap\pnode{A2}}) {C$’$} 1

<tri>{\rlap{V}}@A ˆ<tri>[triratio=.55]{CP}

:{\it t}\\({\pnode{B1}\gap\pnode{B2}}) {C$’$}

<tri>{\rlap{V}}@B ˆ<tri>[triratio=.55]{CP}

:{\it t}\\({\pnode{C1}\gap\pnode{C2}}) {C$’$}

<tri>{\rlap{V}}@C .

\psset{linewidth=1pt,ncurvB=1.1,nodesepA=1ex,

angleA=-90,angleB=180}

\nccurve{A1}{A}

\nccurve{B1}{B}

\nccurve{C1}{C}

\psset{arrows=->}

\nccurve{A2}{A}

\nccurve{B2}{B}

\nccurve{C2}{C}

\endjtree

1. It is necessary to set labelstrutb to 0 (via \\) so that the inline adjunction is
to the bottom of the label box. labelgapb is 0 throughout the tree.

45

Example 7

IP

sono stati FP

F[+strong] VoicePass

VoicePass AgrOP

DP AgrO
′

AgrO VP

ti tm

arrestatii

alcuni uominim

(Caponigro, Ivano and Carson Schütze. 2003. Parameterizing Passive Participle
Movement, Linguistic Inquiry 34.2, p. 300.)

\jtree[xunit=5em,yunit=2em]

\! = {IP}

<tri>{\triline{sono stati\hfil}} ˆ<tri>[triratio=.95]{FP}

:{F$_{\rlap{$\scriptstyle\rm [+strong]$}}$}!a

{Voice$_{\rlap{$\scriptstyle\rm Pass$}}$}

:{Voice\rlap{$_{\rm Pass}$}}@A2 {$\rm Agr_OP$}

:{DP}!b {${\rm Agr_O}’$}

:[scaleby=.8 1]{$\rm Agr_O$}@A3 [scaleby=.8 1]{VP}

<tri>[scaleby=.4 .7]

{\rnode{A5}{t_i}\hskip1ex \rnode{A6}{t_m}}.

\!a = <shortvert>{arrestati$_i$}@A1 .

\!b = <shortvert>{alcuni uomini$_m$}@A4 .

\psset{arrows=->}

\nccurve[angleA=225,angleB=-45]{A2}{A1}

\nccurve[angleA=200,angleB=-90,ncurv=1.5]{A3}{A2}

\nccurve[angleA=-130,angleB=-70]{A5}{A3}

\nccurve[angleA=-130,angleB=-70,linestyle=dashed]{A6}{A4}

\endjtree

46

Example 8 F′

F

AgrOP

DP ≡ me AgrOP

AgrO
′

AgrO AsP

. . t . . DP . . t . .

. . a . .

F

F

V F

V ∅

(Uriagereka, Juan. 1995. Syntax of Clitic Placement in Western Romance,
Linguistic Inquiry 26.1:115.)

\jtree[xunit=1.8em,yunit=.9em]

\def*{\xleaders\hbox{\kern1pt.\kern1pt}\hfil}%

\deftriangle<triA>(1.3)(1)(-1/2)

\! = {F$’$}

<wideleft>{F}!a

ˆ<wideright>{\hbox to 2em{*}}{$\rm Agr_O P$}

<left>{DP\rlap{\rnode{B2}{$\;\equiv\;$}\it me}}@B1

ˆ<wideright>{$\rm Agr_O P$}

<left> ˆ<wideright>{$\rm {Agr_O}’$}

<left>{$\rm Agr_O$}!b ˆ<wideright>{AsP}

<triA>{\triline

{* \rnode[b]{D1}{t} * DP * \rnode[b]{D2}{t} *}}

<tri>[scaleby=.8 1.3]{\triline{* \rnode[b]{E1}{\it a} *}}.

\!a = :{F}!a1 @A1 .

\!a1 = :{F}!a2 @A2 .

\!a2 = :{V}@A3 {F}.

\psset{scaleby=.5 1}

\!b = :{V}@C1 {\emptyset}.

