
ConTEXt
reference manual

Hans Hagen, Taco Hoekwater

August 23, 2009

This document is typeset using LuaTEX.

TEX and AmSTEX are trademarks of the American Mathematical Society; MetaFont is a trade-
mark of Addison--Wesley Publishing Company; PostScript, Portable Document Format and
Acrobat are trademarks of Adobe Systems Incorporated; all other product names are trade-
marks of their producers.
C©1991–2008 Pragma ADE, Taco Hoekwater Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled ‘GNU Free Documentation License’.

1

Content
Preface 4

1 Introduction 5

1.1 TEX 5 1.2 ConTEXt 5 1.3 Commands 6 1.4 Running ConTEXt 7 1.5 Ad-
vanced commands 7 1.6 Programs 9 1.7 Files 10 1.8 Texts 10 1.9 Version
numbers 12 1.10 Top ten 12 1.11 Warning 12

2 Documents 13

2.1 Introduction 13 2.2 Start and stop 13 2.3 Structure 14 2.4 Directories 17
2.5 Versions 18 2.6 Modes 18 2.7 Modes Manual 19 2.8 Regimes 23

3 Page design 25

3.1 Introduction 25 3.2 Paper dimensions 25 3.3 Page texts 26 3.4 Page com-
position 26 3.5 Grids 30 3.6 Printing 33 3.7 Arranging pages 35 3.8 Logo
types 36

4 Layout 37

4.1 Introduction 37 4.2 Paragraphs 37 4.3 Indentation 37 4.4 Vertical spacing
(whitespacing) 39 4.5 Word spacing 42 4.6 Struts 43 4.7 Text in the margin 43
4.8 Subscript and superscript 47 4.9 Columns 48 4.10 Paragraphs in columns 50
4.11 Tabulate 53 4.12 Alignment 54 4.13 New lines 57 4.14 New page 58
4.15 Pagenumbers 59 4.16 Headers and footers 61 4.17 Footnotes 65 4.18 Aligned
boxes 68 4.19 Makeup 71

5 Typography 73

5.1 Introduction 73 5.2 The mechanism 75 5.3 Font switching 76 5.4 Empha-
size 79 5.5 Line spacing 80 5.6 Capitals 82 5.7 Character spacing 84 5.8 Se-
lecting bodyfonts 84 5.9 Body font environments 95 5.10 Font feature sets 97
5.11 Displaying the current font setup 98 5.12 Math fonts 100 5.13 Em and Ex 101
5.14 Font handling 102 5.15 Encodings and mappings 110

6 Fonts 120

6.1 Introduction 120 6.2 Font files and synonyms 120 6.3 Simple font defini-
tions 122 6.4 Defining body fonts 125 6.5 Typescripts and typefaces 130 6.6 Pre-
defined font, style and alternative keywords 138 6.7 Symbols and glyphs 140 6.8 En-
codings 141 6.9 Map files 142 6.10 Installing fonts 142 6.11 Getting started 145
6.12 Remarks 146

7 Colors 147

7.1 Introduction 147 7.2 Color 147 7.3 Grayscales 150 7.4 Colorgroups and
palettes 151

8 Verbatim text 156

2

9 Backgrounds and Overlays 160

9.1 Text backgrounds 160 9.2 Layout backgrounds 161 9.3 Overlays 162

10 Language specific issues 164

10.1 Introduction 164 10.2 Automatic hyphenating 164 10.3 Definitions and se-
tups 165 10.4 Date 167 10.5 Labels and heads 168 10.6 Language specific com-
mands 169 10.7 Automatic translation 169 10.8 Composed words 170 10.9 Pattern
files manual 171 10.10 Installing languages 173 10.11 Commands 174 10.12 Lan-
guages 175 10.13 Hyphenation 175

11 Text elements 177

11.1 Introduction 177 11.2 Subdividing the text 178 11.3 Variations in titles 181
11.4 Meta--structure 186 11.5 Alternative mechanisms 187

12 References 191

12.1 Table of contents 191 12.2 Synonyms 201 12.3 Sorting 203 12.4 Marking 205
12.5 Cross references 208 12.6 Predefined references 213 12.7 Registers 214

13 Descriptions 219

13.1 Introduction 219 13.2 Definitions 219 13.3 Enumeration 221 13.4 Indent-
ing 224 13.5 Numbered labels 225 13.6 Itemize 226 13.7 Items 233 13.8 Cita-
tions 235

14 Lines and frames 237

14.1 Introduction 237 14.2 Single lines 237 14.3 Fill in rules 239 14.4 Text
lines 241 14.5 Underline 242 14.6 Framing 244 14.7 Framed texts 250 14.8 Mar-
gin rules 253 14.9 Black rules 254 14.10 Grids 254

15 Blocks 256

15.1 Introduction 256 15.2 Floats 256 15.3 Combining figures 263 15.4 Text
blocks 265 15.5 Opposite blocks 271 15.6 Margin blocks 272 15.7 Hiding
text 272 15.8 Postponing text 272 15.9 Buffers 273

16 Figures 275

16.1 Introduction 275 16.2 Defining figures 275 16.3 Recalling figures 279
16.4 Automatic scaling 280 16.5 TEX--figures 281 16.6 Extensions of figures 282
16.7 Movies 283 16.8 Some remarks on figures 283

17 Tables 285

17.1 Introduction 285 17.2 Tables 285 17.3 Color in tables 292 17.4 Tables
with identical layouts 298 17.5 Splitting tables 299 17.6 Buffers and scaling 300
17.7 Remarks 301

18 Tabulation 302

19 Formulas 312

19.1 Introduction 312 19.2 Basic commands 312 19.3 Legends 316 19.4 Units 317
19.5 Chemicals 318 19.6 Math 319 19.7 Math collection 320

3

20 MetaPost 326

21 Layers 327

22 Interactive documents 328

23 Modules 329

A Definitions 330

B Index 331

C Commands 335

D Distributed ConTEXt files 341

D.1 Files in tex/context/base 341

E texmfstart manual 353

F GNU Free Documentation License 360

Preface
This manual is about ConTEXt, a system for typesetting documents. Central element in this
name is the word TEX because the typographical programming language TEX is the base for
ConTEXt.

People who are used to TEX will probably identify this manual as a TEX document. They
recognise the use of \. One may also notice that the way pararaphs are broken into lines is
often better than in the avarage typesetting system.

In this manual we will not discuss TEX in depth because highly recommended books on TEX
already exist. We would like to mention:

1. the unsurpassed The TEXBook by Donald E. Knuth, the source of all knowledge and
TEXnical inspiration,

2. the convenient TEX by Topic by Victor Eijkhout, the reference manual for TEX programmers,
and

3. the recommended The Beginners Book of TEX by Silvio Levy and Raymond Seroul, the book
that turns every beginner into an expert

For newcomers we advise (3), for the curious (1), and for the impatient (2). ConTEXt users
will not need this literature, unless one wants to program in TEX, uses special characters, or
has to typeset math. Again, we would advise (3).

You may ask yourself if TEX is not one of the many typesetting systems to produce documents.
That is not so. While many systems in eighties and nineties pretended to deliver perfect
typographical output, TEX still does a pretty good job compared to others.

TEX is not easy to work with, but when one gets accustomed to it, we hope you will appreciate
its features,

Hans Hagen, 1996--2002

TEX 1

1 Introduction

1.1 TEX
TEX was developed at Stanford University during the seventies. The designer, developer
and spiritual father of TEX is Donald E. Knuth. Knuth developed TEX to typeset his own
publications and to give an example of a systematically developed and annotated program.

The TEX project was supported by the American Mathematical Society and resulted in the
programming language and program TEX, the programming language and program Meta-
Font, the Computer Modern typefaces and a number of tools and publications.

TEX is used worldwide, supports many languages, runs on almost every platform and is
stable since 1982, which is rather unique in today’s information technology.

TEX is a batch--oriented typesetting system. This means that the complete text is processed
from beginning to end during which typesetting commands are interpreted. Because you
tell your typesetting intentions to TEX, the system can also be qualified as an intentional
typesetting system.

FIXME: Next paragraph is messy, and introduces ConTEXt pre-
maturely

In most documents one can stick to commands that define the structure and leave the ty-
pographic details to ConTEXt. One can concentrate on the content, instead of on makeup;
the author can concentrate on his reader and his intentions with the text. In this respect
one can classify ConTEXt as an intentional system. We prefer such a system over a page--
oriented system, especially in situations where you have to process bulky documents of with
regularly changing content. Furthermore an intentional typesetting system is rather flexible
and makes it possible to change layout properties depending on its application. It can also
cooperate quite well with other text--processing programs and tools.

1.2 ConTEXt
The development of ConTEXt started in 1990. A number of TEX based macro packages had
been used to our satisfaction. However, the non--technical users at our company were not
accustomed to rather complex and non--Dutch interfaces. For this reason we initiated the
development of ConTEXt with a parameter driven interface and commands that are easy to
understand. Initially the user interface was only available in Dutch.

The functionality of ConTEXt was developed during the production of many complex educa-
tional materials, workplace manuals and handbooks. In 1994 the package was stable enough
to warrant a Dutch user manual. Over the years many new features and a multi-lingual in-
terface have been added (currently English, German, . . . interfaces are supported). Though
ConTEXt is as (un)stable as any other macro package there are still a great number of wishes.
These will be implemented in the spirit of the existing ConTEXt commands.

6 Introduction

1 Commands

TODO: Add some text about recent developments, especially
the split between mkii and mkiv

1.3 Commands
A ConTEXt document is normally coded in utf or another plain text encoding like ISO Latin1.
Inside such a file, the actual document text is interspersed with ConTEXt commands. These
commands tell the system how the text should be typeset. A ConTEXt command begins with
a backslash (\). An example of a command is \italic. Most of the time a command does
something with the text that comes after the command. The text after the command \italic
will be typeset text it italic.

When you use a command like \italic you acting as a typesetter, and when you are writing
paragraphs you are acting as an author. Typesetting and writing are conflicting activities; as
an author you would probably rather spend as little time as possible typesetting. When you
are actually writing text and you have to indicate that something special has to happen with
the text, it is therefore best to use generic commands than specific typesetting commands.
An example of such a generic command is \em (emphasis). By using \em instead of \italic,
you enable the typesetter (who could also be you) to change the typeset result without him
or her having to alter the text.

ConTEXt

TEX

Figure 1.1

A TEX user normally speaks of macros instead of com-
mands. A macro is a (normally small) program. Al-
though this manual uses both ‘command’ and ‘macro’,
we will try consistently use the word command for users
and macro for programmers. A collection of macros is
called a macro package.

A command is often followed by setups and / or ar-
gument text. Setups are placed between brackets ([],
there may be more than one sets of those). The scope
or range of the command (the text acted upon) is placed
between curly brackets ({}, there may be more than one
of those as well).

An example of a command with setups and an argument text is

\framed[width=3cm,height=1cm]{that’s it}

When this input is processed by ConTEXt, the result will look like this:

that’s it

Setups in ConTEXt come in two possible formats. First, there can be a list of comma-separated
key--value pairs like we saw already

\setupsomething [variable=value, variable=value, ...]

Second, there can be a comma-separated list of just values

Introduction 7

Running ConTEXt 1

\setupsomething [option, option,...]

In both cases the setups are placed between []. Spaces, tabs and even a newline between
the command and the opening [or after any of the separation commas are ignored. But
multiple newlines are disallowed, and whitespace before commas, around the equals sign
and before the closing] is significant.

Some practical examples of correct command invocations are:

\setupwhitespace [big]
\setupitemize [packed, columns]
\setuplayout [backspace=4cm,

topspace=2.5cm]

Many typographical operations are performed on a text that is enclosed within a start-stop
construction:

\startsomething
.............................
\stopsomething

And often keywords or key--value pairs can be passed, that inform ConTEXt of the users
wishes like

\startnarrower[2*left,right]
.............................
\stopnarrower

or

\startitemize[n,broad,packed]
\item
\item
\stopitemize

The simplest ConTEXt document is

\starttext
Hello World!
\stoptext

1.4 Running ConTEXt

TODO: Explain basic use of texexec and context here, maybe
from a text editor or environment like texworks.

1.5 Advanced commands
There are also commands that are used to define new commands. For example:

\definesomething[name]

8 Introduction

1 Advanced commands

Sometimes a definition inherits its characteristics from another (existing) one. In those situ-
ations a definition looks like:

\definesomething[clone][original]

In many cases one can also pass settings to these commands. In that case a definition looks
like:

\definesomething[name][variable=value,...]

These setups can also be defined in a later stage with:

\setupsomething[name][variable=value,...]

An example of such a name coupled definition and setup is:

\definehead[section][chapter]
\setuphead[section][textstyle=bold]

The alternatives shown above are the most common appearances of the commands. But there
are exceptions:

\defineenumeration[Question][location=inmargin]
\useexternalfigure[Logo][FIG-0001][width=4cm]
\definehead[Procedure][section]
\setuphead[Procedure][textstyle=slanted]

After the first command the newly defined command \Question is available which we can
use for numbered questions and to place numbers in the margin. With the second command
we define a picture that is scaled to a width of 4cm. After the third command a new com-
mand \procedure is available that inherits its characteristics from the predefined command
\section. The last command alters the characteristics of the newly defined head. Later we
will discuss these commands in more detail.

We use begin-end constructions to mark textblocks. Marked textblocks can be typeset, hid-
den, replaced or called up at other locations in the document.

\beginsomething
.............................
\endsomething

These commands enable the author to type questions and answers in one location and place
them at another location in the document. Answers could be placed at the end of a chapter
with:

\defineblock[Answer]
\setupblock[Answer][bodyfont=small]
\hideblocks[Answer]
.............................
\chapter{........}
.............................
\beginofAnswer
.............................
\endofAnswer
.............................

Introduction 9

Programs 1

In this case answers will be typeset in a smaller bodyfont size, but only when asked for.
They are hidden by default, but stored in such a way, that they can later be typeset.

Commands come in many formats. Take for example:

\placefigure
[left]
[fig:logo]
{This is an example of a logo.}
{\externalfigure[Logo]}

This command places a picture at the left hand side of a text while the text flows around
the picture. The picture has a reference fig:logo, i.e. a logical name. The third argument
contains the title and the fourth calls the picture. In this case the picture is a figure defined
earlier as Logo. Figure 1.1 is typeset this way.

The last example has arguments between optional brackets ([]). Many commands have
optional arguments. In case these optional arguments are left out the default values become
operative.

You may have noticed that a spacy layout of your ascii text is allowed. In our opinion, this
increases readability considerably, but you may of course decide to format your document
otherwise. When the ConTEXt commands in this manual are discussed they are displayed in
the following way:

\setupfootertexts [...]
OPTIONAL

1 [...]2 [...]3

1 text margin edge

2 TEXT date MARK pagenumber

3 TEXT date MARK pagenumber

The command \setupfootertexts, which we will discuss in detail in a later chapter, has
three arguments of which the first is optional. The first argument defaults to [text]. Op-
tional arguments are displayed with the word OPTIONAL below the brackets. Default values are
underlined and placeholders (as opposed to literal keywords) are typeset in UPPERCASE. In this
example TEXT means that you can provide any footer text. ConTEXt is able to keep track of the
status of information on the page, for instance the name of the current chapter. We call this
kind of information MARK, so the command \setupfootertexts accepts references to marks,
like those belonging to sectioning commands: chapter, section, etc. The argument date
results in the current system date.

When the setup of some commands are displayed you will notice a JI in the right hand top
corner of the frame. This indicates that this command has a special meaning in interactive or
screen documents. Commands for the interactive mode only show solid arrows, commands
with an additional functionality show gray arrows.

1.6 Programs

10 Introduction

1 Files

TEX does a lot of text manipulations during document processing. However, some manipu-
lations are carried out by TEXutil. This program helps TEX to produce registers, lists, tables
of contents, tables of formulas, pictures etc. This program is a Perl script.

Document processing can best be done with TEXexec. This Perl script enables the user to use
different processing modes and to produce different output formats. It also keeps track of
changes and processes the files as many times as needed to get the references and lists right.

1.7 Files
TEX is used with ascii source files. ascii is an international standardized computer alphabet.
The ascii file with the prescribed extension tex is processed by TEX. During this process
TEX produces a file with graphical commands. This file has the extension dvi. A machine--
specific driver transforms this file into a format that is accepted by photosetters and printers.
Usually, PostScript drivers are used to produce PostScript files.

ConTEXt relies on plain TEX. Plain TEX, ConTEXt and a third package TABLE are brought
together in a so called format file. TABLE is a powerful package for typesetting tables. A
format file can be recognized by its suffix fmt. TEX can load format files rather fast and
efficiently.

A dvi file can be viewed on screen with a dedicated program. For electronic distribution Post-
Script files can be transformed (distilled) into Portable Document Format (pdf) files. pdf files
are of high graphical quality and are also interactive (hyperlinked). ConTEXt fully supports
pdfTEX, which means that you can generate pdf output directly.

1.8 Texts
1.8.1 Characters

A TEX text contains ascii characters. Higher ascii values to produce characters like ë, ô and
ñ can also be used in this version of TEX. Some characters in TEX have a special meaning.
These characters can be typeset by putting a \ in front of it. A % is obtained by typing \%.
If one would type only a % the result would be undesirable because TEX interprets text after
a % as comment that should not be processed. A $ is produced by \$. A $ without a \
indicates the beginning of the mathemathical mode.

1.8.2 Paragraphs
TEX performs its operations mostly upon the text element paragraph. A paragraph is ended
by \par or preferably by an empty line. Empty lines in an ascii text are preferred because of
readability.

1.8.3 Boxes
In this manual we will sometimes talk about boxes. Boxes are the building blocks of TEX.
TEX builds a page in horizontal and vertical boxes. Every character is a box, a word is also
a box built out of a number of boxes, a line is . . .

When TEX is processing a document many messages may occur on the screen. Some of these
messages relate to overfull or underful boxes. Horizontal and vertical boxes can be typeset

Introduction 11

Texts 1

by the TEX commands \hbox and \vbox. Displacements can be achieved by using \hskip
and \vskip. It does not hurt to know a bit about the basics of TEX, because that way one
can far more easilly write his or her own alternatives to, for instance, chapter headers.

1.8.4 Fonts
TEX is one of the few typesetting systems that does math typesetting right. To do so TEX
needs a complete fontfamily. This means not only the characters and numbers but also the
mathematical symbols. Complete fontfamilies are Computer Modern Roman and Lucida
Bright. Both come in serif and sans serif characters and a monospaced character is also
available. Other fontfamilies are available.

1.8.5 Dimensions
Characters have dimensions. Spacing between words and lines have dimensions. These
dimensions are related to one of the units of table 1.1. For example the linespacing in this
document is 13.8292pt.

dimension meaning equivalent

pt point 72.27pt = 1in
pc pica 1pc = 12pt
in inch 1in = 2.54cm
bp big point 72bp = 1in
cm centimeter 2.54cm = 1in
mm millimeter 10mm = 1cm
dd didot point 1157dd = 1238pt
cc cicero 1cc = 12dd
sp scaled point 65536sp = 1pt

Table 1.1 Dimensions in TEX.

We will often specify layout dimensions in points or centimeters or milimeters. A point is
about .35mm. Most dimensions are rather American. The European Didot point is equivalent
to 1/2660m = 3.759398496mm.
Next to the mentioned dimension TEX also uses em and ex. Both are font dependant. An
ex has the height of an x, and an em the width of an M. In the Computer Modern Roman
typefaces, numbers have a width of 1/2em, while a — (–-) is one em.