\psset{arrows=->}

\ncarc[arcangle=50]{C1}{A3}

\ncarc[arcangle=50]{B1}{A2:t}

\ncarc[arcangle=50]{D1}{C1}

\nccurve[angleA=-75,angleB=-90,ncurv=1.2,nodesepB=1ex]{D2}{B2}

\nccurve[angleA=-145,angleB=-100,ncurv=1]{E1}{A1:t}

\endjtree

47

Example 9

car
Op

that
I

T
know

who
C

Pro
to

persuade

V

Pro
to

talk

V
about t

owners

of t

to t

(Richards, Norvin. 2001. Movement in Language: Interactions and Architectures,
p. 262.)

\jtree[xunit=1.5em,yunit=1.1em,labelgap=0]

\def\A#1{\pnode(0,.3){A#1}}%

\def\B#1{\pnode(0,-.3){B#1}}%

\! = :{car} {\omit\A1}

:({\omit\A0}{Op})

:{that}

:{I}

:{T}

:{know} {\omit\B1}

:({\omit\B0}{who})

:{C}

:{Pro}

:{to}() \jtjot

:{persuade}() \jtjot

:{V} {\omit\A2}

:\jtlong{\omit\A4}!a

:{Pro}

:{to}

:{talk} {\omit\B2}

:\jtlong{\omit\B3}!b

48

:{V}

:{about}() {\omit\A3}{\it t}.

\!a = :{owners}() \jtjot

:{of} {\omit\A5}{\it t}.

\!b = :{to} {\omit\B4}{\it t}.

\psset{linestyle=dashed,linewidth=.3ex,

linecolor=blue,nodesep=0}

\def\fudge{.5}%

\ncline[nodesepA=-\fudge]{A0}{A1}

\ncline[nodesepB=-\fudge]{A1}{A3}

\ncline{A2}{A4}

\ncline[nodesepB=-\fudge]{A4}{A5}

\psset{linestyle=dotted,linewidth=.5ex,linecolor=red}

\ncline[nodesepA=\fudge]{B0}{B1}

\ncline{B1}{B2}

\ncline{B2}{B3}

\ncline[nodesepB=\fudge]{B3}{B4}

\endjtree

Some adjustments were made after the first proof was examined. xunit was
adjusted so that the display was as wide as possible, \jtjot was used to slightly
lengthen a few branches in order to improve the spacing, and \fudge was
introduced in order to adjust the end points of the dotted and dashed paths.

A solution using offset in drawing the paths is also possible, but it is much more
difficult to ensure that the segments join smoothly.

49

Example 10

V

face

arg1

[V leggere]

arg2, arg3

(NP)

(Zubizaretta, Maria Luisa. 1985. Morphology and Morphosyntax: Romance
Causatives, Linguistic Inquiry 16.2, p. 276.)

\jtree[xunit=2.5em,yunit=2em]

\def\ovalstuff{\vtop{\hbox{arg$ˆ3$}%

\hbox to 4em{(\thinspace \leaders\hrule\hfil\ NP)}}}%

\! = {V}@B1

<left>{face}({arg$ˆ1$}@B2)

ˆ<right>{$\rm [_V\,$leggere]}({arg$ˆ2$,})

ˆ<right>[scaleby=3 1,branch=\blank]

{}{\ovalnode[framesep=1ex,boxsep=false]{K}{\ovalstuff}}.

\psset{arrows=->,nodesepA=0}

\nccurve[angleA=150,angleB=180,ncurv=1.2]{B2}{B1}

\nccurve[angleA=90,angleB=0,ncurv=.8]{K}{B1}

\endjtree

In order to see how this tree is put together, consider first:

V

face

arg1

[V leggere]

arg2

X

arg3

\jtree[xunit=2.5em,yunit=2em]

\! = {V}

<left>{face}({arg$ˆ1$})

ˆ<right>{$\rm [_V\,$leggere]}({arg$ˆ2$})

ˆ<right>[scaleby=3 1]{X}

{arg$ˆ3$}.

\endjtree

Then:

50

V

face

arg1

[V leggere]

arg2 arg3

(NP)

\jtree[xunit=2.5em,yunit=2em]

\def\ovalstuff{\vtop{\hbox{arg$ˆ3$}%

\hbox to 4em{(\thinspace \leaders\hrule\hfil\ NP)}}}%

\! = {V}

<left>{face}({arg$ˆ1$})

ˆ<right>{$\rm [_V\,$leggere]}({arg$ˆ2$})

ˆ<right>[scaleby=3 1,branch=\blank]{}

{\ovalstuff}.