1.8.6 Error messages
While processing a document, TEX generates status messages (what is TEX doing), warning
messages (what could TEX do better) and error messages (what considers TEX wrong). An
error message is always followed by a halt and processing will be stopped. A linenumber
and a ? will appear on screen. At the commandline you can type H for help and the available
commands will be displayed.
Some fatal errors will lead to an * on the screen. TEX is expecting a filename and you have
to quit processing. You can type stop or exit and if that doesn’t work you can always try
ctrl-z or ctrl-c.

12 Introduction

1 Version numbers

1.9 Version numbers
TEX was frozen in 1982. This meant that no functionality would be added from that time
on. However, exceptions were made for the processing of multi--language documents, the
use of 8-bits ascii--values and composed characters. Additionally some bugs were corrected.
At this moment TEX version 3.141592 is being used. The final TEX version number will be π,
while MetaFont will become the Euler number e.

ConTEXt can handle both ε-TEX and pdfTEX, which are extensions to TEX. Both are still under
development, so we suggest using the latest versions available. This manual is typeset using
pdfeTEX, with ε-TEX version 2.2 and pdfTEX version 1500.

ConTEXt is still under development. Macros are continually improved in terms of functional-
ity and processing speed. Improvements are made within existing macros. For example the
possibility to produce highly interactive pdf documents has altered some low--level function-
ality of ConTEXt but did not alter the interface. We hope that in due time ConTEXt will be a
reasonable complete document processing system, and we hope this manual shows enough
of its possibilities. This document was processed with version 2009.08.19 17:10.

1.10 Top ten
A novice user might be shooed away by the number of ConTEXt commands. Satisfying results
can be obtained by only using the next ten groups of commands:

1. \starttext, \stoptext
2. \chapter, \section, \title, \subject, \setuphead, \completecontent
3. \em, \bf, \cap
4. \startitemize, \stopitemize, \item, \head
5. \abbreviation, \infull, \completelistofabbreviations
6. \placefigure, \externalfigure, \useexternalfigures
7. \placetable, \starttable, \stoptable
8. \definedescription, \defineenumeration
9. \index, \completeindex
10. \setuplayout, \setupfootertexts, \setupheadertexts

1.11 Warning
ConTEXt users can define their own commands. These newly defined commands may conflict
with plain TEX or ConTEXt commands. Therefore it is advisable to use capital characters in
your own command definitions.

\def\MyChapter#1%
{\chapter{#1}\index{#1}}

This command starts a new chapter and defines an index entry with the same name.

Introduction 2

2 Documents

2.1 Introduction
Why should one use TEX in the first place? Many people start using TEX because they want
to typeset math. Others are charmed by the possibility of separating content and make--up.
Yet another kind of user longs for a programmable system. And let us not forget those users
that go for quality.

When using TEX one does not easily run into capacity problems. Typesetting large documents
with hundreds of pages is typically a job for TEX. If possible, when coding a document one
should look beyond the current document. These days we see documents that were originally
typeset for paper being published in electronic format. And how about making a stripped
version of a 700 page document? A strict separation between content and layout (make--up)
on the one hand and an acceptable redundancy in structure on the other is often enough to
guarantee multiple use of one document source.

A system like ConTEXt is meant to make life easier. When coding a document the feeling
can surface that “this or that should be easier”. This feeling often reflects the truth and the
answer to the question can often be found in this manual, although sometimes obscured. It
takes some time to learn to think in structure and content, certainly when one is accustomed
to mouse driven word processors. In this chapter we focus on the structure of collections of
documents.

2.2 Start and stop
In a self contained text we use the following commands to mark the begin and end of a text:

\starttext
\stoptext

The first command takes care of a number of initializations and the last command tells TEX
that processing can stop. When this command is left out TEX will display a * (a star) on the
command line at the end of the job. TEX will expect a command, for example \end.

It is advisable to type the document setups before the \start--command, the so called setup
area of the document. In this way a clever word--processor can identify where the text starts,
and therefore can include those setups when it partially processes the document, given of
course that it supports partial processing of files.

In the example below a very simple layout is being used.

\starttext

\subject{Introduction}

\unknown\ America has always been a land set firmly not in the past, but
in the future. On a recent visit to England, I found dozens of wonderful
bookstores chock full of the past –- ancient history, rooms full of it,
and great literature in such monumental stacks as to be overwhelming. In
the usual American bookstore, history might occupy a few bookcases; great

14 Documents

2 Structure

literature has its honoured place, but this year’s paperbacks dominate. The
past is not disregarded, but neither does it loom so large and run so deep
in our blood.

\blank

{\bf Greg Bear, introduction to Tangents (1989).}

\stoptext

The commands \starttext...\stoptext may be nested. Within a text a new text containing
\starttext and \stoptext may be loaded.

2.3 Structure
In this section a structured approach of managing your documents is discussed. For very
simple and self containing documents you can use the following approach:

\environment this
\environment that

\starttext
... some interesting text ...
\stoptext

When you have to typeset very bulky documents it is better to divide your document in
logical components. ConTEXt allows you to setup a project structure to manage your texts.
You have to know that:

• A group of texts that belong together have to be maintained as a whole. We call this a
project.

• Layout characteristics and macros have to be defined at the highest level. For this, the
term environment has been reserved.

• Texts that belong together in a project we call products.

• A product can be divided into components, these components can be shared with other
products. Components can be processed individually.

Programmable word processors can be adapted to this structure.

A project, environment , product or component is started and stopped with one of the following
commands:

\startproject ...* ... \stopproject

*

\startproduct ...* ... \stopproduct

*

Documents 15

Structure 2

\startenvironment ...* ... \stopenvironment

*

\startcomponent ...* ... \stopcomponent

*

Before a \start--\stop--pair commands can be added. When a file is not found on the
directory ConTEXt looks for the files on higher level directories. This enables the user to use
one or more environments for documents that are placed on several subdirectories.

command project environment product componnent

\project name ? ?

\environment name (?) (?) (?) (?)
\product name ? (?)
\componentonderdeel name (?) (?)

Table 2.1 The structure commands that can be used in the files that make up
a project.

To treat products and components as individual documents, the commands in table 2.1 are
used. The commands marked with ? are obligatory and the commands marked with (?) are
optional. The content is typed before the \stop command.

\startproject documents

\environment layout

\product teacher
\product pupil
\product curriculum

\stopproject

An example of a project file.

\startproduct teacher

\project documents

\component teacher1
\component teacher2

\stopproduct

The product teacher.tex (a teacher manual) can be
defined as shown on the opposite site.

\startcomponent teacher2

\project documents
\product teacher

... text ...

\stopcomponent

Here we see the component.

In most cases working with only \starttext and \stoptext in combination with \input or
\enviroment is sufficient. A project structure has advantages when you have to manage a
great number of texts. Although it is more obvious to process products as a whole, it also
enables you to process components independently, given that the stucture is defined properly.

16 Documents

2 Structure

In principal a project file contains only a list of products and environments. If you would
process the project file all products will be placed in one document. This is seldom wanted.
This manual for example has a project structure. Every part is a product and every chapter
is a component. There are several environments that are loaded in the main project file.
Schematically the coherence between files could be displayed as illustrated in figures 2.1, 2.2
and 2.3.

undefined

Figure 2.1 An example of project structure.

undefined

Figure 2.2 An example with only products.

undefined

Figure 2.3 An example with only one component.

It is good practice to put all setups in one environment. In case a component or product has
a different layout you could define localenvironments:
\startlocalenvironment[names]
... setups ...
\stoplocalenvironment

A local environment can be typed in an environment file or is a separate file itself. When a
separate file is used the local environment is loaded with:
\localenvironment name

Below you will find an example of a project structure.

\startproject demos

\environment environ
\product example

\stopproject

file: demos.tex

This file is used to define the products and environ-
ments.

Documents 17

Directories 2

\startenvironment environ

\setupwhitespace[big]

\setupfootertexts[part][chapter]

\stopenvironment

file: environ.tex

In the environment we type the setups that relate to all
the different products. More than one environment or
local environments per product can be used.

\startproduct example

\project demos

\startfrontmatter
\completecontent

\stopfrontmatter

\startbodymatter
\component first
\component second

\stopbodymatter

\startbackmatter
\completeindex

\stopbackmatter

\stopproduct

file: example.tex

The product file contains the structure of the product.
Because indexes and registers can be evoked quite eas-
ily we do not use a separate file.

\startcomponent first

\part{One}

\completecontent

\chapter{First}

..... text

\chapter{Second}

..... text

\completeindex

\stopcomponent

file: first.tex

In the components of a product we place the textual
content, figures etc. It is also possible to request the
tables of content and registers per product.

\startcomponent second

\part{Two}

\completecontent

\chapter{Alfa}

..... text

\chapter{Beta}

..... text

\completeindex

\stopcomponent

file: second.tex

The product contains more than one component. We
could have defined a product for each part and a com-
ponent for each chapter.

The files first.tex, second.tex and example.tex can be processed separately. As long as
there is one product in this project you can also process project.tex. If you process an
environment there will be no pages of output.

2.4 Directories
Many TEX implementations look for a file in all directories and subdirectories when a re-
quested file is not in the current directory. This is not only time--consuming but may lead to
errors when the wrong file (a file with the same name) is loaded.
For this reason ConTEXt works somewhat differently. A file that is not available on the
working directory is searched for on the parent directories. This means that environments
can be placed in directories that are parents to the products that use them. For example:

18 Documents

2 Versions

/texfiles/course/layout.tex
/texfiles/course/teacher/manual.tex
/texfiles/course/student/learnmat.tex
/texfiles/course/otherdoc/sheets.tex

The last three files (in different subdirectories) all use the same environment layout.tex. So,
instead of putting all files into one directory, one can organize them in subdirectories. When
a project is properly set up, that is, as long as the project file and specific environments can
be found, one can process components and products independently.

2.5 Versions
During the process of document production it is useful to generate a provisional version.
This version shows the references and the typesetting failures. The provisional version is
produced when you type:

\version [...]*

* final concept temporary

By default the definitive version is produced. In case a preliminary version is produced the
word concept is placed at the bottom of each page. The keyword temporary shows some
information on for instance overfull lines, references, figure placement, and index entries.
Most messages are placed in the margin. In some cases these messages refer to the next
pages because TEX is processing in advance.

2.6 Modes
TEX can directly produce dvi or pdf. A document can be designed for paper and screen, where
the last category often has additional functionality. From one document we can generate
different alternatives, both in size and in design. So, from one source several alternatives can
be generated.

Processing a file in practice comes down to launching TEX with the name of the file to be
processed. Imagine that by default we generate dvi output. Switching to pdf is possible by
enabling another output format in the file itself or a configuration file, but both are far from
comfortable.

\setupoutput[pdftex]

for direct pdf output, or for pdf produced from PostScript:

\setupoutput[dvips,acrobat]

The key to the solution of this problem is TEXexec. This Perl script provides ConTEXt with a
command--line--interface. When we want pdf instead of dvi, we can launch TEXexec with:

texexec –pdf filename

There are more options, like making A5--booklets; more on these features can be found in
the manual that comes with TEXexec. However, one option deserves more time: modes.

Documents 19

Modes Manual 2

texexec –pdf –mode=screen filename

The idea behind modes is that within a style definition, at each moment one can ask for in
what mode the document is processed. An example of a mode dependant definition is:
\startmode[screen]
\setupinteraction[state=start]
\setupcolors[state=start]

\stopmode

if needed, accompanied by:
\startnotmode[screen]
\setupcolors[state=start,conversion=always]

\stopnotmode

One can also pass more than one mode, separated by comma’s. There are also some low
level mode dependant commands. Given that we are dealing with a screen mode, we can
say:
\doifmodeelse {screen} {do this} {and not that}
\doifmode {screen} {do something}
\doifnotmode {screen} {do something else}

A mode can be activated by saying:
\enablemode[screen]
\disablemode[screen]

Again, we can pass more modes:
\enablemode[paper,A4]

One strength of TEXexec is that one is not forced to enable modes in a file: one can simply
pass a command line switch. Just as with choosing the output format: the less we spoil the
document source with output and mode settings, the more flexible we are.
To enable users to develop a style that adapts itself to certain circumstances, ConTEXt provide
system modes. For the moment there are:
*list the list one called for is placed indeed
*register the register one called for is placed indeed
*interaction interaction (hyperlinks etc) are turned on
*sectionblock the named sectionblock is entered
System modes are prefixed by a *, so they will not conflict with user modes. An example of
a sectionblock mode is *frontmatter. One can use these modes like:
\startmode[*interaction]
\setuppapersize[S6][S6]

\stopmode

2.7 Modes Manual

TODO: Merge with previous section

20 Documents

2 Modes Manual

Every user will at one moment run into modes. Modes are used for conditional processing.
You enable or disable modes:
\enablemode[screen]
\disablemode[proof]

as well as prevent modes being set:
\preventmode[doublesided]

Later on you can act upon this mode using:
\startmode[screen]
\setupinteraction[state=start]

\stopmode

The counterpart of this command is:
\startnotmode[screen]
\setupinteraction[state=start]

\stopnotmode

You can set modes in your document or in styles, but you can also do that at runtime:
texexec –pdf –mode=screen –result=myfile-s myfile
texexec –pdf –mode=A4 –result=myfile-a myfile
texexec –pdf –mode=letter –result=myfile-l myfile

You can test for more modes at the same time:
\startmode[color,colour]
\setupcolors[state=start]

\stopmode

If you want to satisfy a combination of modes, you use:
\startmode[final]
\setuplayout[markings=on]

\stopmode
\startallmodes[final,color]
\setuplayout[markings=color]

\stopallmodes

The counterpart is
\startnotallmodes[print,proof]
\setuplayout[markings=off]

\stopnotallmodes

Instead of the start--stop variants, you can use the \doif alternatives. These have the
advantage that they can be nested.
\doifmodeelse {modes} {action} {alternative}
\doifmode {modes} {action}
\doifnotmode {modes} {action}
\doifallmodeselse {modes} {action} {alternative}
\doifallmodes {modes} {action}
\doifnotallmodes {modes} {action}

Documents 21

Modes Manual 2

Mode can be combined with variables:

\setupvariables[document][alternative=print]

\enablemode[document:\getvariable{document}{alternative}]

\startmode[document:print]
...

\stopmode

\startmode[document:screen]
...

\stopmode

An alternative for such an selective approach is to use setups:

\setupvariables[document][alternative=print]

\startsetups[document:print]
...

\stopsetups

\startsetups[document:screen]
...

\stopsetups

\setups[document:\getvariable{document}{alternative}]

The difference is that mode blocks are processed in the order that the document (or style) is
loaded, while setups are stored and recalled later.

In addition to your own modes, ConTEXt provides a couple of system modes. These are
preceded by a *, as in:

\startmode[*first]
% this is the first run

\stopmode

The following system modes are available (more will implemented):

color-c,color-m,color-y,color-k

These are rather special modes related to color separation. They are only set when channels
are split off.

figure

This mode is set when a graphic is found. You can use this mode in for instance figure
postprocessing actions.

text, project, product, component, environment

These modes are set when one enters one of the associated structuring environments. Nesting
is supported.

list

After using \determinelistcharacteristics this mode reflects if list entries were found.

pairedbox This mode is enabled when a paired box (legenda and such) is constructed.

22 Documents

2 Modes Manual

combination This mode is enabled when a combination (often used for graphics) is con-
structed.
interaction

When interaction is enabled, this mode is true. You can for instance use this mode to add
different content to for instance screen and paper versions.
register

After using \determineregistercharacteristics this mode reflects if register entries were
found.
sectionnumber

This mode is enabled when a section head is numbered. You can access the mode while
building the section head, which is true when you have your own commands hooked into
the head mechanism.
frontpart, bodypart, backpart, appendix

The state of main sections in a document as well as user defined ones, are reflected in system
modes.
suffix-tex

You can use this mode to differentiate between input file types. We use this for instance
to distinguish between different XML content variants when pretty-printing (given that they
can be recognized on their suffix).
first

Often multiple runs are needed to get a document right. Think of cross references, object
references, tables of contents, indices, etc. You can use this mode to determine if the first
run is taking place. For instance, when you do real time graphic conversions, it makes sense
to do that only once.
last

This mode is set if the last run in a session is taking place. Normally this is not known in
advance, unless one has asked for an additional imposition pass.
background

This mode is set when there is a (new) background defined.
postponing

While postponing some content using the postpone mechanism this mode is enabled.
grid

When you are typesetting on a grid, special care has to be taken not spoil grid snapping.
You can use this mode to test if you are in grid typesetting mode.
header

This mode is enabled when there is a page header, i.e. the header has non-zero dimensions.
footer

This mode is enabled when there is a page footer, i.e. the header has non-zero dimensions.

Documents 23

Regimes 2

makeup

The makeup mechanisms are used to build single pages like title pages. This mode is set
during construction.

pdf, dvi

One of these modes is set, which one depends on the output driver that is loaded.

*language-id, language-id

When a language is chosen, its id is set as mode. For example, when the main language is
English, and the current language Dutch, we can test for the modes **en and *nl (watch the
extra *).

marking

This flag is set when a marking (e.g. in a header or footer) is being typeset (processed).

2.8 Regimes
When you key in an english document, a normal QWERTY keyboard combined with the
standard ascii character set will do. However, in many countries dedicated keyboards and
corresponding input encodings are used. This means that certain keystrokes correspond to
non--standard ascii characters and these need to be mapped onto the characters present in the
font. Unless the input encoding matches the output (font) encoding, intermediate steps are
needed to take care of the right mapping. For instance, input code 145 can become command
\eacute which can result in character 123 of a certain font.

Although all kind of intermediate, direct or indirect, mappings are possible, in ConTEXt
the preferred method is to go by named glyphs. The advantage of this method is that we
can rather comfortably convert the input stream into different output streams as needed
for typesetting text (the normal TEX process) and embedding information in the file (like
annotations or font vectors needed for searching documents).

The conversion from input characters into named glyphs is handled by regimes. While
further mapping is done automatically and is triggered by internal processes, regimes need
to be chosen explicitly. This is because only the user knows what he has input.

Most encodings (like il2) have an associated regime. You can get some insight in what a
regime involves by showing it:

\showregime[il2]

In addition there are a couple of platform dependent ones:

regime platform
ibm the old standard msdos code page
win the western europe MS Windows code page

If you want to know what regimes are available, you can take a look at the regi-*.tex files.
A regime that becomes more and more popular is the utf-8 regime. If you want some insight
in what vectors provide, you can use commands like:

\showunicodevector[001]

24 Documents

2 Regimes

and

\showunicodetable[001]

where the last one produces a rather large table.

Introduction 3

3 Page design

3.1 Introduction
While processing a text TEX makes use of the actual \hsize (width) and \vsize (height).
As soon as \vsize is exceeded TEX’s output routine is launched. The output routine deals
with the typeset part — most of the time this will be a page. It takes care of typesetting the
headers and footers, the page number, the backgrounds and footnotes, tables and figures.
This rather complex process makes it obvious that the output routine actually makes use of
more dimensions than \hsize and \vsize.

3.2 Paper dimensions
With the command \setuppapersize the dimensions of the paper being used are defined.
There is a difference between the dimensions for typesetting and printing.

\setuppapersize [...,...]1 [...,...]
OPTIONAL

2

1 A3 A4 A5 A6 letter ... CD IDENTIFIER landscape mirrored rotated 90 180 270

2 negative inherits from \setuppapersize

The dimensions of DIN formats are given in table 3.1.

format size in mm

A0 841 × 1189
A1 594 × 841
A2 420 × 594
A3 297 × 420
A4 210 × 297

format size in mm

A5 148 × 210
A6 105 × 148
A7 74 × 105
A8 52 × 74
A9 37 × 52

Table 3.1 Default paper dimensions.

Other formats like B0--B9 and C0--C9 are also available. You could also use: letter, legal,
folio and executive, envelop 9--14, monarch, check, DL and CD.

A new format can be defined by:

\definepapersize [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 width = DIMENSION
height = DIMENSION
offset = DIMENSION
scale = NUMBER

26 Page design

3 Page texts

For example CD was defined as:

\definepapersize[CD][width=12cm,height=12cm]

After defining CD you can type:

\setuppapersize[CD][A4]

This means that for typesetting ConTEXt will use the newly defined size CD. The resulting,
rather small page, is positioned on an A4 paper size. This second argument is explained in
detail later.

ConTEXt can also be used to produce screen documents. For that purpose a number of
screen formats are available that relate to the screen dimensions. You can use: S3--S6. These
generate screens with widths varying from 300 to 600 pt and a height of 3/4 of the width.

When one chooses another paper format than A4, the default settings are scaled to fit the
new size.

3.3 Page texts
Page texts are texts that are placed in the headers, footers, margins and edges of the so
called pagebody. This sentence is for instance typeset in the bodyfont in the running text.
The fonts of the page texts are set up by means of different commands. The values of the
parameters may be something like style=bold but style=\ss\bf is also allowed. Setups
like style=\ssbf are less obvious because commands like \cap will not behave the way you
expect.

Switching to a new font style (\ss) will cost some time. Usually this is no problem but in
interactive documents where we may use interactive menus with dozens of items and related
font switches the effect can be considerable. In that case a more efficient font switching is:

\setuplayout[style=\ss]

Border texts are setup by its command and the related key. For example footers may be set
up with the key letter:

\setupfooter[style=bold]

3.4 Page composition
In page composition we distinguish the main text area, headers and footers, and the margins
(top, bottom, right and left). The main text flows inside the main text area. When defining
a layout, one should realize that the header, text and footer areas are treated as a whole.
Their position on the page is determined by the topspace and backspace dimensions (see
picture 3.1).

The header is located on top of the main text area, and the footer comes after it. Normally,
in the header and footer page numbers and running titles are placed. The left and/or right
margin are often used for structural components like marginal notes and/or chapter and
section numbers. The margins are located in the backspace. Their width has no influenceleft right
on the location of the typesetting area on the page.

Page design 27

Page composition 3

back-
space

topspace

header

text

footer

margin margin

Figure 3.1 The A4 typesetting area and margins (height = header+text+footer).

28 Page design

3 Page composition

\setuplayout [..,.=.,..]
*

* width = DIMENSION fit middle
height = DIMENSION fit middle
backspace = DIMENSION
topspace = DIMENSION
margin = DIMENSION
leftmargin = DIMENSION
rightmargin = DIMENSION
header = DIMENSION
footer = DIMENSION
top = DIMENSION
bottom = DIMENSION
leftedge = DIMENSION
rightedge = DIMENSION
headerdistance = DIMENSION
footerdistance = DIMENSION
topdistance = DIMENSION
bottomdistance = DIMENSION
leftmargindistance = DIMENSION
rightmargindistance = DIMENSION
leftedgedistance = DIMENSION
rightedgedistance = DIMENSION
horoffset = DIMENSION
veroffset = DIMENSION
style = normal bold slanted boldslanted type cap small...

COMMAND
color = IDENTIFIER
marking = on off color screen TEXT
location = left middle right bottom top singlesided doublesided
scale = DIMENSION
nx = NUMBER
ny = NUMBER
dx = DIMENSION
dy = DIMENSION
lines = NUMBER
columns = NUMBER
columndistance = DIMENSION
grid = yes no
bottomspace = DIMENSION
cutspace = DIMENSION
textdistance = DIMENSION
textwidth = NUMBER
textmargin = DIMENSION
clipoffset = DIMENSION
page = IDENTIFIER
paper = IDENTIFIER

On the contrary, the height of the header and footer influence the height of the text area.
When we talk about the height, we mean the sum of the header, text and footer areas. When
one occasionally hides the header or footer, this guarantees a consistent layout.
The dimensions and location of all those areas are set up with \setuplayout.
Setting up the left or right margin has no influence on the typesetting area. In paper docu-
ments this parameter is only of use when keywords or other text are placed in the margin
(hyphenation).

Page design 29

Page composition 3

In paper documents it is sufficient to set up the height, header, footer, top space and back
space. In electronic documents and screen documents however we need some room for
navigational tools (see chapter ??). In screen documents it is common practice to use back-
grounds. Therefore it is also possible to set up the space between the text area and the header
and footer on a page, and thereby visually separating those areas.

It is possible to trace the setting by using the following commands:

\showframe [...]
OPTIONAL

*

* TEXT margin edge

The dimensions can be displayed by:

\showsetups

A multi--page combination of both is generated with:

\showlayout

The width of a text is available as \hsize and the height as \vsize. To be on the safe side
one can better use the \dimen--registers \textwidth and \textheight, \makeupwidth and
\makeupheight.

When we are typesetting in one column of text \textwidth and \makeupwidth are identical.
In case of a two columned text the \textwidth is somewhat less than half the makeupwidth.
The \textheight is the \makeupheight minus the height of the header and footer.

variable meaning

\makeupwidth width of a text
\makeupheight height of a text
\textwidth width of a column
\textheight height − header − footer

Table 3.2 Some \dimen variables.

There are also other dimensions available like \leftmarginwidth and \footerheight, but be
aware of the fact that you can only use these variables, you can not set them up. The width
of a figure could for instance be specified as width=.9\leftmarginwidth.

In principal documents are typeset automatically. However, in some cases the output would
become much better if a line would be moved to another page. For these situations you can
adjust the layout momentarily (just for that page) by typing:

30 Page design

3 Grids

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

\adaptlayout [...,...]
OPTIONAL

1 [..,.=.,..]
2

1 NUMBER

2 height = DIMENSION max
lines = NUMBER

The use of these commands should be avoided because if you alter your document the
adjustment would not be necessary anymore. So, if you use this command, use it at the top
of your document. For example:
\adaptlayout[21,38][height=+.5cm]

The layout of page 21 and 38 will temporarily be 0.5 cm higher though the footer will be
maintained at the same height. The numbers to be specified are the numbers in the output
file.
If the layout is disturbed you can reset the layout by:
\setuplayout[reset]

In some commands you can set up the parameters width and height with the value fit. In
that case the width and height are calculated automatically.
On the next pages we will show a number of A5 page layouts centered on an A4. The default
setups (dimensions) are adequate for standard documents like manuals and papers. The
setup adjusts automatically to the paper size. Notice the use of middle while setting up the
parameters width and height.

3.5 Grids

There are many ways to align text on a page. Look at the example below and notice the
vertical alignment of the words and the white space between the words on the mini pages.

alpha
beta
gamma

alpha
beta
gamma

alpha
beta
gamma

alpha
beta
gamma

The first three alternatives result in an undesired output. The fourth alternative will lead
to pages with unequal length. So we rather make the white space between the lines a little
stretchable.1

alpha
beta

gamma
delta

alpha
beta
gamma

delta

alpha

beta

gamma

alpha
beta
gamma

Hey, watch this. A footnote!1

Page design 31

Grids 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

A stretchable line spacing has the disadvan-
tage that lines of two pages or two columns
that are displayed close to each other, will
seldom align. This is very disturbing for a
reader.2

In those situations we prefer to typeset on

a grid. The means to do this in TEX are
very limited but ConTEXt has some features
to support grid typesetting.3

Here! Another footnote.2

Finally, the last footnote!3

During typesetting on a grid the heads, figures, formulas and the running text are set on a
fixed line spacing. If a typographical component for any reason is not placed on the grid one
can snap this component to the grid with:

\placeongrid{\framed{This is like a snapshot.}}

This will result in:

This is like a snapshot.

This mechanism can be influenced with an argument:

\placeongrid[bottom]{\framed{Do you like the snapshot?}}

Now an empty line will appear below the framed text. Other parameters are: top and both.
The last parameter divides the linespace between over and below the framed text.

Now the snapshot looks better.

These examples don’t show pretty typesetting. The reason is that \framed has no depth
because TEX handles spacing before and after a line in a different way than text. ConTEXt
has a solution to this:

\startlinecorrection
\framed{This is something for hotshots.}
\stoplinecorrection

The command \startlinecorrection tries to typeset the lines as good as possible and takes
the use of grid in account.

This is something for hotshots.

Because line correction takes care of the grid we have to use yet another command to stretch
the framed text:

\moveongrid[both]
\startlinecorrection

32 Page design

3 Grids

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

\framed{Anyhow it is good to know how this works.}
\stoplinecorrection

As you can see this results in somewhat more space:

Anyhow it is good to know how this works.

For test purposes one can display the grid with the command \showgrid. So grid related
commands are:

\placeongrid [...]
OPTIONAL

1 {...}2

1 inherits from \moveongrid

2 TEXT

\moveongrid [...,...]
OPTIONAL

*

* standard top both bottom -top -both -bottom TEXT high middle low page broad
fit depth line reset none DIMENSION

\showgrid [...,...]
OPTIONAL

1 {...}2

1 reset top bottom none all lines frame nonumber right left

2 TEXT

Page design 33

Printing 3

3.6 Printing
In an earlier section we used page and paper dimensions. In this section we will discuss
how these two can be manipulated to yield a good output on paper.

In figure 3.3 and 3.4 we see some alternatives to manipulate the page composition by means
of \setuppapersize and\setuplayout. So it is possible to put a page in a corner or in the
middle of the paper, to copy a page and to use cutting marks.

When the parameter papersize is set to landscape width and height are interchanged. This
is not the same as rotation! Rotation is done by typing 90, 180 and 270 in the first argument
of \setuppapersize.

\setuppapersize[A5,landscape][A4]

These examples don’t show that we can correct for duplex printing. For example when we
type:

\setuppapersize[A5][A4]
\setuplayout[location=middle,marking=on]

the front and back side will be placed in the middle of the paper. The markings enable you
to cut the paper at the correct size. If we only want to cut twice, we type:

\setupppapersize[A5][A4]
\setuplayout[location=duplex]

This has the same meaning as {duplex,left}. At this setup ConTEXt will automatically
move front and back side to the correct corner. In figure 3.2 we show both alternatives.

right left right left

Figure 3.2 Positioning the page on paper for cutting.

Rotating, mirroring, scaling, duplicating and placing pages on paper are independent op-
erations. By combining these operations the desired effects can be reached. Rotating and
mirroring and page and paper size are set up at the same time. The other operations are set
up with \setuplayout.

\showprint [...,...]1 [...,...]2 [..,.=.,..]
3

1 inherits from \setuppapersize

2 inherits from \setuppapersize

3 inherits from \setuplayout

34 Page design

3 Printing

ABC
DEF

ABC
DEF

36 36

36 36

ABC
DEF

36 36

36 36

ABC
DEF

36 36

36 36

ABC
DEF

location=middle marking=on
location=middle

marking=on
location=middle

nx=2

ABC
DEF

ABC
DEF

ABC
DEF

ABC
DEF

location=left location=right location=left,bottom location=right,bottom

ABC
DEF

ABC
DEF

ABC
DEF

ABC
DEF

ABC
DEF

ABC
DEF

ABC
DEF

ABC
DEF

ABC
DEF

ABC
DEF

ABC
DEF

ABC
DEF

nx=2,ny=1 nx=1,ny=2 nx=2,ny=2 nx=2,ny=2
location=middle

ABC
DEF

ABC
DEF

ABC
DEF

ABC
DEF

horoffset=.5cm veroffset=.5cm scale=1.5 scale=0.8

Figure 3.3 Manipulating the page composition with \setuplayout.

Page design 35

Arranging pages 3

ABC
DEF ABC

DEF
ABC
DEF

landscape
landscape

landscape
landscape

AB
C

D
EF

AB
C

D
EF ABC

DEF

90
90

90
90

ABC
DEF

ABC
DEF

ABC
DEF

180
180

180
180

ABC
DEF

ABC
DEF

ABC
DEF

mirrored
mirrored

mirrored
mirrored

Figure 3.4 Manipulating the page composition with \setuppapersize.

You can use \showprint to get an idea of how your print will look. However, it is just a
representation of the real page as is shown in the examples above.

\showprint[mirrored][90][location=middle]

3.7 Arranging pages
By means of \setuplayout one can arrange pages on a sheet of paper. A special arrangement
for example is that for booklets.

middle topright top left top

middle headerright header left header

middle footerright footer left footer

middle bottomright bottom left bottom

\setuparranging [...,...]*

* disable 2*16 2*8 2*4 2*2 2**2 2*2*4 2*4*2 2UP 2DOWN 2SIDE 2TOP mirrored
rotated doublesided negative background 90 180 270

We will show some page arrangements on the next pages. If you want to understand how it
really works you should try this yourself one day.
The next examples show the cooperation of the commands \setuppapersize, \setuplayout
and \setuparranging. Notice how these tests were generated.

3.8 Logo types
It is possible to place for example company logos at the top or the bottom of a page. We
show some examples on the next pages. It is advisable to define a command for typesetting
a logo type.
The location of a logo type is defined by:

\definelogo [...]1 [...]2 [...]3 [..,.=.,..]
4

1 IDENTIFIER

2 top header footer bottom

3 none page leftedge leftmargin left middle right rightmargin rightedge

4 command = COMMAND TEXT
state = start stop

All logo types with state=start are automatically typeset on the page. A logo can also be
recalled by:

\placelogos [...,...]
OPTIONAL

*

* IDENTIFIER

In that case only the listed logos are typeset.
On this page a few potential locations of logos are shown. Temporarily headers and footers
of this manual are suppressed. For example the left logo types are defined by means of:
\definelogo
[logo a] [bottom] [left]
[command=left bottom]

\definelogo
[logo d] [top] [left]
[command=left top]

\definelogo
[logo g] [footer] [left]
[command=left footer]

\definelogo

name:

dummy

file:

mp-cont

state:

unknown

8 9 12 5

413161

6 11 10 7

215143

Figure 3.5 The 2*8 arrangement.

4 5

81

3 6

27

Figure 3.6 The 2*4 arrangement.

1 4 3 2

Figure 3.7 The 2*2 arrangement.

1 8 2 7 3 6 4 5

Figure 3.8 The 2UP arrangement.

8

1

7

2

6

3

5

4

Figure 3.9 The 2DOWN arrangement.

[logo j] [header] [left]
[command=left header]

\placelogos[logo a,logo b,logo c,logo d]

Instead of command we could have chosen text. We define the logo with command because it
is evident that we will use the logo more than once. The example is discussed below.
First we define a command that generates a small logo.
\def\ContextLogo%
{\externalfigure[mp-cont.502][height=24pt,method=mps]}

If we want to set this logo at the bottom of every page we type:
\definelogo
[small logo] [bottom] [middle]
[command=\ContextLogo,state=start]

The
ConTEXt
Chronicle

name: dummy

file: mp-cont

state: unknown

Ridderstraat 27
8061GH Hasselt NL

pragma@wxs.nlThis logo is placed at the bottom of every page. In letters however the logos are located
on different positions on the paper. Again, we define the bigger logo including all address
information. Watch the use of \framed.

\def\ContextLetterhead%
{\hbox

{\definefont[ContextFont][RegularBold sa 1.5]%
\ContextFont \setupinterlinespace
\setupframed
[align=middle,top=\vfill,bottom=\vfill,
height=10\bodyfontsize,offset=overlay,frame=off]%

\framed
{The\\Con\TeX t\\Chronicle}%

\externalfigure
[mp-cont.502][height=10\bodyfontsize]%

\framed
{Ridderstraat 27\\8061GH Hasselt NL\\pragma@wxs.nl}}}

We also define the position on the paper:

\definelogo
[big logo] [header] [right]
[command=\ContextLetterhead]

This letterhead logo should appear only on the first page. So we simply say:

\placelogos[big logo]

You will notice that the smaller logo is not placed at the bottom of the page because the
command \placelogos typesets only the listed logos and suppresses all other logos.

The big logo needs some space on this page so the content of the letter should be moved to
a somewhat lower location. We do this with the command:

\blank[force,8\bodyfontsize]

Page design 36

Logo types 3

name: cont-yy

file: cont-yy

state: unknown

Figure 3.10 The location of header, footer, bottom and top logos on a page.

4 Introduction

4 Layout

TODO: Split this chapter, it is much too large even in it’s current
incomplete state

4.1 Introduction
The look of a publication is determined by the page design, the chosen fonts and other aspects
like vertical spacing. In this chapter we will explore the latter. Sometimes we will go into
detail but a novice user can skip such parts. In normal applications, the default setups are
most adequate, because they will adapt to the different situations. For the impatient reader
we will just mention a few setups. Spacing between paragraphs is defined by:

\setupwhitespace[big]

In your source file you can best use an empty line between paragraphs. This increases
readability and it makes the typing of \par at the end of each paragraph obsolete. Indentation
at every new paragraph is obtained by:

\setupindenting[medium]

A doublesided publication is generated when you type:

\setuppagenumbering[alternative=doublesided]

As you might expect this might generate page numbering on the right and left hand side of
a paper and the margins will be mirrored automatically.

As we have said before only the curious have to read on.

4.2 Paragraphs
The most important unit in TEX is paragraph. A new paragraph is forced by:

1. an empty line
2. the TEX--command\par or \endgraf
3. the ConTEXt--command \paragraph

The first alternative is the most obvious. You will obtain a readable input file (ascii file) and
errors are minimized. The second alternative is chosen when it is mandatory to the used
command. For example in definitions (see 13.2).

4.3 Indentation
When a text has little whitespacing, for example in a novel, it is a custom to indent each new
paragraph. Indentation is setup with:

Layout 38

Indentation 4

\setupindenting [...,...]*

* never none not no yes always first next small medium big normal odd even
DIMENSION

By default there is ‘no’ indentation. When indentation is turned on, when possible the
commands will determine whether indentation is necessary. For example, it doesn’t look
good to indent after a vertical whitespace. In a number of cases it is even undesirable to
indent. Think for example of headers and itemizations.
This manual is typeset without indentation. The great quantity of short sentences and ex-
amples would result in a very messy page layout.
When indentation is used, we may have to tell TEX in some cases not to indent. This is done
by:

\noindenting

We can set up indenting by:

\indenting [...,...]*

* never none not no yes always first next small medium big normal odd even
DIMENSION

The meaning of the setups is described in table 4.1. Next to the commands described above
we could use the TEX--commands \indent and \noindent.

setup result

no / not don’t indent the next paragraph
yes / always turn on indentation
never turn off indentation
first indent first paragraphs too
next don’t indent first paragraphs

Table 4.1 The way of indenting.

The settings first and next determine if paragraphs following whitespace should be in-
dented or not. It is a sort of custom not to indent these.
A text may be typeset smaller than the default textwidth. In that case the complete text will
be indented on both sides.