\endjtree

Finally, the oval node is built around \ovalstuff using \ovalnode. The syntax
is:

\ovalnode[pars]{name}{stuff }

with the parameters optional. The box is enlarged on all sides by |framesep| and
an oval drawn through the four corners of the resulting box. If |boxsep| is false,
the node construction is invisible to Tex, otherwise \ovalnode creates a Tex box
the size of the oval.

The parameter settings in the use of \ovalnode in the example are crucial. If
|boxsep| were not false, the alignment would be disrupted. |framesep| = 1 ex
means that the oval is drawn around the box with a separation of 1 ex, leaving a
visually important gap between the oval and the box it surrounds.

51

Example 11

Agr′

Agr VP

V

[V e]i T

Vi Agr

[e] j[Agr Agr] j [T T]

(Koopman, Hilda. 1995. On Verbs That Fail to Undergo V-Second, Linguistic
Inquiry 26.1:150.)

\jtree[xunit=3em,yunit=1.5em]

\def\scaleA{[scaleby=1.6 1]}%

\def\scaleB{[scaleby=.6 1,doubleline=true,doublesep=.1ex]}%

\def\mkovalnode{\rput(-1ex,-.8)

{\ovalnode[framesep=\psxunit]{K}{\hskip2em}}}%

\! = {$\rm Agr’$}

:\scaleA{Agr}!a \scaleA{\bf VP}

<vert>[linestyle=dashed,linewidth=1pt]{\bf V}

:{${\rm [_V\,e]}_i$}@A1 {T}.

\!a = :{V$_i$}!b {Agr}

<vert>{[e]$_j$}@A2 .

\!b = {\omit\mkovalnode}

:\scaleB{${\rm [_{Agr}\,Agr]}_j$}@A3 \scaleB{$\rm [_T\,T]$}.

\psset{angleA=-90,angleB=-45,arrows=->}

\nccurve[nodesepB=0]{A1}{K}

\nccurve[ncurv=1.3]{A2}{A3}

\endjtree

The difficulty in this problem is drawing the oval and making it a node, so that a
node connection can point to the oval. \mkovalnode, which is evaluated at the
apex of the !b subtree, does all the work. \rput(-1ex,-.8) positions the center
of the oval slightly to the left of the apex and 80% of the way to the bottom of
the two branches from the apex (since they have height 1). The size of the oval
is determined by |framesep| and box \hbox{\hskip2em}. It required some trial
and error to get the various settings in \mkovalnode adjusted to values which
produced a suitable oval.

It is worth noting that this tree formatting can be adjusted to different sizes and
fonts without difficulty. This makes it fairly easy to resize the tree to make the

52

transition from a draft paper to a book manuscript, or to move the tree from the text
to a footnote with a smaller font.

\twelvepoint\jtree[xunit=4.8em,yunit=2em], without altering any other
code, produces

Agr′

Agr VP

V

[V e]i T

Vi Agr

[e] j[Agr Agr] j [T T]

\tenpoint\jtree[xunit=2.6em,yunit=1em], again without altering any other
code, produces:

Agr′

Agr VP

V

[V e]i T

Vi Agr

[e] j[Agr Agr] j [T T]

The oval is somewhat too small, but that is easily fixed by increasing framesep.

53

Example 12

This example, and the following four, illustrate some techniques for displaying
multidominance structures. I have argued that movement should be seen as creating
multidominance trees with shared structure. My suspicion is that the difficulty
in portraying the resulting structures in a typeset diagram makes the idea less
appealing than it might otherwise be. It would be unfortunate for deficiencies
in typesetting technology to have a significant influence in shaping theoretical
work. What made writing pst-jtree worth the trouble was that I see it as a possible
contribution to the development of theories of mental computation.

The influence of typesetting technology on linguistic theory should not
be underestimated. The widespread inattention to autosegmental structure in
phonology is at least partially a reflection of the state of typesetting technology.

Since McCawley (1982) seems to be the first linguist to attempt to use
multidominance to solve a complex syntax problem, we begin with one of his
examples (right node raising).