\startnarrower [...,...]
OPTIONAL

* ... \stopnarrower

* left middle right

For example:

39 Layout

4 Vertical spacing (whitespacing)

\startnarrower[3*left,2*right]
The relatively small revolution in in Russia in 1917 had big consequences for
this country as well as the rest of the world. It is interesting to see that
some 80~years later a just as small revolution was needed to undo the 1917
one. In both cases, the main reason for the revolutions was to prevent
democracy from arising.
\stopnarrower

Will become:

The relatively small revolution in in Russia in 1917 had big consequences for
this country as well as the rest of the world. It is interesting to see that some
80 years later a just as small revolution was needed to undo the 1917 one.
In both cases, the main reason for the revolutions was to prevent democracy
from arising.

Next to using left, right and middle also combinations and manifolds are possible. Inden-
tation in the example above could have obtained by typing 2*middle,left. So, middle is
equivalent to left,right.

The value of indentation is set up by:

\setupnarrower [..,.=.,..]
*

* left = DIMENSION
right = DIMENSION
middle = DIMENSION

4.4 Vertical spacing (whitespacing)
Vertical spacing between paragraphs is set up by:

\setupwhitespace [...]
OPTIONAL

*

* none small medium big line fixed fix DIMENSION

Instead of a random value it is better to use one of the pre defined dimension. Default there
is no vertical spacing. Without any set up values the vertical spacing is related to the actual
fontsize.

Vertical spacing can be forced by either:

\whitespace

\nowhitespace

These commands have only effect when vertical spacing is set up. In fact these commands
will not be necessary for ConTEXt takes care of most situations.

Layout 40

Vertical spacing (whitespacing) 4

TEX handles vertical spacing around lines quite different from that around text. In case these
problematic situations occur one can use the following commands. Spacing around figures
and tables is dealt with by ConTEXt, so only use these commands when the typeset text looks
really bad.

\startlinecorrection

For example:

\startlinecorrection
\framed{To boxit or not, that’s a delicate question!}
\stoplinecorrection

One can add vertical spacing with the TEX command \vskip, but please don’t. We advise
you to use:

\blank [...,...]
OPTIONAL

*

* small medium big nowhite back white disable force reset line halfline FORMULA
fixed flexible none always outer joinedup

We can use a value of one of the keywords small, medium or big. A big jump is twice a
medium jump which is four times a small jump. A value however can be left out (\blank)
when the default vertical space is desired. It is advisable to set up the vertical spacing only
once in the setup area of your document. Local alterations throughout your document will
result in a badly--spaced document.

Normally there is some stretch in the vertical spacing. This enables TEX to fill out a page
optimally. In the next example we see what happens when we add stretch to whitespace.
Each sample shows from top to bottom three \blank’s of big, medium and small. The left
and right sample show the range of the stretch. The rightmost sample shows that adding
stretch can result in shrink.

maximum stretch no stretch minimal stretch

The last vertical space can be undone by typing \blank[back] and the next blank can be
blocked by disable. With reset a disable is ignored.

The command \blank is one of the more advanced commands. The next call is allowed:

\blank[2*big,medium,disable]

Since medium is half the amount of big, this results in adding a vertical spaces of 2.5 times
big. The previous vertical space will be undone automatically and the disable suppressed
the next \blank.

A lasting vertical space can be sustained by force. For example, if you want some extra
spacing at the top of a page you will have to type force.

The default vertical spaces are set up with:

41 Layout

4 Vertical spacing (whitespacing)

\setupblank [...]
OPTIONAL

*

* normal default standard line halfline DIMENSION big medium small fixed
flexible global unknown

An example of such a definition is:

\setupblank[big]

The vertical spaces will be automatically adapted to the fontsize and they are flexible. Chang-
ing the default set up locally is therefore not advisable. Without an argument \setupblank
adapts to the actual fontsize!

The keywords fixed and flexible are used to end or reinstate this adaptive characteris-
tic. In columns it is recommended to use the setup [fixed,line] or the opposite setup
[flexible,standard].

This text is typeset a bodyfont of 11pt and is downscaled by a few percent. The setup that
is used in this document is shown in table 4.2. We see some stretch in the vertical spacing.
The stretching enables TEX to fill out a page satisfactorily. Default the maximal vertical space
is 75% of the line space and the stretch maximal of 25%.

setup value

small 2.59297pt plus 0.86432pt minus 0.86432pt
medium 5.18594pt plus 1.72864pt minus 1.72864pt
big 10.37189pt plus 3.45729pt minus 3.45729pt
line 13.8292pt

Table 4.2 The whitespace values to a 11pt bodyfont.

In paragraph ?? it was said that the vertical spacing can be set up with the command
\setupwhitespace. Default there is no whitespace between paragraphs. The setup of vertical
spacing and line spacing are related to each other.

Instead of direct setup you can use an indirect way. This has the advantage that you can
change the layout more easily. In that case we use:

\defineblank [...]1 [...]2

1 IDENTIFIER

2 inherits from \setupblank

If we type for example:

\defineblank[aroundverbatim][medium]

than aroundverbatim is equal to medium, which can be used, for example around verbatim,
as in:

Layout 42

Word spacing 4

\setuptyping
[before={\blank[aroundverbatim]},
after={\blank[aroundverbatim]}]

If we want some more whitespacing we only have to change the definition of aroundverbatim:

\defineblank[aroundverbatim][big]

The vertical spacing between two lines can be suppressed with the command:

\packed

Vertical spacing between more than one line is suppressed by:

\startpacked [...]
OPTIONAL

* ... \stoppacked

* blank

The spacing around ‘packed’ text is automatically corrected. Opposed to this command is:

\startunpacked

Skipping more than one vertical space is done with:

\godown [...]*

* DIMENSION

One of the most important lessons to be learned is to avoid using \vskip in running text.
This can interfere with some hidden mechanisms of ConTEXt.

Sometimes TEX is not able to sort out spacing on its own. In such situations one can insert
the next command at the troublesome location.

\correctwhitespace {...}*

* TEXT

Normally one will not need this command, although sometimes when writing macros, it can
be added to make sure that the spacing is okay. Use this kind of tweaking with care!

4.5 Word spacing
Default a space is placed after a period that ends a sentence. In some countries it is custom
to stretch the space after a period. Especially documents typeset in small columns will look
better that way. Because this is a language specific feature. the default depends on the
language. One can however (temporarily) change this spacing.

43 Layout

4 Struts

\setupspacing [...]*

* broad packed

In many cases we combine words and numbers that should not be separated at linebreaking,
for example number 12. These combinations can be connected by a tight space: number~12.
Word and number will never be separated at linebreaking on that spot. A space can be made
visible by:

\space

Undesired spaces can be suppressed by:

\nospace

When you want to align a row of numbers you can use tight spaces with the width of a
number. Tight spaces are activated by:

\fixedspaces

After this command the ~ (tilde) generates a tight space with the width of a number.

4.6 Struts
A strut is a little invisible block without width but with the maximal height and depth of a
character or line. If you want to force these maximal dimensions, for example when you are
using boxes in your own commands, than you can use the command \strut:

\hbox{\strut test}

If we leave out the strut in this example the box has no depth. The characters in the word
test don’t reach under the baseline. Compare for example test (with strut) with test.

Many commands use struts automatically. If for some reason you don’t want struts you can
try to suppress them by \setnostrut. However take care that this command works only
locally. A strut can be set by \setstrut.

The struts that are used by ConTEXt can be made visible with the command:

\showstruts

4.7 Text in the margin
Texts can be place in the margins with:

Layout 44

Text in the margin 4

\inmargin [...]
OPTIONAL

1 [...]
OPTIONAL

2 {...}3

1 + - low

2 REFERENCE

3 TEXT

A new line in a margin text is forced with \\. An example of a margin text is:
\inmargin{the marginal\\influence of\\advertisement}It would be great
if the recent reduction in washing powder needed to get your wash
perfectly clean had resulted in an equal reduction of time needed to
advertise this kind of products.

or:
It would be great if the recent reduction in washing powder needed to get your wash perfectly the marginal

influence of
advertisement

clean had resulted in an equal reduction of time needed to advertise this kind of products.
When this command is used in the middle of a paragraph the margin text will appear on the
same line in themargin. The command \inmargin puts the text in the left or right margin. over here
The location where the text will show up depends on the character of the document: single--
sided or double--sided. You can also force the text into a specific margin, using:

\inleft [...]
OPTIONAL

1 [...]
OPTIONAL

2 {...}3

1 + - low

2 REFERENCE

3 TEXT

\inright [...]
OPTIONAL

1 [...]
OPTIONAL

2 {...}3

1 + - low

2 REFERENCE

3 TEXT

There is also:

\inothermargin [...]
OPTIONAL

1 [...]
OPTIONAL

2 {...}3

1 + - low

2 REFERENCE

3 TEXT

Some examples of the use of margin text appear below:
\startlines
\inleft{to be}\quotation{To be or not to be} to me
\inright{or not}is rather famous english

45 Layout

4 Text in the margin

\inmargin{to be}And just as it is meant to be
that quote will never perish
\stoplines

This will become:

“To be or not to be” to meto be
is rather famous english or not
And just as it is meant to beto be
that quote will never perish
The mechanism of margin texts is rather complex. If you think of multiline margin texts and123 the alignment of these lines with the lines in the textbody you can imagine a few typographic
problems. The number 123 next to this paragraph is not aligned but is typeset somewhat
lower. This is done by adding the keyword low:

\inmargin[low]{\ssd 123}The mechanism of margin texts ...

It is possible to set up the way margin texts are typeset by means of the command:

\setupinmargin [...]
OPTIONAL

1 [..,.=.,..]
2

1 left right NUMBER

2 location = left right both
style = normal bold slanted boldslanted type cap small... COMMAND
before = COMMAND
after = COMMAND
align = inner outer left right flushleft flushright middle center normal

no yes
line = NUMBER
distance = DIMENSION
separator = TEXT
width = DIMENSION
distance = DIMENSION
stack = yes no
inherits from \setupframed

With align we define the left or right alignment of the margin text. Default margin texts area rather
marginal
effect

right aligned. In this example alignment is middle.

We can also align on the left or right side automatically. In a double sided document design
optimisation of the margin text may ask for more than one processing step. In the example
below you see some of the possible setups.

This is left alignedleft
but this goes in the middle. Don’t forget thatmiddle
right in this sense, align means a ragged right margin.right
Just to be complete, there is yesyes
and no.no
The outsiders inner andinner
outer adapt themselvs to a doublesided design.outer

The left and right margin can be set up separately by adding [left] or [right] as the first
argument.

Layout 46

Text in the margin 4

With before and after we can influence margin texts. Bij default the same line spacing isthat way we can
move quite some

text into
the margin

used as in the textbody. But when a narrower fontsize is used we can also adapt the interline
spacing. For example:

\setupinmargin
[style=\bfx\setupinterlinespace]

Page breaking and margin text are in conflict with each other. The reason is that TEX first
typesets a complete page in order to be able to determine the right spot for page breaking.
However the margin text is already typeset at that moment. In a next processing stage the
margin texts are typeset correctly. If you want to force margin texts in a margin you can type
\inmargin[+].

The next command can be compared with the command like \section. Before the command
is placed in the margin TEX looks if it can be placed on the actual page. If not, it is moved
to the following page.

\margintext [...]
OPTIONAL

1 [...]
OPTIONAL

2 {...}3

1 + - low

2 REFERENCE

3 TEXT

The layout of your ascii--file will not interfere with the function of this command. This
may seem obvious, but TEX programmers know that it is not the case. For example even
commands that take care of index entries can be typed close to the margin texts.

The layout of your ascii--file will not interfere with the function of this command. You might
not expect it to, but TEX programmers know that with TEX, the layout of the source usually
interferes with for instance margin texts and index entries. In ConTEXt commands that take
care of margin texts take care of this situation, so that index entries can be typed close to the
margin texts and margin texts can be separated from the next paragraph by an empty line.
The same cannot be said for other TEX macropackages.

\margintext{text in themargin}
\index{margintexts}

After experimenting a long time I have succeeded to filter
empty lines and commands that stand between body texts and
margin texts. It is amazing but the index entry really works.

Because of the close relation with the page design the margin width is set up by means of:
\setuplayout (see section 3.4).

The command \margintext enables you to put texts in the margin that show completely Isn’t
this

cute?
different characteristics than that of the text body. You can typeset different margin texts
with different characteristics like bodyfont, line spacing and offset.

\margintext{Isn’t}
\margintext{this}
\margintext{cute?}

47 Layout

4 Subscript and superscript

In the setup we see an optional argument. The number is determined by the order of
definition.

\setupinmargin[1][align=right, line=1,style=slanted]
\setupinmargin[2][align=middle,line=2,style=boldslanted]
\setupinmargin[3][align=left, line=3,style=bold]

This means that the second margintext in a row will start on line 2, and be typeset in a bold
slanted font. One can explicitly force a margintext to go some place, by saying for instance:

\margintext[2]{this is the second one}

4.8 Subscript and superscript
There are three commands to create superscript and subscript outside the math mode:

\high {...}*

* TEXT

\low {...}*

* TEXT

\lohi [...]
OPTIONAL

1 {...}2 {...}3

1 low

2 TEXT

3 TEXT

The next example illustrates the use of these commands:

You can walk on \high {high} heels or \low {low} heels but your height
is still the same.

This results in:

You can walk on high heels or low heels but your height is still the same.

These commands relate to the ^ and _ in math mode. In case of larger fontsizes like \tfc,
the ^ and _ will not create the desired output. Compare the examples below:

test\high{test} test test$^{\rm test}$ test
{\bf test\high{test} test test$^{\bf test}$ test}
{\tfb test\high{test} test test$^{\tfb test}$ test}

This becomes:

Layout 48

Columns 4

testtest test testtest test
testtest test testtest test
testtest test testtest test

4.9 Columns
The TEX programmer knows that it is not easy to put text in columns. Gratefully a ConTEXt
user is not bothered with the implementation of extensive macros.
You can typeset text in columns.
Most commands can be used in a
normal way without any problems.
The floating object like tables or fig-
ures are somewhat limited. This
is caused by the fact that TEX has
limited capabilities for typesetting

columns. For insiders: columns
are produced with the primitives:
\output and \vsplit.

The number of columns is unlim-
ited, however TEXs memory can
only handle upto about twenty to

thirty or fourty columns.

The number of columns and the
type setting of a vertical line as a
column separator is set up by:

\setupcolumns [..,.=.,..]
OPTIONAL

*

* n = NUMBER
ntop = NUMBER
rule = on off
height = DIMENSION
tolerance = verystrict strict tolerant verytolerant stretch
distance = DIMENSION
balance = yes no
align = text inner outer left right flushleft flushright middle center

normal no yes
blank = fixed halfline line flexible big medium small
option = background
direction = left right
inherits from \setupframed

The n indicates the number of columns. The column text is enclosed by:

\startcolumns [..,.=.,..]
OPTIONAL

* ... \stopcolumns

* inherits from \setupcolumns

The local setup of columns can be added directly after this command. A new column is
forced by:

\column

The text below is typeset in two columns with a verytolerant alignment.

\startcolumns[rule=on,n=2,tolerance=verytolerant]
Thus, I came to the conclusion that the designer of a new
system must not only be the implementer and first
.
.

49 Layout

4 Columns

\bf D.E. Knuth
\stopcolumns

Thus, I came to the conclusion that the de-
signer of a new system must not only be the
implementer and first large--scale user; the
designer should also write the first user man-
ual.

The separation of any of these four compo-
nents would have hurt TEX significantly. If
I had not participated fully in all these ac-
tivities, literally hundreds of improvements
would never have been made, because I

would never have thought of them or per-
ceived why they were important.

But a system cannot be successful if it is too
strongly influenced by a single person. Once
the initial design is complete and fairly ro-
bust, the real test begins as people with many
different viewpoints undertake their own ex-
periments.

D.E. Knuth

This example makes it painfully obvious that spacing between lines is not on forehand equal.
By default the line spacing in this document is big, which equals .75×\lineheight. Further-
more, the allowable stretch in line spacing makes vertical alignment practically impossible.

For this reason the default line spacing is equal to the lineskip and stretching is not allowed.
When a switch in fontsize is desirable you should do so before starting the column mecha-
nism. Font switches within columns will have a poor result. The next example shows a line
spacing equal to the lineskip.

Thus, I came to the conclusion that the de-
signer of a new system must not only be the
implementer and first large--scale user; the
designer should also write the first user man-
ual.

The separation of any of these four compo-
nents would have hurt TEX significantly. If
I had not participated fully in all these ac-
tivities, literally hundreds of improvements
would never have been made, because I

would never have thought of them or per-
ceived why they were important.

But a system cannot be successful if it is too
strongly influenced by a single person. Once
the initial design is complete and fairly ro-
bust, the real test begins as people with many
different viewpoints undertake their own ex-
periments.

D.E. Knuth

This effect is reached by the (default) setup:

\setupcolumns[blank={fixed,line}]

In section 3.5 typesetting on a grid is explained. This mechanism works quite well within
columns.

TEX is not an easy to learn typesetting sys-
tem or program. The problem is that “know-
ing everything is possible” leads to “wanting
everything that is possible”. However using

ConTEXt or TEX takes considerable learning
time. And it is not feasible to explain every
single detail in this manual. Therefore “do-
ing” is the answer.

This text shows that one can do some tricks with columns. The frame is created by:

\def\FramedColumn#1{\ruledhbox{\box#1}}

Layout 50

Paragraphs in columns 4

\setupcolumns[command=\FramedColumn]

A less senseless display is:

\def\FramedColumn#1%
{\hbox to \hsize

{\ifodd\currentcolumn\unhbox\hss#1\else\unhbox#1\hss\fi}}

This time the columns will look like:

TEX is not an easy to learn typesetting sys-
tem or program. The problem is that “know-
ing everything is possible” leads to “wanting
everything that is possible”. However using

ConTEXt or TEX takes considerable learning
time. And it is not feasible to explain every
single detail in this manual. Therefore “do-
ing” is the answer.

A column can be manipulated as a whole. For example to create a background:

\setupfootnotes
[location=columns,
background=color,
backgroundcolor=white]

\setuplayout
[grid=yes]

This time the column will be typeset on a grid:

TEX is not an easy to learn typesetting sys-
tem or program. The problem is that “know-
ing everything is possible” leads to “wanting
everything that is possible”. However using

ConTEXt or TEX takes considerable learning
time. And it is not feasible to explain every
single detail in this manual. Therefore “do-
ing” is the answer.

4.10 Paragraphs in columns
In some cases you want to typeset a paragraph in columns. For example in a definition
where you have a first column containing meaningful text and a second column containing
meaningful text. In these cases you can use:

\defineparagraphs [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 n = NUMBER
rule = on off
height = fit DIMENSION
before = COMMAND
after = COMMAND
inner = COMMAND
distance = DIMENSION
tolerance = verystrict strict tolerant verytolerant stretch
align = inner outer left right flushleft flushright middle center normal

no yes

51 Layout

4 Paragraphs in columns

This command defines a column layout that is recalled by its name.
unknown setup ‘start«paragraph»’
The layout can be set up by:

\setupparagraphs [...]1 [...]
OPTIONAL

2 [..,.=.,..]
3

1 IDENTIFIER

2 NUMBER each

3 style = normal bold slanted boldslanted type cap small... COMMAND
width = DIMENSION
height = DIMENSION
align = inner outer left right flushleft flushright middle center normal

no yes
tolerance = verystrict strict tolerant verytolerant stretch
distance = DIMENSION
before = COMMAND
after = COMMAND
inner = COMMAND
command = COMMAND
rule = on off

The width of non--specified columns is determined automatically. Distance relates to hori-
zontal white space in front of a column. The next column is specified by:
unknown setup ‘«paragraph»’
We show a simple example of the use of paragraphs in columns.
\defineparagraphs[TwoColumns][n=2]
\setupparagraphs[TwoColumns][1][width=5cm]

\startTwoColumns
This is the top left corner.