S

S and S

NP

Fred

V

V
knows

NP

a man

NP

S

NP

who

V

V
repairs

NP

John

V

V
sells

washing machines

54

\jtree[xunit=2.45em,yunit=1.4em,dirA=(1:-1),nodesep=0]

\def\\{[labelgapb=-4pt]}%

\def\V{$\rm \overline V$}%

\! = {S}

<wideleft>{S}!a ˆ<vert>{and} ˆ<wideright>{S}

:({NP}<shortvert>{Fred}) {\V}

:({V}\\{knows}) {NP}

<tri>{a man} ˆ<right>

<right>[scaleby=3.5 1,branch=\blank]{NP}@A3 !b ˆ{S}

:({NP}<shortvert>{who}) {\V}@A2

<left>({V}\\{repairs}).

\!a = :({NP}<shortvert>{John}) {\V}@A1

<left>{V}\\{sells}.

\!b = <vartri>{washing machines}.

\nccurve[angleB=150,ncurvB=1.4]{A2:b}{A3:t}

\nccurve[angleB=135,ncurvA=.5,ncurvB=2.6]{A1:b}{A3:t}

\endjtree

1. A blank branch is used to position the node which is shared between the
two conjuncts.

2. Note the high value of ncurvB that is used to properly locate the curve.

55

Example 13
Theories of verb raising

Trace theory

Agr

Tns

V

−→
Agr

ti
t j

Agr Tnsi

Tns Vj

Copy theory

Agr

Tns

V

−→
Agr

Tnsi

Vj

Agr Tnsi

Tns Vj Tns Vj

Shared structure

Agr

Tns

V

−→
Agr

Tns

V
Agr

Tns

\def\Vj{V$\mskip-5mu _j$}

\psset{xunit=3.4em,yunit=1.5em,treevshift=1.3em}

Trace theory

\jtree

\! = :{Agr} :{Tns} :{V}() \etc. 1

\endjtree

\quad \longrightarrow\quad

\jtree

\! = :{Agr} !a

:{t_i}

:{t_j}() \etc.

\psset{scaleby=.3 .4}

\!a = :{Agr} {Tns$_i$}

:{Tns} {\Vj}.

\endjtree

56

1. See page 27 for a discussion of \etc.

Copy theory

\jtree

\! = :{Agr} :{Tns} :{V}() \etc.

\endjtree

\quad \longrightarrow\quad

\jtree

\! = :{Agr}!a [scaleby=1.45]

:{Tns$_i$}!b

:{\Vj}() \etc.

\psset{scaleby=.3 .4}

\!a = :{Agr} {Tns$_i$}

:{Tns} {\Vj}.

\!b = :{Tns} {\Vj}.

\endjtree

Shared structure

\jtree

\! = :{Agr} :{Tns} :{V}() \etc.

\endjtree

\quad \longrightarrow\quad

\jtree

\! = :{Agr}@A1 !a

:{Tns}@A2 !b

:{V}@A3 \etc.

\psset{scaleby=.3 .4,angleA=-35,angleB=125,ncurv=1.5,nodesep=0}

\!a = <left>{Agr}.

\!b = <left>{Tns}.

\nccurve{->}{A1:b}{A2:t}

\nccurve{->}{A2:b}{A3:t}

\endjtree

57

Example 14

a
b

C2

. . .

C1

. . .

ubil
c

kolko
d

studenti
e

ot
koi strani

\jtree[xunit=2.4em,yunit=1.2em,arrows=->,nodesep=0]

\def\broken{[branch=\brokenbranch,scaleby=1.6]}% 1

\def\stub{<right>[scaleby=.5,arrows=-]}% 2

\def\\#1{\rput[bl](.6ex,.4ex){\it #1}}% 3

\! = {\omit\\a}@A1

\stub @K1 ˆ<right>{\omit\\b}

:{C$_2$}() \broken @A2

\stub @K2 ˆ<right>@A3

\stub @K3 ˆ<right>

:{C$_1$}() \broken

:{ubil} {\omit\\c}@A4

:{kolko} {\omit\\d}

:{studenti} {\omit\\e}@A5

:{ot} :{koi} {strani}.