\TwoColumns
In graphic environments the top right corner is also called the upper
right corner.

\stopTwoColumns

\startTwoColumns
In a similar way, the bottom left corner is called the lower left corner.

\TwoColumns
Which leaves the bottom right corner, that is also known as lower right
corner. Now what is the alternative name for the top left corner?

\stopTwoColumns

Here the \TwoColumns separates the columns. With a default setup this results in:
This is the top left corner. In graphic environments the top right corner is also called the

upper right corner.

In a similar way, the bottom
left corner is called the lower
left corner.

Which leaves the bottom right corner, that is also known as
lower right corner. Now what is the alternative name for the
top left corner?

Layout 52

Paragraphs in columns 4

We also could have used \nextTwoColumns instead of \TwoColumns. Sometimes this is more
readable in your ascii text. An alternative specification is:

\TwoColumns first text \\ second text \\

You can add a command to the keywords bottom and top. These commands will be executed
before or after the text. For example a column can be forced down by [top=\vfill].

This is the right place to show a more complex example. The use of paragraphs is preferred
over the use of columns because the text is kept together. If we want to score an item on two
dimensions we need three columns:

\defineparagraphs [CombinedItem] [n=3,rule=on]
\setupparagraphs [CombinedItem] [2] [width=3em]
\setupparagraphs [CombinedItem] [3] [width=7em]

The item itself is defined with \defineenumeration (see section ??):

\defineenumeration
[SomeItem]
[location=left,text=,width=3em,before=,after=]

The scoring is done on a scale that is typeset as an itemization (see section ??). An item
might look like this in ascii:

\startCombinedItem
\startSomeItem
The student is able to write a detailed planning for the
design and construction of a water purification plant.

\stopSomeItem
\nextCombinedItem
\startitemize[5,packed]
\item yes \item no

\stopitemize
\nextCombinedItem
\startitemize[5,packed]
\item self study \item class room \item simulation

\stopitemize
\stopCombinedItem

And will result in:

1 The student is able to write a detailed planning for the
design and construction of a water purification plant.

◦ yes
◦ no

◦ self study
◦ class room
◦ simulation

When the scoring scales are identical over all items we can use macros:

\def\firstscale%
{\startitemize[5,packed]

\item yes \item no
\stopitemize}

53 Layout

4 Tabulate

\def\secondscale%
{\startitemize[5,packed]
\item self study \item class room \item simulation
\stopitemize}

\startCombinedItem
\startSomeItem
The student is able to write a detailed planning for the
design and construction of a water purification plant.

\stopSomeItem
\nextCombinedItem
\firstscale

\nextCombinedItem
\secondscale

\stopCombinedItem

Or even more sophisticated:

\def\startItem%
{\startCombinedItem
\startSomeItem}

\def\stopItem%
{\stopSomeItem
\nextCombinedItem \firstscale
\nextCombinedItem \secondscale
\stopCombinedItem}

\startItem
The student is able to write a detailed planning for the
design and construction of a water purification plant.

\stopItem

A definition like the one above can be very surprising. The commands in such a definition
can interfere and result in undesirable output. We think of \vtop’s that align on the baseline
and \vbox s that align under the baseline. Another example with framed texts show that
ConTEXt takes care of most of the problems.

left middle right

4.11 Tabulate
In a later chapter we will go into detail on typesetting tables. Consider this paragraph to be
an appetizer. We use the term tabulate when a table is part of the running text. A simple
tabulation looks like this:

\starttabulate[|l|p|]
\NC question \NC Sometimes it is surprising to notice that writers,
independently of each other, explore the same theme along similar lines.

Layout 54

Alignment 4

Three of the four books mentioned here fall into this category. Which
books do not belong in this list? \NC \NR
\stoptabulate

\starttabulate[|l|l|l|]
\NC A. \NC This Perfect Day \NC Ira Levin \NC \NR
\NC B. \NC Opstaan op Zaterdag \NC Jan Gerhart Toonder \NC \NR
\NC C. \NC Tot waar zal ik je brengen \NC Anton Koolhaas \NC \NR
\NC D. \NC The City And The Stars \NC Arthur Clarke \NC \NR
\stoptabulate

This results in:
question Sometimes it is surprising to notice that writers, independently of each other,

explore the same theme along similar lines. Three of the four books mentioned
here fall into this category. Which books do not belong in this list?

A. This Perfect Day Ira Levin
B. Opstaan op Zaterdag Jan Gerhart Toonder
C. Tot waar zal ik je brengen Anton Koolhaas
D. The City And The Stars Arthur Clarke
With \NC we go to the next column and with \NR to the next row. Definitions like [|l|p|]
and [|l|l|l|] are called a template. The set ups are similar to those of \starttable (see
in 17).
The default template looks like this: [|l|p|]. The second column is typeset as a normal
paragraph and with a width that is calculated automatically by TEX.
\starttabulate
\NC d: \NC avond, afond, avend, afend \NC \NR
\NC t: \NC avont, afont, avent, afent \NC \NR
\stoptabulate

This quotation from “Spellingsverandering van zin naar onzin” by G.C. Molewijk (1992) will
look like this:4

d: avond, afond, avend, afend
t: avont, afont, avent, afent

4.12 Alignment
Horizontal and vertical alignment is set up by:

\setupalign [...,...]*

* width left right middle inner outer wide broad height bottom line reset
hanging nothanging hyphenated nothyphenated lesshyphenation morehyphenation new
old normal yes no flushleft flushright flushouter flushinner center hz nohz
spacing nospacing tolerant verytolerant stretch

For the non--dutch readers: this book “Change of spelling, from sense to nonsense” is one of the most humorous4

books on the developments in a language one can imagine. If you ever come to studying dutch, you should give
this book a try.

55 Layout

4 Alignment

The keys left, middle and right, inner and outer apply to horizontal alignment and bottom,
height and line to vertical alignment.

The key right results in the text being typeset ragged right. The keyword broad can be
combined with left, middle and right which results in somewhat more rough alignments.

The option line lets the last line touch the bottom of the page while height aligns the
baseline to the bottom.

Individual lines can be aligned with the commands:

\leftaligned {...}*

* TEXT

\midaligned {...}*

* TEXT

\rightaligned {...}*

* TEXT

alignment over a number of lines is done by:

\startalignment [...,...]
OPTIONAL

* ... \stopalignment

* inherits from \setupalign

The text below shows a number of examples of horizontal alignment.

The Brittish stubbornly stick to
driving at the left side of the road.

This can be considered a form conservatism,
or alternatively phrased: right--wing thinking.

However, a political drive--in--the--middle
compromise would definitely lead to accidents.

We done this with:

\leftaligned{The Brittish stubbornly stick to}
\leftaligned{driving at the left side of the road.}
\blank[medium]
\rightaligned{This can be considered a form conservatism,}
\rightaligned{or alternatively phrased: right||wing thinking.}
\blank[medium]
\midaligned{However, a political drive||in||the||middle}
\midaligned{compromise would definitely lead to accidents.}

Layout 56

Alignment 4

The last words of a paragraph can be placed on the right hand side by the command \wor-
dright,

so with:

\wordright {...}*

* TEXT

When typesetting a paragraph, TEX tries several alternatives and decides which one to choose
based on a system, of penalties. Normally TEX is very strict, but we can instruct TEX to be a
bit more tolerant. This means that, instead of letting problematic situations remain unsolved
—i.e. let words that cannot be hyphenated stick into the margin— TEX will add a bit more
stretch and apply different penalties for successive hyphens.

Alignment can be set up by:

\setuptolerance [...,...]*

* horizontal vertical stretch space verystrict strict tolerant verytolerant

By default we use [horizontal,verystrict] for horizontal alignment and [verti-
cal,strict] for vertical alignment.5 A last resort is provided by the keyword stretch, which
in unsolvable situations will stretch spaces, extending the ugliness even further.

In double sided typesetting, alignment can be coupled to the left or right pages.

\startalignment[inner]
\quotation {Out of nowhere} is a rather normal way of saying that it is
not clear where something originates. It is typically a phrase that has
no counterpart, in the sense that nobody would comprehend the remark
\quotation {Into somewhere}.
\stopalignment

\startalignment[outer]
\quotation {Out of bounds} is a similar quote. There is no counterpart
\quotation {In of bounds}. Both examples demonstrate that in(ner) and
out(er) are not always counterparts.
\stopalignment

Results of the commands above depend on the location of the page (left or right). The
commands lead to:

“Out of nowhere” is a rather normal way of saying that it is not clear where
something originates. It is typically a phrase that has no counterpart, in

the sense that nobody would comprehend the remark “Into somewhere”.

“Out of bounds” is a similar quote. There is no counterpart “In of bounds”. Both exam-
ples demonstrate that in(ner) and out(er) are not always counterparts.

If you want a real ugly result, you should set the TEX variable \pretolerance to 10.000. It is up to you.5

57 Layout

4 New lines

4.13 New lines
A new line is forced by:6

\crlf

If you want to have lines show up the way you typed them in your source file you can use:

\startlines

Default indenting is off. You can set up lines by:

\setuplines [..,.=.,..]
*

* before = COMMAND
after = COMMAND
inbetween = COMMAND
indenting = never none not no yes always first next small medium big

normal odd even DIMENSION
space = yes no

If we set up indenting=odd for example we will obtain:

Come on, he said, give me a while,
and I will typeset you this text
with rivers like the river Nile

This was typed in the source file as:

\setupindenting[medium]
\setuplines[indenting=even]
\startlines
Come on, he said, give me a while,
and I will typeset you this text
with rivers like the river Nile
\stoplines

Lines can be numbered with:

\startlinenumbering [...]* ... \stoplinenumbering

* continue

A simple example of numbered lines might look like this:

\startlinenumbering
There is of course no problem with trying to prevent illegal copying of
\cap {cd}’s and records. However, why should artists benefit from these
measures, who themselves have no problems with copying themes, lyrics

In titles, headers and margin texts \\ is available for introducing a new line.6

Layout 58

New page 4

and melodies?
\stoplinenumbering

this becomes:
1 There is of course no problem with trying to prevent illegal copying of CD’s and records.
2 However, why should artists benefit from these measures, who themselves have no problems
3 with copying themes, lyrics and melodies?

We can influence line numbering by:

\setuplinenumbering [..,.=.,..]
*

* conversion = numbers characters Characters romannumerals Romannumerals TEXT
start = NUMBER
step = NUMBER
width = DIMENSION
location = intext inmargin
style = normal bold slanted boldslanted type cap small... COMMAND
prefix = TEXT
referencing = on off

With the variable conversion you set up the type of numbering. You may even use your
own character, for example an em--dash (keyed in as –-). In that case this character is set in
front of each line.
In chapter 12.5 we will explain how we can refer to a linenumber. The parameters prefix
and referencing can be used to unfluence that proces.
In the example below we use the following setup:
\setuplinenumbering[conversion=numbers,step=2,location=intext]

and:
\setuplinenumbering[conversion=characters,step=1,location=intext]

a macro is a piece of text
2 random at first sight

a bunch of stupid tokens that
4 looks less that awful right

a but when fed to TEX the program
b you will be surprised
c thanks to macros your text too
d will look quite organized

You can also mark lines in order to refer to specific line numbers. This will be shown in in
chapter 12.5.

4.14 New page
In some instances it is up to you to force, prevent or encourage a new page.

\page [...,...]*

* yes makeup no preference bigpreference left right disable last quadruple even
odd blank empty reset start stop

The possible set ups are explained in table 4.3. If no setup is used \page will result in a new
page.

59 Layout

4 Pagenumbers

setup result

yes force a new page
makeup the same, without fill
no when possible, avoid page break
preference when possible, force page break
bigpreference when possible, force page break, try harder
left force a left page
right force a right page
disable ignore the next \page command
last add last page(s)
quadruple add pages until quadruple number of pages
even go to the next even page
odd go to the next odd page
blank insert a completely blank page
empty insert an empty page (with headers etc.)
reset reset the disable command

Table 4.3 Setups of \page.

The setups last and quadruple can be used in double sided (reduced) typesetting. The
first setup up will add pages until an even number is obtained, the second set up will add
pages until the next quadruple is reached. When you want to overrule the automatic page
numbering you type the pagenumber yourself:

\page[25]

You can also use a relative number like [+4]. You can use this feature when you want to be
on the safe side and if you don’t know at what page you are.

While generating empty pages you have to take doublesidedness into account, for example:

\page[right,empty,right]

4.15 Pagenumbers
At any location in the text the pagenumber can be set up with the command:

\setuppagenumber [..,.=.,..]
*

* number = NUMBER
state = start stop keep

The pagenumber position on the page is defined by:

Layout 60

Pagenumbers 4

\setuppagenumbering [..,.=.,..]
*

* alternative = singlesided doublesided
location = header footer left right middle margin marginedge inleft

inright
conversion = numbers characters Characters romannumerals Romannumerals
style = normal bold slanted boldslanted type cap small... COMMAND
left = TEXT
right = TEXT
way = bytext bycd:section
text = TEXT
numberseparator = TEXT
textseparator = TEXT
cd:sectionnumber = yes no
separator = TEXT
strut = yes no
state = start stop
width = DIMENSION
command = \...#1

The position varies with the nature of the document. With conversion we state the way we
want to display the number. With location we define pagenumber positions like the bottom
or top, left or right side or in the margin. You can use combinations of these options. For
example:

\setuppagenumbering[location={header,inmargin}]

alternative=singlesided alternative=doublesided

left, right marginedge
middle middle
margin margin

Table 4.4 setups to \setuppagenumbering.

Another alternative is {singlesided,doublesided}. In this case headers and footers will be
mirrored in a double--sided document. The backspace is not mirrored (see figure 4.1).

l r

l r

l r

l r

l r

l r

r l

r l

l r

l r

r l

r l

singlesided single...,double... doublesided

Figure 4.1 Three ways to mirror.

You can assign text to the parameters left and right. These texts will encloses the pa-
genumber:

\setuppagenumbering[conversion=romannumerals,left={–~},right={~–}]

This will lead to: – viii –. With style you define the font and with state pagenumbering is
switched on and off.

61 Layout

4 Headers and footers

Numbering can become very fancy when you use command to execute an operation. This
command has an argument and will be executed every time a pagenumber is placed. A
framed pagenumber can be obtained by:

\setuppagenumbering[command=\inframed]

or partially framed by:

\def\mypagenumber#1%
{\inframed[frame=off,leftframe=on,rightframe=on]{#1}}

\setuppagenumbering[command=\mypagenumber]

In this we use \inframed instead of \framed, because the pagenumber must align with the
texts of the headers and footers.

With textseparator you can define a separator between the section and pagenumber. De-
fault this is a –. When the pagenumber is to appear at the margin the numberseparator is
placed between the number and the footer text. Default this is a space with a width of 1em.

In interactive documents subpagenumbering is frequently used for hyperlinking. When every
new section is started on a new page the footer text can be set up with:

\setupsubpagenumber
[way=byparagraph]

\setupfootertexts
[screen {\subpagenumber} of {\numberofsubpages}] []

The setup is done with:

\setupsubpagenumber [..,.=.,..]
*

* way = bytext bycd:section
state = start stop none

and the numbers themselves can be recalled by \subpagenumber and \numberofsubpages.
These numbers are only reliable in headers and footers. In the case of interactive documents
a more abstract definition can be used:

\setupfootertexts[][{\interactionbar[alternative=d]}]

In this case one can jump to the previous and following subpages. The subnumbering can
be reset with [reset].

In a similar fashion one has access to the page number and the total number of pages:
\pagenumber and \totalnumberofpages.

4.16 Headers and footers
Text in the header and footer are set up with the commands:

Layout 62

Headers and footers 4

\setupheadertexts [...]
OPTIONAL

1 [...]2 [...]3

1 text margin edge

2 TEXT date MARK pagenumber

3 TEXT date MARK pagenumber

\setupfootertexts [...]
OPTIONAL

1 [...]2 [...]3

1 text margin edge

2 TEXT date MARK pagenumber

3 TEXT date MARK pagenumber

A great number of arguments can be added. When the first argument is left out it is taken
for granted that the footer and header should be place under or over the pagebody (text).
The edge is located at the left side of the margin and is only used in interactive documents
where a extended pagebody is needed.
The key date generates a date and pagenumber generates the pagenumber. Part, chapter and
section titles can be summoned to appear in the header-- and footer text by part, chapter,
paragraph etc. By default the mark mechanism is active. Sectionnumbers can also be recalled:
chapternumber etc.
Setting the state is done for the whole header, so one should use the one--argument version:
\setupheader[state=high]

Those who want more variations in headers and footers can use four instead of two argu-
ments. Four arguments have only effect in double--sided documents.
\setupfootertexts
[even left][even right]
[odd left][odd right]

So there are different combinations of arguments possible:
\setupheadertexts
\setupheadertexts[mid text]
\setupheadertexts[left text][right text]
\setupheadertexts[left text][right text][left .][right .]
\setupheadertexts[location][left text][right text]
\setupheadertexts[location][left text][right text][left .][right .]

Instead of text, one can specify keywords like chapter, date or pagenumber. When the
pagenumber is positioned in this way, one should also say:
\setuppagenumbering[location=]

The current setups of the headers and footers are cleared when no values are stated in
\setupfootertexts. Problems can be expected when you use [] in your setup. These have
to be enclosed in curly brackets:
\setupfootertexts[chapter][{\currentdate[month,year]}]

63 Layout

4 Headers and footers

The type setting of head-- and foot texts can be influenced by:

\setupheader [...]
OPTIONAL

1 [..,.=.,..]
2

1 TEXT margin edge

2 state = normal stop start empty high none nomarking IDENTIFIER
strut = yes no
style = normal bold slanted boldslanted type cap small... COMMAND
leftstyle = normal bold slanted boldslanted type cap small... COMMAND
rightstyle = normal bold slanted boldslanted type cap small... COMMAND
leftwidth = DIMENSION
rightwidth = DIMENSION
before = COMMAND
after = COMMAND

and

\setupfooter [...]
OPTIONAL

1 [..,.=.,..]
2

1 inherits from \setupheader

2 inherits from \setupheader

As with \setup...texts the first argument is optional. The keys state, before and after
work on all parts of the pagebody, on the main text, the margins and edges.

When ...width is set up the text is clipped at the given width. The key strut is impor-
tant when footers or headers contain other objects than text. When strut is set to no, the
object is not corrected for linedepth. You could use the command \showstruts to get some
information on this phenomena.

The setups with state are explained in table 4.5. You should bear in mind that page num-
bering will always continue whether or not the pagenumbers are placed.

setup result

normal visible
none invisible, no whitespace
empty one page invisble, whitespace
high one page visible, no whitespace
start visible
nomarking leave out marks
stop invisible, whitespace

Table 4.5 Setups with \setupheader and \setupfooter.

When setups are done between \start and \stop they will only work locally. This means
that the setups are reset after stop. Headers and footers may appear even while you think
new ones should appear. This is due to the way TEX determines valid breakpoints. One can

Layout 64

Headers and footers 4

never be certain when such an automatic break will occur. The solution is to force a new
page by \page before \stop.
Headers and footers can be switched off on a page by means of:

\noheaderandfooterlines

Next to head-- and footertexts there are also over-- and bottomtexts. These are setup in a
similar way:

\setuptoptexts [...]
OPTIONAL

1 [...]2 [...]3

1 text margin edge

2 TEXT date MARK pagenumber

3 TEXT date MARK pagenumber

\setuptexttexts [...]
OPTIONAL

1 [...]2 [...]3

1 text margin edge

2 TEXT date MARK pagenumber

3 TEXT date MARK pagenumber

\setupbottomtexts [...]
OPTIONAL

1 [...]2 [...]3

1 text margin edge

2 TEXT date MARK pagenumber

3 TEXT date MARK pagenumber

\setuptop [...]
OPTIONAL

1 [..,.=.,..]
2

1 inherits from \setupheader

2 inherits from \setupheader

\setuptext [...]
OPTIONAL

1 [..,.=.,..]
2

1 inherits from \setupheader

2 inherits from \setupheader

\setupbottom [...]
OPTIONAL

1 [..,.=.,..]
2

1 inherits from \setupheader

2 inherits from \setupheader

65 Layout

4 Footnotes

\notopandbottomlines

When the height of an area equals zero, no text is placed. By default the top and bottom
area have zero height, so setting their text areas without setting the height has no effect.

At the instance of a new part or chapter we can deal in a different way with the headers and
footers. Suppose that a default setup looks like this:

\setupheadertexts[pagenumber]
\setupfootertexts[chapter][paragraph]

At the first page of new chapters this may look not too good. Therefore we could state:

\setuphead[chapter][header=empty,footer=empty]

However if we use it in this way we loose the pagenumber. A more adequate solution is:

\definetext[chapter][footer][pagenumber]

with:

\setuphead[chapter][header=high,footer=chapter,page=right]

we obtain the desired effect. The pagenumber appears in the foot and the header disappears
completely. These kind of commands are essential when you don’t want to define all kinds
of setups locally in a text, for example before every new chapter. This mechanism only works
when going to a new page enabled.

\definetext [...]1 [...]2 [...]3 [...]
OPTIONAL

4 [...]
OPTIONAL

5

1 IDENTIFIER

2 header footer

3 TEXT

4 TEXT

5 TEXT

4.17 Footnotes
In some texts you can’t do without footnotes. The footnote marker is placed in the text and
the note itself is typeset at another location in the text, usually at the bottom of the page.
Most often at the bottom of the page.

\footnote [...]
OPTIONAL

1 {...}2

1 REFERENCE

2 TEXT

A footnote number or --symbol is recalled with:

Layout 66

Footnotes 4

\note [...]*

* REFERENCE

An example of footnotes is given below.

The first compositions of the American composer Steve Reich will probably
only appreciated by the most \quote {purist} among those who like
minimal||music \footnote {A decent minimal is not so much characterized by
a minimal use of musical instruments, but more by subtle shifts in
polyphonic rhythms.}, his later works, like \quote {The Desert Music}, are
compositions for full orchestra, where the orchestra is extended with a for
Reich characteristic rhythm section \footnote {In most cases this section
consists of pianos, marimbas and xylophones.} and choir. Together
with John Adams, \footnote {His \quote {Fearful Symmetries} is a perfect mix
of classic, jazz, swing and pop music.} Reich can be considered one of
today’s leading composers. It is, however, a pity that they can only be seen
\footnote {The nice thing about compositions like \quote {Drumming} and
\quote {Sextet} is de fact that \quotation {what the ear hears} differs
from what the \quotation {eye sees happening}.} and heard at the smaller
broad companies, like the \cap {VPRO}. \footnote{A non commercial Dutch
broadcast company.} \footnote {Sometimes also at other companies, because
somehow this kind of music is quite suited for impressive and|/|or
melodramatic documentaries.}

Undesired spaces are ignored. Spacing between two footnote numbers or symbols is taken
care of. The result looks like this:

The first compositions of the American composer Steve Reich will probably only appreciated
by the most ‘purist’ among those who like minimal--music7, his later works, like ‘The Desert
Music’, are compositions for full orchestra, where the orchestra is extended with a for Reich
characteristic rhythm section8 and choir. Together with John Adams,9 Reich can be considered
one of today’s leading composers. It is, however, a pity that they can only be seen10 and heard
at the smaller broad companies, like the VPRO.11 12

The type setting of the footnote can be setup with the command below that is defined in the
setup area of your document.

A decent minimal is not so much characterized by a minimal use of musical instruments, but more by subtle7

shifts in polyphonic rhythms.
In most cases this section consists of pianos, marimbas and xylophones.8

His ‘Fearful Symmetries’ is a perfect mix of classic, jazz, swing and pop music.9

The nice thing about compositions like ‘Drumming’ and ‘Sextet’ is de fact that “what the ear hears” differs from10

what the “eye sees happening”.
A non commercial Dutch broadcast company.11

Sometimes also at other companies, because somehow this kind of music is quite suited for impressive and/or12

melodramatic documentaries.

67 Layout

4 Footnotes

\setupfootnotes [..,.=.,..]
*

* conversion = numbers characters Characters romannumerals Romannumerals
way = bytext bycd:section
location = page TEXT columns firstcolumn lastcolumn high none
rule = on off
before = COMMAND
after = COMMAND
width = DIMENSION
height = DIMENSION
bodyfont = 5pt ... 12pt small big
style = normal bold slanted boldslanted type cap small... COMMAND
distance = DIMENSION
columndistance = DIMENSION
margindistance = DIMENSION
n = NUMBER
numbercommand = \...#1
textcommand = \...#1
split = tolerant strict verystrict NUMBER
textstyle = normal bold slanted boldslanted type cap small... COMMAND
textcolor = IDENTIFIER
interaction = yes no
factor = NUMBER
inherits from \setupframed

By default footnotes are placed at the bottom of a page. When using columns you can set
location to columns so that the footnotes appear in the last column.

We can frame footnotes, place them in columns and decouple them from a page. The meaning
of this last option is explained in an example.

\startlocalfootnotes[n=0]
\placetable
{A (latin) table.}
\placelegend
{\starttable[|l|r|]
\HL
\VL Nota \footnote {Bene} \VL Bene \footnote {Nota} \VL\FR
\VL Bene \footnote {Nota} \VL Nota \footnote {Bene} \VL\LR
\HL
\stoptable}
{\placelocalfootnotes}

\stoplocalfootnotes

The table enables the float placement mechanism, so we don’t know on which page the
table nor the footnotes will appear. So the footnotes are coupled to the table by using local
footnotes.

\startlocalfootnotes

Layout 68

Aligned boxes 4

Nota1 Bene2

Bene3 Nota4

Bene1

Nota2

Nota3

Bene4

Table 4.6 A (latin) table.

\placelocalfootnotes [..,.=.,..]
OPTIONAL

*

* inherits from \setupfootnotes

Footnotes can be placed at the end of a chapter or a document. The key location is set at
text and we use the following command to place the footnotes:

\placefootnotes [..,.=.,..]
OPTIONAL

*

* inherits from \setupfootnotes

When n is set at 2, you can display the footnotes in columns. This should be done at an
early stage because TEX is using the dimensions of the footnotes to determine the page break.
More information can be found in the source code of the ConTEXt module: core-not.tex.

The next example demonstrates that footnote numbers can be replaced by footnote symbols.
In this example conversion is set at set 3.

note: use footnotes sparingly∗
note: be brief∗∗
note: no notes are even better∗ ∗ ∗

Default the key numbercommand is set \high, but other setups are allowed. You can also work
with:

\setupfootnotedefinition [..,.=.,..]
*

* inherits from \setupdescriptions

to define the exact way of how to display the footnotes, because the standard definition
mechanism is used (see section ??).

4.18 Aligned boxes

During the development of ConTEXt the footnote mechanism was one of the first real challenges. And I’m∗

challenged still since I just encountered documents with footnotes within footnotes.
Why? See note∗.∗∗

QED.∗ ∗ ∗

69 Layout

4 Aligned boxes

TEX is basically aware of two kind of boxes: \hbox and \vbox. A horizontal \hbox can be
considered a line, a \vbox a paragraph. There are two types of vertical boxes: a \vbox aligns
on the baseline of the last line, while a \vtop aligns on the first line.

\hbox{\hbox{one} \vbox{two\par three} \vtop{four\par five}}

When we make the frames visible —in this case we said \showboxes in advance— the example
above becomes:

one

two

three four

five
In addition ConTEXt provides a lot of alternative boxes, like: \cbox, \lbox and \rbox. These
commands can be used while defining your own macros, but will seldom appear in the
running text. Like in \hbox and \vbox the dimension of the width can be added.

\cbox{... text ...}
\lbox to 4cm{... text ...}

The reader is invited to experiment with these commands. A new line is forced with \\.

For some very dedicated purposes there is \sbox. This command is used to give a box the
height of a strut. You may forget this command.

To another category of boxes belong \tbox and \bbox. Both are used within tables. Look at
the example below that illustrates their use.

aa
a
a a

a

a
a

a
a

a
a

a
a aa aa

\hbox \vbox \vtop \lbox \cbox \rbox \sbox \tbox \bbox

The \tbox and \bbox are also used in figures.name:

dummy

file: cow

state:

unknown

name:

dummy

file: cow

state:

unknown

name:

dummy

file: cow

state:

unknown

name:

dummy

file: cow

state:

unknown

name:

dummy

file: cow

state:

unknown
\hbox \vbox \sbox \tbox \bbox

In ConTEXt a complete repertoire of macros is available that relies on boxes. For example we
can add cutmarks to a box:

\setbox0=\vbox{The Final Cut\par --- \em Pink Floyd}
\makecutbox0 \box0

Be aware of the fact that such marks lie outside the boxes.

The Final Cut

— Pink Floyd

We can visualize boxes by using \ruledhbox, \ruledvbox and \ruledvtop instead of \hbox,
\vbox and \vtop. With \showmakeup we can visualise everything automatically and we can
get some insight on the features of ConTEXt and TEX.

Layout 70

Aligned boxes 4

The next example shows that we can use TEX for more than only the straight forward type-
setting. However, to be able to do this, one should have some insight in the manipulation of
boxes. We use buffers to enhance comprehensibility.

\startbuffer[water]
Drink geen water \crlf direct uit de kraan! \blank

\start
\tfx \setupinterlinespace Het drinkwater is tijdelijk niet betrouwbaar.
Kook het water voor consumptie ten minste 2~minuten. Zodra het water
weer betrouwbaar is, krijgt u bericht. \par

\stop

\blank[2*big]

\language[en] Do not drink water \crlf directly from the tap! \blank

\start
\tfx \setupinterlinespace The water is temporarily unfit for drinking.
Boil the water during at least 2~minutes before consumption. As soon
as the water is reliable again, you will be notified. \par

\stop
\stopbuffer

This text is typeset in a framed box. We use two temporary boxes. The first determines the
height of the second one. Instead of \tfx\setupinterlinespace you could use \switchto-
bodyfont to switch to a narrower bodyfont. ([small]). The \par is essential!

\framed[offset=\bodyfontsize]
{\setbox0=\vbox

{\hsize 16em\switchtobodyfont[ss]\getbuffer[water]}
\setbox2=\vbox to \ht0
{\vfill\externalfigure[vew1091a][width=5cm]\vfill}

\hskip1em\box2\hskip1em\box0\hskip1em}

The result —an example of a drinking water warning— is shown below.

name: dummy

file: vew1091a

state: unknown

Drink geen water
direct uit de kraan!
Het drinkwater is tijdelijk niet betrouwbaar.
Kook het water voor consumptie ten minste
2 minuten. Zodra het water weer betrouwbaar
is, krijgt u bericht.

Do not drink water
directly from the tap!
The water is temporarily unfit for drinking. Boil
the water during at least 2 minutes before con-
sumption. As soon as the water is reliable
again, you will be notified.

71 Layout

4 Makeup

4.19 Makeup
A document may have a titlepage, a colofon and some pages that are not directly related to
the main part of the document. Mostly these pages are not numbered and can do without
headers and footers. Because their layout needs extra attention we prefer the word makeup
for defining their specific layout.

The commands \startstandardmakeup and \stopstandardmakeup exclude text from the
standard pagebody and its layout. Below a simple example is given. You will notice com-
mands like \vfill, \blank, \tf and even \crlf and \vskip.

\startstandardmakeup
\tfd Jobs around the house \blank[2*big]
\tfb Part 1: Gas, water and electricity \vfill
\tfb J. Hagen \crlf A.F. Otten \blank
\tfb Hasselt \crlf \currentdate[month,year]

\stopstandardmakeup

In double--sided documents an empty page is generated that functions as the backside of the
title page. However sometimes this backside should also be typeset.

\startstandardmakeup[doublesided=no]
... the front
\stopstandardmakeup
\startstandardmakeup[page=no]
... the back
\stopstandardmakeup

Because double--sided typesetting is turned off, a backside page is not generated. And
because the key page is no the next page does not get the layout of a right hand side page
(this would be default).

With the command \showframe frames can be made visible (temporarily) around the made
up text. This is very convenient during the typesetting of separate pages.

Next to the command \startstandardmakeup one can define his own layout with different
dimensions by means of:

\definemakeup [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 inherits from \setupmakeup

Layout 72

Makeup 4

\setupmakeup [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 width = DIMENSION
height = DIMENSION
voffset = DIMENSION
hoffset = DIMENSION
page = left yes right
commands = COMMAND
doublesided = yes no empty
headerstate = normal stop start empty none nomarking
footerstate = normal stop start empty none nomarking
textstate = normal stop start empty none nomarking
topstate = stop start
bottomstate = stop start
pagestate = stop start
color = IDENTIFIER

unknown setup ‘start«name»makeup’

The first command generates a \start...stop--pair between which the new typesetting com-
mands can be typed. Bij default the result of this new layout is typeset on an empty page.
The new layout is marked with name, for selection at a later stage (see section ??).

The commands that are provided after the key commands are executed immediately when a
new layout is called. In this local layouts can be defined.

5 Introduction

5 Typography

5.1 Introduction
Throughout the millennia humans have developed and adapted methods for storing facts
and thoughts on a variety of different media. A very efficient way of doing this is using
logograms, as the Chinese have done for ages. Another method is to represent each syllable
in a word by a symbol, as the Japanese do when writing telegrams. However, the most
common way of storing characters is by using a limited set of shapes representing basic
sounds (a.k.a. phonemes). Such a collection is called an alphabet, and the shapes are called
letters.
TEX is primarily meant for typesetting languages that use this third method. The other two
methods can also be dealt with, but some extra effort is needed. In this chapter we will focus
on languages that use alphabets, the other methods will be explained in later chapters.
The shapes representing the characters that make up an alphabet are more or less standard-
ized, and thereby can be recognized by readers even if their details differ. A collection of
pictures representing character shapes is called a font, and the pictures in a font are called
glyphs.
The example below shows (from left to right) a Computer Modern font, a Helvetica lookalike,
a Times Roman lookalike and the Antiqua Torunska font, all scaled to 48pt.

gap gap gap gap
As you can see, quite some design variation is possible. It follows that when fonts from
different sources (designers) are intermixed, the result is not always pleasing to look at. The
term font collection refers to a set of fonts combined together in such a way that the overall
appearance on a page looks good and reading is as comfortable as possible.
The next example shows an attempt at such a font collection: the fonts were picked such that
the glyph sizes and the line thicknesses are roughly the same.

kap kap kap
Fonts from a single source often already come in a few variations that are intended to be
used together. Such a set of fonts with the same basic design is known as a font family. In
the example below there are a normal, a bold, an italic, and a bold italic alternative of a font.

lap lap lap lap

Typography 74

Introduction 5

The distance between the individual glyphs in a word and the actual glyphs that are used
depends on the combinations of these glyphs. In the top line of the next sample, the gap
between the b and the o as well as the distance between the o and the x is slightly altered.
This is called kerning. Further, the separate glyphs for the f and the i have been combined
into a single one. This is called ligaturing.

box
box

file
file

The font shown here is Computer Modern, the default TEX font. This font is designed by
Donald Knuth. The Computer Modern has many kerning pairs, while the Palatino--like font
that is used for most of the text in this manual has only a few, while both have essentially
the same list of ligatures.
Micro--typography like kerning pairs and ligatures are not to be altered by the user, but are
part of the font design and the required data is stored inside the font file, together with the
drawing routines for the actual pictures. It is possible for the user to alter fonts and interline
spacing and some more aspects on the level of macro--typography. The choice of font is the
main topic of this chapter.
There are many different methods that can be used to classify fonts. There are classification
systems based on the period in which the style was first developed; on the characteristics of
the font; or the font application, like a newspaper or a book. Often, classification systems
mix these characteristics to a certain point.
For example, the Computer Modern family can be classified as a ‘modern’ font. This is
a classification that primarily indicates a period (late 18th century), but it also implies a
particular shape: ‘modern’ fonts have a high contrast between thick and thin strokes, and
their stress axis is perfectly vertical.
At the same time, specific fonts in the Computer Modern family can be classified as ‘serif’
(glyphs strokes have embellishments at the end), ‘sans serif’ (shapes end abruptly), or ‘mono-
spaced’ (all glyphs have the same width).
The Computer Modern family is in fact inspired by one font in particular: ‘Modern 8a’
by the Monotype corporation. Knuth implemented Computer Modern in MetaFont using
parameters so that he could generate a whole collection of fonts all closely matching each
other in style. In ConTEXt you will normally use a reimplementation of Computer Modern
using a more modern file format (Type 1 or OpenType). This new version is called ‘Latin
Modern’, and also features an extended glyph set making it usable for languages that could
not be typeset with Knuth’s original fonts.

ok ok ok ok ok
In this example you see five font styles of Latin Modern: the Roman, Sans, Typewriter,
Smallcaps and Variable Typewriter. Computer Modern is one of the few font families that

75 Typography

5 The mechanism

comes with dedicated design sizes. The example below shows the differences of a 5, 7, 9, 12
and 17 point design scaled up to 48 points. Such nuances in font size are seldom seen these
days.

ok ok ok ok ok
As explained earlier, the general appearance of a font style can be classified according to
many schemes, and the exact terminology used depends on the background of the user. In
table 5.1 you can see some examples of the terms that are used by various people to identify
the three font styles that are most often found together within a single book design (such as
for a software manual).

terms intented usage
regular, serif, roman main text
support, sans section headings
teletype, mono, type code examples

Table 5.1 Some ways of identifying the font styles in a document design.

Within the lists of terms, the earlier names are normally used by typographers and book
designers, the later ones are commonly used in TEX. In ConTEXt all of these terms can be
used intermixed because they are all remapped to the same set of internal commands. As
will be explained later, the command \rm is used to switch to the style used for the main
text (this is usually a font style with serifs), \ss to switch to the support style (usually a style
without serifs) and \tt to switch to the code example style (for which usually monospaced
fonts are used).

Text can be typeset in different font sizes. The unit pt, short for ‘printer’s point’, is normally
used to specify the size of a font. There are a little over 72 points per inch (or a little under
2.85 points per millimeter, if you prefer metric units). Traditionally, font designers used to
design a glyph collection for each point size, but nowadays most fonts have only a single
design size of 10 points, or at most a small set of sizes with names indicating their proposed
use, like caption, text, and display.

The next sections will go into the details of switching of font styles and fonts in your docu-
ments. Be warned that the font switching mechanism is rather complex. This is due to the
different modes like math mode and text mode in ConTEXt. If you want to understand the
mechanism fully, you will have to acquaint yourself with the concept of encoding vectors
and obtain some knowledge on fonts and their peculiarities. See the next chapter for more
information.