\psset{dirA=(1:1),angleB=90,ncurvA=.6,ncurvB=1} 4

\nccurve{K1}{A5}

\nccurve{-}{K2}{A5}

\nccurve{K3}{A4}

\psset{dirA=(-1:-1),dirB=(-1:-1),ncurv=4,arrows=-} 5

\nccurve{A1}{K1}

\nccurve{A2}{K2}

\nccurve{A3}{K3}

\endjtree

1. See Section 10.4 for information about the branch parameter.

2. \stub is used to position nodes halfway down certain right branches to facilitate
drawing the complex (2 segment) pointers.

3. \\ is used to position the tags a, b, c, . . .

58

4. dirA is used in order to ensure that the complex pointers are parallel to left
branches at the point that they cross the right branches.
5. A very high value of ncurv is used in order to get the loop to bow out sufficiently.

An alternate to using \stub to position the crossing points is \psinterpolate.

\jtree[xunit=2.4em,yunit=1.2em,arrows=->,nodesep=0,

arrowlength=3.6,arrowsize=2pt,arrowinset=.4]

\def\broken{[branch=\brokenbranch,scaleby=1.6]}%

\def\\#1{\rput[bl](.6ex,.4ex){\it #1}}%

\! = {\omit\\a}@A1

<right>{\omit\\b}@A1a

:{C$_2$}() \broken @A2

<right>@A3

<right>@A3a

:{C$_1$}() \broken

:{ubil} {\omit\\c}@A4

:{kolko} {\omit\\d}

:{studenti} {\omit\\e}@A5

:{ot} :{koi} {strani}.

\psinterpolate(A1)(A1a){.5}{K1}

\psinterpolate(A2)(A3){.5}{K2}

\psinterpolate(A3)(A3a){.5}{K3}

. . . continues as above

59

Example 15

In order to show that right node raising does not in general apply to constituents,
Chris Wilder gave the example (from German):

Er hat einen Mann, der drei, und sie hat eine Frau, die vier,
Katzen besitzt, gekannt.

In my own work on right node raising, I have had occasion to typeset the following.
It may provide some useful things for Tree users, so it is included here.

knew
owned

cats

and

he

she

a woman
who

four

a man
who

three

\jtree[dirA=(1:-1),nodesepA=0,nodesepB=.8ex,arrows=->,

arrowlength=3.6,arrowsize=2pt,arrowinset=.4]

\! = :!a {\rnode{K1}{knew}}.

\!a = :!b {\rnode{O1}{owned}}.

\!b = :!c {\rnode{C1}{cats}}.

\!c =

:\jtlong !d [scaleby=1.8]

:{and}() [scaleby=2.4]

:{he}() @K2

<left>\jtjot !e .

\!d =

:{she}() @K3

<left>\jtjot !f .

\!e =

:{a woman}[labeloffset=-1ex]

:{who}() @O2

<left>@C2

<left>{four}.

\!f =

:{a man}

:{who}() @O3

<left>@C3

<left>{three}.

60

\psset{linestyle=dashed,arrows=<-}

\nccurve[angleB=-10,ncurvB=2,ncurvA=1.2]{O2}{O1}

\nccurve[angleB=-90,ncurvA=1.4]{O3}{O1}

\nccurve[angleB=-10,ncurvB=1.8,ncurvA=1.6]{K2}{K1}

\nccurve[angleB=-90,ncurvA=1.4]{K3}{K1}

\nccurve[angleB=-90,ncurvA=1.4]{C3}{C1}

\nccurve[angleB=-10,ncurvB=1.8,ncurvA=1.6]{C2}{C1}

\endjtree\kern6em

Example 16

C

see who

. . .

\def\bilink(#1,#2)(#3,#4){%

\pcarc(#1,#2)(#3,#4)%

\pcarc[linestyle=dashed](#3,#4)(#1,#2)%

}

\jtree[xunit=3em,yunit=1.8em,style=arrows2,

dirA=(-1:-1),branch=\bilink,nodesep=3pt,

arcangle=10,offset=1pt,labelgapt=!3pt]

\def\@{\pscircle(0,0){3pt}}%

\! =

{\pnode{A1}\@}

<right>{\omit\@\pnode(.8,-.8){A3}}

:({\omit\@}{C}) [scaleby=1.6,arcangle=7]{\omit\@}

:({\omit\@}{see})

({\omit\@\pnode{A2}}{who}[labeloffset=.8em]).

\nccurve[angleB=225,ncurvA=1.95,ncurvB=1,offset=1.6pt]{A1}{A2}

\nccurve[angleB=227,ncurvA=2,ncurvB=1.02,offset=-1.6pt,

linestyle=dashed,arrows=<-]{A1}{A2}

\rput(1.8,-1.8){\pscircle*[linecolor=white]{1em}}%

\rput(1.8,-1.8){\dots}

\endjtree

61

15. Compatibility issues

1. Earlier versions of Tree had the syntax in (16b), rather than the syntax (16a)
which has been explained and used in this documentation.

(16) a. \jftree
preliminary definitions. parameter settings
\! = simple tree description.
definitions, parameter settings, dimensionless graphics
\!a = simple tree description.
definitions, parameter settings, dimensionless graphics
\!b = simple tree description.
dimensionless graphics
\endjtree

b. \jftree
preliminary definitions. parameter settings
\start simple tree description.
definitions, parameter settings, dimensionless graphics
\adjoin at !a simple tree description.
definitions, parameter settings, dimensionless graphics
\adjoin at !b simple tree description.
dimensionless graphics
\endjtree

The old syntax can still be used, if desired. It is even possible to mix the old and
new syntax.

2. Tex uses the control sequence \! for negative spacing in math mode. Tree
redefines \! inside \jtree . . . \endjtree. This redefinition can be suppressed,
if desired, by redefining the token list \jtEverytree. When \jtree is invoked,
two token lists are expanded and evaluated. First, \jtEverytree and then
\jteverytree. The first is intended for setup use, to be rarely altered, and the
second to be modified as needed in the course of using Tree. \jteverytree
can be modified by parameter setting. The first cannot be, but can be redefined
by editing pst-jtree or by resetting it in a setup file that is loaded after pst-jtree is
loaded. The default setting is:

\jtEverytree={\let\!\adjoinop}

The \! will be suppressed if this is changed to:

\jtEverytree={}

With the special use of \! suppressed, the syntax (16b) must be used.

In my personal file, I have:

\jtEverytree={\everymath={\rm}\let\!\adjoinop}

In typesetting linguistic trees, I more often prefer roman to math italic type in math
mode.

62

3. The tree description parser assumes that characters in the set

{., :, <, >, (,), ",@, !, ^}
are not active and have the same category code that they had when pst-jtree was
loaded. Normally, all but ˆ (with category code 7, “superscript”) have category
code 12, “other”. Some macros sets (packages) alter these characters. This must be
suppressed inside \jtree . . . \endjtree. The Babel package, in particular, makes
extensive use of active characters. Subfiles for particular languages, however,
generally make available macros which return these characters to the normal
state. The relevant commands can therefore be included in \jtEverytree or
\jteverytree. Norerto Quiben, who reported the problem, has found that

\jteverytree={\spanishdeactivate{<>}}

cures the compatibility problem with Spanish Babel. Since then, \jtEverytree
has been added to Tree and it seems appropriate for a regular user of Spanish Babel
to put the deactivation command there rather than in the more fluid \jteverytree.
Users who solve other Babel compatibility problems are encouraged to send me
the solution for inclusion in future versions of the User’s Guide.

4. Users with unsolved compatibility problems are also encouraged to report them
to me at j.frampton@neu.edu.

Appendix A. Installation and working environment

Assuming that you have already installed the PSTricks and PST-XKey packages,
you have to put the file pst-jtree.tex in a place where it can be found. The directory
that contains pstricks.tex is a natural place, but if you know how, it is probably
better to make your own parallel Tex local subtree so that updating your Tex files
with a new Tex distribution does not wipe out pst-jtree.tex. If you want to use
Tree with LaTex, you need to do the same with pst-jtree.sty. Finally, if Tex file
retrieval is done by an indexing method (as it almost certainly is), you have to
run the indexing program so that the locations of pst-jtree.tex and pst-jtree.sty are
properly indexed. The Tree dirstribution consists of only three files: pst-jtree.tex,
pst-jtree.sty, and pst-jtree-doc.pdf (which you are now reading).

Before you proceed, you should make sure that you can run and view a simple
example. If you are a LaTex user, process (17a) and if a Tex user, process (17b).