5.2 The mechanism
Font switching is one of the oldest features of ConTEXt because font switching is indispensable
in a macro package. During the years extensions to the font switching mechanism were

Typography 76

Font switching 5

inevitable. The following starting points have been chosen during the development of this
mechanism:
• It must be easy to change font styles, e.g., switching between roman (serif, regular), sans

serif (support), teletype (monospaced) etc. (\rm, \ss, \tt etc.)
• More than one alternative set of glyphs shapes must be available like italic and bold (\it

and \bf).
• Different font families like Latin Modern Roman and Lucida Bright must be supported.
• It must be possible to combine different families into font collections.
• Different sub-- and super--scripts must be available. These script sizes have to be consistent

across the switching of family, style and alternative.
• It should be possible to combine all of these requirements into a single definition unit

called a body font.
• Changing the global font collection as well as the size must also be easy, and so sizes

between 8pt and 14.4pt must be available by default.
Before reading further, please stop for a moment to make sure you thoroughly comprehend
the above paragraphs. ConTEXt’s terminology probably differs from what you are accustomed
to, especially if you were previously a LaTEX user.

5.3 Font switching
The mechanism to switch from one style to another is somewhat complex, not in the least
because the terminology is a bit fuzzy. A quick recap: we call a collection of fonts, like
Lucida or Computer Modern Roman, a family. Within such a family, the members can be
grouped according to characteristics. Such a group is called a style. Examples of styles within
a family are: ‘roman’, ‘sans serif’ and ‘teletype’. We saw already that there can be alternative
classifications, but they all refer to the presence of serifs and the glyphs having equal widths.
Within a style there can be alternatives, like ‘boldface’ and ‘italic’.
There are different ways to change into a new a style or alternative. You can use \ss to
switch to a sans serif font style and \bf to get a bold alternative. When a different style
is chosen, the alternatives adapt themselves to this style. Often a document will be mostly
typeset using just one combination of family and style. This is called the bodyfont.
Consistent use of commands like \bf and \it in the text will automatically result in the
desired bold and italic alternatives when you change the family or style in the setup area of
your input file.

5.3.1 Font style switching
Switching to another font style is done by one of five two-letter commands that are listed
in table 5.2.
The ‘handwritten’ and ‘calligraphic’ font styles are sometimes useful when dealing with very
elaborate document layout definitions. In the ConTEXt distribution only the Lucida font
family uses these styles; in any other font set they are simply ignored. You could use them
in your own font setups if you so desire. See the next chapter for font setup definitions.
There is a sixth internal style that is only ever referred to as ‘mm’. This style handles math
fonts. It does not make sense to use this style directly so there is no command attached to
it, but it is quite important internally so it makes sense to introduce it right away.

77 Typography

5 Font switching

\rm serif, regular, roman, rm
\ss sans, support, sansserif, ss
\tt mono, type, teletype, tt
\hw handwritten, hw
\cg calligraphic, cg
– mm

Table 5.2 Font style switching commands

5.3.2 Font alternative switching
The alternatives within a style are given in table 5.3. Not all fonts have both italic and slanted
or the bold alternatives of each. Some other fonts do not have small caps or have only one
set of digits. When an alternative is not known, ConTEXt will attempt to choose a suitable
replacement automatically. For instance, the italic alternative may be used for if slanted is
not available or vice versa.

\bf bold
\it italic
\bi bolditalic, italicbold
\sl slanted
\bs boldslanted, slantedbold
\sc smallcaps
\os mediaeval (from oldstyle)
\tf normal (from typeface)

Table 5.3 Font alternative switching commands and their keyword equiva-
lents. With \os you tell ConTEXt that you prefer mediaeval or old--style num-
bers as in 139 over 139.

Besides these two-letter commands, there is a series of font selector commands with a suffix
attached. Some examples of that are:

\tfx \bfx \slx \itx
\tfa \tfb \tfc \tfd \tfxx

Each of the ordered alphabetic suffixes a, b, . . . select a somewhat larger actual font than the
previous one. The x and xx suffixes select smaller and yet smaller versions.

\bfx smallbold
\itx smallitalic
\bix smallbolditalic, smallitalicbold
\slx smallslanted
\bsx smallboldslanted, smallslantedbold
\tfx small, smallnormal

Table 5.4 Small alternative switching commands and their keyword equiva-
lents.

Typography 78

Font switching 5

The ‘small’ switches mentioned in table 5.4 are always available. The availability of other
commands like \ita, \bfxx, \bfc, etc. depends on the completeness of the font definition
files. For the core ConTEXt fonts, you can count on at least \tfa, \tfb, \tfc, \tfd, and \tfxx
being defined. For the others, just try and see what happens.
When you have chosen a larger character size, for example \tfb, then \tf equals \tfb, \bf
equals \bfb, etc. This method is almost always preferable over returning to the original
character size, but it may catch you off-guard.
More generic font scaling commands are also available:
\tx \txx
\setsmallbodyfont \setbigbodyfont

The command \tx adapts itself to both the style and the alternative. This command is rather
handy when one wants to write macros that act like a chameleon. Going one more step
smaller, is possible too: \txx. Using \tx when \tx is already given, is equivalent to \txx.
The commands \setsmallbodyfont and \setbigbodyfont switch to the ‘small’ and ‘big’
body font sizes. These relative sizes are defined via the ‘body font environment’, see sec-
tion 5.9.
The various commands will adapt themselves to the actual setup of font and size. For
example:
{\rm test {\sl test} {\bf test} \tfc test {\tx test} {\bf test}}
{\ss test {\sl test \tx test} {\bf test \tx test}}

will result in:
test test test test test test
test test test test test

When the \rm style is active, ConTEXt will interpret the command \tfd as if it was \rmd,
when the style \ss is active, \tfd as is treated as \ssd. All default font setups use tf--setups
so they will automatically adapt to the current font style.
The remainder of this section is for the sake of completeness. Use of the following commands
in new documents is discouraged.
Frequent font switching leads to longer processing times. When no sub- or superscripts are
used and you are very certain what font you want to use, you can perform fast font switches
with: \rmsl, \ssbf, \tttf, etc.
The plain TEX compatible font switches \vi, \vii, \viii, \ix, \x, and \xii are also defined,
these have local effects like \tfx and \tfa.

5.3.3 Switching font styles in setup commands
A number of ConTEXt commands use the parameter style to set the used font. The parameter
mechanism is rather flexible so that within the parameter style you can use any of the font
switching commands like \bf or bf or \switchtobodyfont, but also a number of keywords
like
normal bold italic bolditalic slanted boldslanted type
small smallbold smallitalic ... smallslanted ... smalltype
capital

79 Typography

5 Emphasize

Most of these keywords have already been listed in the tables 5.3 and 5.4, but a few pre-
defined ones have not been mentioned yet. These are displayed in table 5.5, together with
the commands they execute. As is normal in ConTEXt, you can extend the list of accepted
keywords by defining your own. This will be explained in section ?? in the next chapter.

\tt type, mono
\ttx smalltype
\ss sans, sansserif
\ss \bf sansbold
\setsmallbodyfont smallbodyfont
\setbigbodyfont bigbodyfont
\smallcapped cap, capital
\WORD WORD

Table 5.5 Remaining font alternative keywords.

5.4 Emphasize
Within most macro--packages the command \em is available. This command behaves like a
chameleon which means that it will adapt to the actual typeface. In ConTEXt \em has the
following characteristics:
• a switch to italic or slanted is possible
• a switch within \bf results in bold italic or bold slanted (when available)
• a so called italic correction is performed automatically (\/)
The bold italic or bold slanted characters are supported only when \bs and \bi are available.
The mnemonic {\em em} means {\em emphasis}.
{\em The mnemonic {\em em} means {\em emphasis}.}
{\bf The mnemonic {\em em} means {\em emphasis}.}
{\em \bf The mnemonic {\em em} means {\em emphasis}.}
{\it The mnemonic em {\em means \bf emphasis}.}
{\sl The mnemonic em {\em means \bf emphasis}.}

This results in:
The mnemonic em means emphasis.
The mnemonic em means emphasis.
The mnemonic em means emphasis.
The mnemonic em means emphasis.
The mnemonic em means emphasis.
The mnemonic em means emphasis.
The advantage of the use of \em over \it and/or \sl is that consistent typesetting is enforced.
By default emphasis is set at slanted, but in this text it is set at italic. This setting is made via
\setupbodyfontenvironment, see section 5.9 for more details:
\setupbodyfontenvironment

[default]
[em=italic]

Typography 80

Line spacing 5

5.5 Line spacing
In TEX linespacing is determined by a number of variable dimensions like \topskip, \parskip
and \baselineskip. However, in ConTEXt these variables are related to the bodyfont size.

A line has a height and a depth. The distance between two lines is normally equal to the
sum of the maximum height and maximum depth:

+ =

This sum is in ConTEXt equal to 2.8ex, so almost three times the height of an x. This is
about 1.2 times the bodyfont height. The proportion between maximum height and depth is
.72 : .28 by default. Linespacing alters when a new bodyfont is used or when linespacing is
defined explicitly by \setupinterlinespace (which is explained later):

Sometimes a line does not have the maximum height or depth. The next example illustrates
this:

It says:

The height and depth of lines differs.

When we put two of these lines above each other we will get:

You can see that the distance is somewhat bigger that the sum of the height and depth of
each separate line. This distance is called the baseline distance (\baselineskip) and is in
this document 13.8292pt. If we add some extra height to the line we see this:

To prevent the lines from touching TEX adds a \lineskip, in our example 1.0pt. In a similar
way TEX is taking care of the first line of a page to have at least a height of \topskip (here
11.0pt plus 55.0pt).

Linespacing is set up by:

\setupinterlinespace [...]
OPTIONAL

*

* reset small medium auto big on off

Linespacing adapts to the size of the actual bodyfont automatically. This means that the user
can leave this command untouched, unless a different linespacing is wanted. Instead of a fac-
tor one of the predetermined values small (1.0), medium (1.25) or big (1.5) can be given. Below
an example is given of a text with a linespacing of 1.25: \setupinterlinespace[medium].

Whenever it comes to my mind that “everything that comes in quantities, will some-
how survive”, I also got the feeling that in a few hundred years people will draw
the saddening conclusion that all those top--ten hits produced by computers represent

81 Typography

5 Line spacing

the some of todays musical and instrumental abilities. Isn’t it true that archaeologists
can spend a lifetime on speculating about some old coins from the first century? On
the other hand, the mere fact that one can have success with this type of non--music
success of some top--hit musicians demonstrates both the listeners inability to rate
the product and the lack of self criticism of the performers. In principle the future
archaeologist will therefore draw the right conclusion.

When you make a font switch the linespacing is adapted when you give the command
\setupinterlinespace without any setup parameters and also when you add the key reset,
for example
\setupinterlinespace[reset,medium]

The text below is typeset in the fontsize \tfa, using the following input:
\start \tfa \setupinterlinespace
In books meant for children we often find
a somewhat ... when needed. \par \stop

In this example the \par is necessary because TEX operates on whole paragraphs. Within a
group one has to close the paragraph explicitly with an empty line or \par otherwise TEX will
have forgotten the linespacing before the paragraph is finished (as in that case, the paragraph
is ended by the empty line after the \stop).
The word height is typeset inside a bare \tfd group, to illustrate why \setupinterlinespace
is required.

In books meant for children we often find a somewhat bigger typeface,
for instance because we are convinced that this enables them to read
the book themselves. On the other hand, I can also imagine that it is
a cheap way to increase the number of pages. Unfortunately scaling
up will also uncover the lack of quality of the typesetting used and/or
the lack of typographic knowledge of the user of such a system. The
interline space sometimes differs on a line by line basis, and depends
on the height of the current line. Therefore, when changing the
style, something that should only be done on purpose, also change the
baseline distance when needed.

Instead of a keyword, one can pass a key--value pair to define the characteristics of a line.

\setupinterlinespace [..,.=.,..]
*

* height = NUMBER
depth = NUMBER
line = DIMENSION
top = NUMBER
bottom = NUMBER

The default settings are:

Typography 82

Capitals 5

\setupinterlinespace
[height=.72,
depth=.28,
top=1.0,
bottom=0.4,
line=2.8ex]

The height and depth determine the ratio between the height and depth of a line. The
baseline distance is set to 2.8ex. The parameters top and bottom specify the relation between
the bodyfont size and the height of the first line and the depth of the last line on a page.
They are related to TEX’s \topskip and \maxdepth.

We will see later that instead of setting the spacing at the document level, i.e. for each font,
you can set the spacing per body font environment:

\setupbodyfontenvironment
[modern] [12pt]
[interlinespace=14pt]

5.6 Capitals
Some words and abbreviations are typeset in capitals (uppercase). ConTEXt provides the
following commands for changing both upper-- and lowercase characters into capitals.

\cap {...}*

* TEXT

\Cap {...}*

* TEXT

\CAP {...}*

* TEXT

\Caps {..}*

* WORD

The command \cap converts all letters to capitals at the size of \tx. If you switch to italic
(\it), bold (\bf), etc. the capital letter will also change. Since \cap has a specific meaning in
math mode, the formal implementation is called \smallcapped. However in text mode one
can use \cap.

Capitals for \cap {UK} are \cap {OK} and capitals for \cap {USA} are
okay. But what about capitals in \cap {Y2K}.

83 Typography

5 Capitals

this results in:

Capitals for UK are OK and capitals for USA are okay. But what about capitals in Y2K.

A \cap within a \cap will not lead to any problems:

\cap {People that have gathered their \cap {capital} at the cost of other
people are not seldom \nocap {decapitated} in revolutionary times.}

or:

PEOPLE THAT HAVE GATHERED THEIR CAPITAL AT THE COST OF OTHER PEOPLE ARE NOT SELDOM
decapıtated IN REVOLUTIONARY TIMES.

In this example you can see that \cap can be temporarily revoked by \nocap.

\nocap {...}*

* TEXT

The command \Cap changes the first character of a word into a capital and \CAP changes
letters that are preceded by \\ into capital letters. With \Caps you can change the first
character of several words into a capital letter.

\setupcapitals [..,.=.,..]
*

* title = yes no
sc = yes no

With this command the capital mechanism can be set up. The key sc=yes switches to real
Small Caps. The key title determines whether capitals in titles are changed.

Next to the former \cap--commands there are also:

\Word {...}*

* WORD

and

\Words {..}*

* WORD

These commands switch the first characters of a word or words into capitals. All characters
in a word are changed with:

\WORD {...}*

* WORD

Typography 84

Character spacing 5

Let’s end this section with real small capitals. When these are available the real small caps
\sc are preferred over the pseudo--capital in abbreviations and logos.

In a manual on \TeX\ and Con\TeX t there is always the question whether
to type \cap{\TeX} and \cap{Con\TeX t} or {\sc \TeX} and {\sc Con\TeX t}.
Both are defined as a logo in the style definition so we type \type {\TEX}
and \type {\CONTEXT}, which come out as \TEX\ and \CONTEXT.

Results in:

In a manual on TEX and ConTEXt there is always the question whether to type TEX and CONTEXT
or TEX and ConTEXt. Both are defined as a logo in the style definition so we type \TEX and
\CONTEXT, which come out as TEX and ConTEXt.

It is always possible to typeset text in small capitals. However, realize that lower case
characters discriminate more and make for an easier read.

An important difference between \cap and \sc is that the latter command is used for a
specific designed font type. The command \cap on the other hand adapts itself to the actual
typeface: KAP, KAP, KAP, etc.

5.7 Character spacing
Some typesetting packages stretch words (inter character spacing) to reach an acceptable
alignment. In ConTEXt this not supported. On purpose! Words in titles can be stretched by:

\stretched {...}*

* WORD

\hbox to \hsize {\stretched{there\\is\\much\\stretch\\in ...}}
\hbox to 20em {\stretched{... and\\here\\somewhat\\less}}

With \\ you can enforce a space ({} is also allowed).

t h e r e i s m u c h s t r e t c h i n . . .
. . . a n d h e r e s o m e w h a t l e s s

These typographically non permitted actions are only allowed in heads. The macros that
take care of stretching do this by processing the text character by character.

This chapter will not go into the details of underlining because using underlining for typo-
graphical purposes is a bad practice. Instead, the commands related to under- and over-lining
are discussed in section 14.5 (“Underline”).

5.8 Selecting bodyfonts
The bodyfont (main font), font style and size is set up with:

85 Typography

5 Selecting bodyfonts

\setupbodyfont [...,...]*

* IDENTIFIER serif regular roman sans support sansserif mono type teletype
handwritten calligraphic 5pt ... 12pt

In a running text a temporary font switch is done with the command:

\switchtobodyfont [...,...]*

* IDENTIFIER serif regular roman sans support sansserif mono type teletype
handwritten calligraphic 5pt ... 12pt small big

This command doesn’t change the bodyfont in headers and footers. With small and big you
switch to a smaller or larger font.
In most cases, the command \setupbodyfont is only used once: in the style definition, and
font switching inside the document is done with \switchtobodyfont. Don’t confuse these
two because that may lead to some rather strange but legitimate effects.

5.8.1 Body font sizes
Body font sizes actually consist of two components: the font size and a number of indirect
parameters. Think of things like the font size used in headers, footers, footnotes, sub-- and
superscripts, as well as the interline space and a few others.
This is why in ConTEXt there is the concept of a body font environment (expressed as a dimen-
sion), and that is what you pass as an argument to \setupbodyfont or \switchtobodyfont.
The definitions as presented above indicate 5pt ... 12pt for the body font environment,
but actually any dimension is acceptable.
The most frequently used sizes are predefined as body font environments: 4pt . . . 12pt, 14.4pt,
and 17.3pt. But when you use a different, not-yet-defined size specification —for example in
a title page— ConTEXt will define a body font environment for that size automatically. While
doing so, ConTEXt normally works with a precision of 1 decimal to prevent unnecessary
loading of fontsizes with only small size differences.
Be warned that in this case, the results may be a less than ideal. The reason is that ConTEXt
not just has to load the actual font, but it also has to guess at the various other settings like
the relative font sizes and the interline space. It does so by using the values from the nearest
smaller body font environment is that is already defined.
You can extend the list of predefined body font environments and even alter the precision in
body font matching. See section 5.9 for detailed information about how to tweak or define
your own body font sizes.
To end this section, the example below demonstrates how the interline space is adapted
automatically, when changing the size of the bodyfont. Consider this input:
{\switchtobodyfont[14.4pt] with these commands \par}
{\switchtobodyfont[12pt] for font switching \par}
{\switchtobodyfont[10pt] it is possible to \par}
{\switchtobodyfont[8pt] produce an eye test: \par}
{\switchtobodyfont[6pt] a x c e u i w m q p \par}

Typography 86

Selecting bodyfonts 5

The actual ConTEXt behaviour is shown below on the left. On the right you can see what
would have happened if the interline space were not automatically adapted.

with these commands
for font switching
it is possible to
produce an eye test:
a x c e u i w m q p

with these commands
for font switching
it is possible to
produce an eye test:

a x c e u i w m q p

5.8.2 Body font identifiers
In the definition block of setupbodyfont there was a list of words given besides the special
marker IDENTIFIER. These words are the symbolic ConTEXt names for the font styles that we
ran into earlier, with a few aliases so that you do not have to worry about the actual naming
convention used. The symbolic names are mapped to two-letter internal style abbreviations
that are used internally. See table 5.2 for an overview.