(17) a. \documentclass{article}
\usepackage{pstricks}

\usepackage{pst-xkey}

\usepackage{pst-jtree}

\begin{document}

\jtree

\! = :{a} :{b} :{c}{d}.

\endjtree

\end{document}

b. \input pstricks
\input pst-xkey

\input pst-jtree

\jtree

\! = :{a} :{b} :{c}{d}.

\endjtree

\bye

63

Your dvi viewer may understand enough Postscript code to properly display
the dvi file that is produced. You should see the tree below, left aligned:

a
b

c d

PSTricks does its tricks by using Tex \special commands to embed Postscript
code in the dvi file that Tex produces. Some dvi viewers will simply ignore
embedded Postscript code and you will have to use a dvi to ps translator (the
program dvips, for example) to create a .ps file which can be viewed with a
Postscript viewer like Ghostscript. Even if your dvi viewer can handle the dvi
output from (17), which has very simple postscript inclusions, successful use of
Tree using the full range of PSTricks tricks will require dvi to ps conversion for
proper display, so it is a capability that you will soon have to acquire. If your dvi
viewer successfuly displays (17), try it on (18a). If it can successfully understand
the postscript inclusions, it will produce (18b).

(18) a. \jtree
\! =

:{a}@A1

:{b}

:{c} {d}@A2 .

\nccurve[angleA=225,angleB=-80]{->}{A2}{A1}

\mput*{movement}

\endjtree

b.
a

b
c d

movement

I assume that the test has failed and your dvi viewer did not produce (18b). The
point of this exercise was to drive home the point that you will need the capability
of dvi to ps conversion and the capability of viewing Postscript files. In my
own work, I often skip this step (saving a few seconds) and use my dvi viewer
(Windvi), which does a good job at basic Postscript inclusions. But I have been
using Postscript long enough so that I instantly recognize when the inclusions have
gotten too complex for Windvi and switch to full conversion and viewing with
Ghostscript, the standard Postscript viewer.

Convert the output of (18a) to a ps file, and view it with a Postscript viewer.
You should now see (18b). Until you can convert the dvi file to a ps file and view
it, you will not know if some baffling display is caused by a programming error or
the inability of your dvi viewer to correctly display the postscript code which is
embedded in the dvi file. If you cannot successfully run the test file and convert the

64

dvi file to a ps file and view it, get help with PSTricks and/or dvi to ps conversion
before you proceed.

Working environment: Since Tree relies on adjustability rather than automatic
sizing, it is important to create a good working Tex/LaTex environment that lets
you see the effect of modifications quickly and with no fuss. A good interactive
Tex environment minimizes the time between making a change in the editor and
seeing the results on the screen. Your editor, dvi viewer, and postscript viewer
should all remain active and you should be able to easily bring one or the other into
the foreground. Your viewers should be configured so that they keep their place
in the file they are viewing. If a new dvi or ps file is created, for example, your
viewer should automatically load it and be positioned at the same place (page and
xy-position) as it was in the old file. You want to reduce the cycle time between
editing and viewing the result to a few seconds (on a fast PC).

65

Index of control sequences, parameters, and special characters

Control sequences

\!, 5
\blank, 27
\brokenbranch, 27
\defbranch, 15
\defstuff, 29
\deftriangle, 17
\defvartriangle, 18
\endjtree, 5
\endmultiline, 30
\etc, 27
\etcbranch, 27
\jtEverytree, 61
\jtbig, 26
\jteverytree, 61
\jtjot, 26
\jtlong, 26
\jtree, 4
\jtwide, 26
\multiline, 30
\omit, 13
\stuff, 29
\triline, 18
\triwd, 18

Parameters

baretopadjust, 26
branch, 27
dirA, 28
dirB, 28
etcratio, 27
everylabel, 13
everytree, 26
labelgap, 11
labelgapb, 11
labelgapt, 11
labeloffset, 11
labelstrut, 11
labelstrutb, 11
labelstrutt, 11
normallabelstrut, 11
scaleby, 9
treevshift, 26
triratio (for triangles), 17
triratio (for vartriangles), 19

The characters =, <, >, ˆ, [,], {, }, (,), :, @, and ! have special meaning in
parsing tree descriptions. See the discussion of the syntax of tree description on
page 23.