Although the macro syntax does not say so, you can use two-letter internal style abbreviations
(ss, rm) as well as the longer names, if you prefer.

We have seen already that there are other and easier ways to switch the font style, so if
\setupbodyfont could only be used for this purpose it would not be all that useful. But
luckily there is more: the optional IDENTIFIER can be a ‘body font name’ (aka ‘typeface’).
Such names have to be predefined, perhaps in a font support file, or simply on earlier lines
in the style definition.

A ‘typeface’ is a symbolic name that links a single font style to actual font families. Such
symbolic names are typically grouped together in a definition block that sets up values that
link the four styles \rm, \ss, \tt and \mm to fonts in a ‘font collection’, and such definition
blocks are called ‘typescripts’.

ConTEXt expects you to define your own font setups, but there are quite a few examples
predefined in various typescript files. Not all of those are perpetually loaded, so you usually
have to execute a typescript explicitly to get the typeface names predefined. To this end,
typescripts themselves also have names.

Executing a typescript is done by \usetypescript. We will get back to \usetypescript later
because it is in fact a very flexible command, but let’s discuss simple usage first.

\usetypescript [...,...]1 [...,...]
OPTIONAL

2 [...,...]
OPTIONAL

3

1 IDENTIFIER

2 IDENTIFIER

3 IDENTIFIER

A typical input sequence for selecting the predefined ‘palatino’ set of typefaces in MkII will
look like this:

\usetypescript[palatino][ec]
\setupbodyfont[palatino,12pt]

87 Typography

5 Selecting bodyfonts

In this example the typescript named palatino is asked for in the ec font encoding, and that
defines a set of typefaces under the name palatino. These are then used by \setupbodyfont
and eventually this makes pdfTEX load the free Type 1 font URW Palladio in the correct
encoding. URW Palladio is a font that looks a lot like the commercial font Linotype Palatino
by Hermann Zapf, which explains the name of the typescript and typefaces.

Font encodings will be handled fully in the section 5.15. For now, please take for granted
the fact that pdfTEX needs a second argument to \usetypescript that specifies an encoding
name, and that there is a fixed set of acceptable names that depends on the typescript that
is being requested.

In X ETEX and MkIV the situation is a little bit different because fonts are reencoded to match
Unicode whenever that is possible. That in turn means that X ETEX and MkIV prefer to use
OpenType fonts over Type 1 fonts, so different typescript definitions are used behind the
scenes, and the second argument to \usetypescript becomes optional.

For example,

\usetypescript[palatino]
\setupbodyfont[palatino,12pt]

will make X ETEX and LuaTEX load the OpenType font Pagella. This is a free font from the
TEX Gyre project, that also looks just like the commercial font Linotype Palatino. You may as
well leave the second argument in place: while it will always be ignored by LuaTEX, X ETEX
will actually use that encoding if the typescript uses Type 1 fonts instead of the more modern
OpenType or TrueType font formats.

All predefined typescripts attach meaning to (at least) the three basic text font styles(serif,
sans, and mono), so you can e.g. do this:

\usetypescript[times][ec]
\setupbodyfont[times,sans,12pt]

and end up using the OpenType font TEX Gyre Heros or the Type 1 font URW Nimbus Sans L.
Both fonts are very similar in appearance to Linotype Helvetica, by the way.

The typescripts that come with the ConTEXt distribution are placed in source files that have
names that start with type-. Some of these files are automatically loaded when needed, but
most have to be loaded explicitly. There is a list in table 5.6

Some of the internal building blocks for typescripts are themselves located in yet other files
(font size and font map file information, for example). Normally, when ConTEXt has to load
typescript information from files, it will try to save memory by only executing the typescript
it needs at that moment and discarding all other information. If you have enough memory
at your disposal, you can speed up typescript use considerably by adding

\preloadtypescripts

in your preamble or your cont-usr.tex. This will make ConTEXt store all the typescript
information in internal token registers the first (and therefore only) time it loads the actual
files.

Typography 88

Selecting bodyfonts 5

File Loaded Loaded Loaded Description
by pdfTEX by X ETEX by MkIV

type-akb no no no PostScript fonts using psnfss names (Type 1)
type-buy no no no Various commercial fonts (Type 1)
type-cbg no no no Greek free fonts (Type 1)
type-cow no no no The ConTEXt cow font (Type 1)
type-exp no no no Commercial Zapf fonts (OpenType)
type-fsf no no no Commercial Fontsite 500 fonts (Type 1)
type-ghz no no no Commercial Zapf fonts (Type 1)
type-gyr no no no The TEX Gyre project fonts (Type 1)
type-hgz no no no Commercial Zapf fonts (OpenType)
type-msw no no no Fonts that come with Microsoft Windows (Type 1)
type-omg no no no Omega free fonts (Type 1)
type-one yes no no Various free fonts (Type 1)
type-otf no yes yes Various free fonts (OpenType)
type-xtx no yes no Fonts that come with MacOSX (OpenType)

Table 5.6 The typescript source files that are part of ConTEXt.

Explicit loading one of those files is done via the macro \usetypescriptfile.

The predefined typescripts, the typefaces they define, the files in which they are contained in
the ConTEXt distribution, and the encodings they support in MkII mode are listed in table 5.7.
In the following section there is a table (5.8) that explains what font set each typescript
attaches to each of the font styles.

\usetypescriptfile [...,...]*

* FILE

For example, the following

\usetypescriptfile[type-buy]
\usetypescript[lucida][texnansi]
\setupbodyfont[lucida,12pt]

will make pdfTEX use the Lucida Bright font family. Because this is a commercial font,
this only works correctly if you have actually bought and installed the fonts. This uses the
texnansi encoding because that is the preferred encoding of the actual fonts.

This is a good moment to explain a little trick: because the various type-xxx files define the
building blocks for typescripts as well as the actual typescripts, it is sometimes possible to
alter the effect of a typescript by loading an extra typescript file. For example,

\usetypescriptfile[type-gyr]
\usetypescript[palatino][ec]
\setupbodyfont[palatino,12pt]

will result in pdfTEX using the Type 1 font Pagella from the TEX Gyre project instead of the
older and less complete URW Palladio, because the definition of the building blocks for the
palatino typescript that is in the type-gyr file overwrites the preloaded definition from the
type-one file.

Two of the files in the ConTEXt distribution exist precisely for this reason:

89 Typography

5 Selecting bodyfonts

Typescript Typeface File Encodings
antykwa-torunska antykwa type-one, type-otf texnansi,ec,8r,t2a
fourier fourier type-one ec
iwona iwona type-one, type-otf texnansi,ec,8r,t2a
iwona-heavy iwona-heavy type-one, type-otf texnansi,ec,8r,t2a
iwona-light iwona-light type-one, type-otf texnansi,ec,8r,t2a
iwona-medium iwona-medium type-one, type-otf texnansi,ec,8r,t2a
modern modern type-one, type-otf texnansi,ec,qx,t5,default
modern-base modern type-one, type-otf texnansi,ec,qx,t5,default,t2a/b/c
modernvariable modernvariable type-one, type-otf texnansi,ec,qx,8r,t5
palatino palatino type-one, type-otf texnansi,ec,qx,8r,t5
postscript postscript type-one, type-otf texnansi,ec,qx,8r,t5
times times type-one, type-otf texnansi,ec,qx,8r,t5
OmegaLGC omlgc type-omg (unspecified)
cbgreek cbgreek type-cbg (unspecified)
cbgreek-all cbgreek-all type-cbg (unspecified)
cbgreek-medium cbgreek-medium type-cbg (unspecified)
cow cow type-cow default
sheep sheep type-cow default
lucida lucida type-buy texnansi,ec,8r
lucidabfm lucida type-buy texnansi,ec,8r
lucidabfm lucidabfm type-buy texnansi,ec,8r
lucidaboldmath lucida type-buy texnansi,ec,8r
lucidaboldmath lucidaboldmath type-buy texnansi,ec,8r
optima optima type-one texnansi,ec,qx
optima optima type-ghz texnansi,ec,qx
optima-nova optima type-ghz, type-hgz texnansi,ec
optima-nova-os optima-os type-ghz, type-hgz texnansi,ec
palatino palatino type-hgz (cannot be used in MkII)
palatino-informal palatino-informal type-hgz (cannot be used in MkII)
palatino-light palatino-light type-exp (cannot be used in MkII)
palatino-medium palatino-medium type-exp (cannot be used in MkII)
palatino-normal palatino-normal type-exp (cannot be used in MkII)
palatino-nova palatino type-hgz (cannot be used in MkII)
palatino-sans palatino type-hgz (cannot be used in MkII)

Table 5.7 The typescripts. Typescripts that use commercial fonts are typeset in
bold. Typescripts above the horizontal line are preloaded.

type-gyr.tex
maps the typical PostScript font names for the free URW fonts to the TEX Gyre set;

type-akb.tex
maps the same names to the commercial Adobe fonts.

For the definitions in the second file to work, you also need to execute an extra typescript:

\usetypescriptfile [type-akb]
\usetypescript [adobekb] [ec]

\usetypescript [palatino] [ec]
\setupbodyfont[palatino,12pt]

5.8.3 Typeface definitions
Defining a typeface goes like this:

Typography 90

Selecting bodyfonts 5

\starttypescript [palatino] [texnansi,ec,qx,t5,default]

\definetypeface[palatino] [rm] [serif][palatino] [default]
\definetypeface[palatino] [ss] [sans] [modern] [default] [rscale=1.075]
\definetypeface[palatino] [tt] [mono] [modern] [default] [rscale=1.075]
\definetypeface[palatino] [mm] [math] [palatino] [default]

\stoptypescript

This defines a typescript named palatino in five different encodings. When this typescript
is executed via \usetypescript, it will define four typefaces, one of each of the four basic
styles rm, ss, tt, and mm.

\definetypeface [...]1 [...]2 [...]3 [...]4 [...]
OPTIONAL

5 [.=.]
OPTIONAL

6

1 TEXT

2 rm ss tt mm hw cg

3 IDENTIFIER

4 IDENTIFIER

5 IDENTIFIER

6 features = IDENTIFIER
rscale = NUMBER
encoding = IDENTIFIER
text = IDENTIFIER

The third and fourth arguments to \definetypeface are pointers to already declared font
sets; these are defined elsewhere. Table 5.8 gives the full list of predefined typescripts (the
first argument of \starttypescript) and font sets that are attached to the styles (the third
and fourth argument of each \definetypeface).
The names in the third argument (like serif and sans) do not have the same meaning as
the names used in \setupbodyfont. Inside \setupbodyfont, they were keywords that were
internally remapped to one of the two-letter internal styles. Inside \definetypeface, they are
nothing more than convenience names that are attached to a group of fonts by the person that
wrote the font definition. They only reflect a grouping that the person believed that could be
a single font style. Oftentimes, these names are identical to the official style keywords, just
as the typescript and typeface names are often the same, but there can be (and sometimes
are) different names altogether.
How to define your own font sets will be explained in the next chapter, but there are quite
a few predefined font sets that come with ConTEXt; these are all listed in the four tables 5.9,
5.10, 5.11, and 5.12.
For everything to work properly in MkII, the predefined font sets also have to have an
encoding attached, you can look those up in the relevant tables as well.
The fifth argument to \definetypeface specifies specific font size setups (if any), these will
be covered in section ?? in the next chapter. Almost always, specifying default will suffice.
The optional sixth argument is used for tweaking font settings like the specification of font
features or adjusting parameters. In this case, the two modern font sets are loaded with a
small magnification, this evens out the visual heights of the font styles.

91 Typography

5 Selecting bodyfonts

Typescript Style rm Style ss Style tt Style mm
OmegaLGC omega – omega –
antykwa-torunska antykwa-torunska modern modern antykwa-torunska
cbgreek cbgreek cbgreek cbgreek –
cbgreek-all cbgreek cbgreek cbgreek –
cbgreek-medium cbgreek cbgreek cbgreek –
cow cow cow serif modern cow
fallback modern modern modern modern
fourier fourier modern modern fourier
iwona modern iwona modern iwona
iwona-heavy modern iwona-heavy modern iwona-heavy
iwona-light modern iwona-light modern iwona-light
iwona-medium modern iwona-medium modern iwona-medium
lucida lucida lucida lucida lucida
lucidabfm lucida lucida lucida lucida bfmath
lucidaboldmath lucida lucida lucida lucida boldmath
modern modern modern modern modern
modern-base (computer-)modern (computer-)modern (computer-)modern (computer-)modern
modernvariable simple modern modern modern
optima palatino optima-nova modern palatino
optima-nova optima-nova sans optima-nova latin-modern latin-modern
optima-nova-os optima-nova-os sans optima-nova-os latin-modern latin-modern
palatino palatino-nova palatino-sans latin-modern latin-modern
palatino palatino modern modern palatino
palatino-informal palatino-nova palatino-informal latin-modern latin-modern
palatino-light palatino-nova palatino-sans-light latin-modern latin-modern
palatino-medium palatino-nova palatino-sans-medium latin-modern latin-modern
palatino-normal palatino-nova palatino-sans-normal latin-modern latin-modern
palatino-nova palatino-nova palatino-sans latin-modern latin-modern
palatino-sans palatino-nova palatino-sans latin-modern latin-modern
postscript times helvetica courier times
sheep sheep sheep serif modern sheep
times times helvetica modern times

Table 5.8 The typescripts.
Unless stated otherwise, style rm uses a group named serif, style ss uses sans,
style tt uses mono, and style mm uses math. A single dash in a cell means that
the typescript does not define that style; you should refrain from using the
style. The lucida, lucidabfm, and lucidaboldmath typescripts also define hw
and cg as ‘lucida handwring’ and ‘lucida calligraphy’. The modern-base type-
script switches back to computer-modern for a few legacy encodings: t2a, t2b,
and t2c.

A note for the lazy: if the sixth argument is not given and the fifth argument happens to be
default, then the fifth argument can be omitted as well.

There are four possible keys in the sixth argument:

key default value explanation
rscale 1 a scaling factor for this typescript relative to the selected

body font size
encoding \defaultencoding the encoding for the typeface, normally inherited from the

typescript automatically

Typography 92

Selecting bodyfonts 5

Identifier file Encodings Supported styles
modern type-one ec, qx, texnansi, t5 serif, sans, mono, math,

boldmath, bfmath
latin-modern type-one ec, qx, texnansi, t5 serif, sans, mono, math,

boldmath, bfmath
computer-modern type-one t2a/b/c serif, sans, mono, math,

boldmath, bfmath
simple type-one – synonyms only – serif
concrete type-one – hardcoded – serif
euler type-one – hardcoded – math, boldmath, bfmath
ams type-one – hardcoded – math
fourier type-one ec math, serif
courier type-one 8r, ec, qx, texnansi, t5 mono
helvetica type-one 8r, ec, qx, texnansi, t5 sans
times type-one 8r, ec, qx, texnansi, t5 serif, math
palatino type-one 8r, ec, qx, texnansi, t5 serif, math
bookman type-one 8r, ec, qx, texnansi, t5 serif
schoolbook type-one 8r, ec, texnansi, t5 serif
chancery type-one 8r, ec, qx, texnansi calligraphy
charter type-one 8r, ec, texnansi serif
utopia type-one ec, texnansi serif
antykwa-torunska type-one ec, qx, texnansi, t5, t2a/b/c, greek serif, math
antykwa-torunska-light type-one ec, qx, texnansi, t5, t2a/b/c, greek serif, math
antykwa-torunska-cond type-one ec, qx, texnansi, t5, t2a/b/c, greek serif, math
antykwa-torunska-lightcond type-one ec, qx, texnansi, t5, t2a/b/c, greek serif, math
antykwa-poltawskiego type-one 8r, ec, texnansi serif
iwona type-one ec, qx, texnansi, t5 sans, math
iwona-light type-one ec, qx, texnansi, t5 sans, math
iwona-medium type-one ec, qx, texnansi, t5 sans, math
iwona-heavy type-one ec, qx, texnansi, t5 sans, math
iwona-cond type-one ec, qx, texnansi, t5 sans
iwona-light-cond type-one ec, qx, texnansi, t5 sans
iwona-medium-cond type-one ec, qx, texnansi, t5 sans
iwona-heavy-cond type-one ec, qx, texnansi, t5 sans
kurier type-one ec, qx, texnansi, t5 sans, math
kurier-light type-one ec, qx, texnansi, t5 sans, math
kurier-medium type-one ec, qx, texnansi, t5 sans, math
pagella type-gyr ec, qx, texnansi, t5, t2a/b/c serif
palatino type-gyr ec, qx, texnansi, t5, t2a/b/c serif
termes type-gyr ec, qx, texnansi, t5, t2a/b/c serif
times type-gyr ec, qx, texnansi, t5, t2a/b/c serif
bonum type-gyr ec, qx, texnansi, t5, t2a/b/c serif
bookman type-gyr ec, qx, texnansi, t5, t2a/b/c serif
schola type-gyr ec, qx, texnansi, t5, t2a/b/c serif
schoolbook type-gyr ec, qx, texnansi, t5, t2a/b/c serif
heros type-gyr ec, qx, texnansi, t5, t2a/b/c sans
helvetica type-gyr ec, qx, texnansi, t5, t2a/b/c sans
adventor type-gyr ec, qx, texnansi, t5, t2a/b/c sans
cursor type-gyr ec, qx, texnansi, t5, t2a/b/c mono
courier type-gyr ec, qx, texnansi, t5, t2a/b/c mono
omega type-omg – hardcoded – naskh, serif, mono
cbgreek type-cbg – hardcoded – serif, sans, mono
cbgreek-medium type-cbg – hardcoded – serif, sans, mono
cbgreek-all type-cbg – hardcoded – serif, sans, mono
cow type-cow – hardcoded – math, serif
sheep type-cow – hardcoded – math, serif

Table 5.9 The predefined body font identifiers for free Type 1 and MetaFont
fonts

93 Typography

5 Selecting bodyfonts

Identifier file Encodings Supported styles
lucida type-buy 8r, ec, texnansi serif, sans, mono, handwriting,

calligraphy, math, boldmath,
bfmath, casual, fax

informal type-buy – hardcoded – casual, math
officina type-buy 8r, ec, texnansi serif, sans
meta type-buy 8r, ec, texnansi serif, sans, expert
meta-medium type-buy 8r, ec, texnansi sans
meta-lf type-buy 8r, ec, texnansi sans
meta-book type-buy 8r, ec, texnansi sans
meta-book-lf type-buy 8r, ec, texnansi sans
meta-bold type-buy 8r, ec, texnansi sans
meta-bold-lf type-buy 8r, ec, texnansi sans
meta-normal type-buy 8r, ec, texnansi sans
meta-normal-lf type-buy 8r, ec, texnansi sans
meta-medium type-buy 8r, ec, texnansi sans
meta-medium-lf type-buy 8r, ec, texnansi sans
meta-black type-buy 8r, ec, texnansi sans
meta-black-lf type-buy 8r, ec, texnansi sans
univers type-buy 8r, ec, texnansi sans
univers-light type-buy 8r, ec, texnansi sans
univers-black type-buy 8r, ec, texnansi sans
mendoza type-buy 8r, ec, texnansi serif
frutiger type-buy 8r, ec, texnansi sans
kabel type-buy 8r, ec, texnansi sans
thesans type-buy 8r, ec, texnansi sans, mono, expert
sabon type-buy 8r, ec, texnansi serif
stone type-buy ec, texnansi serif, sans
stone-oldstyle type-buy – synonyms only – serif, sans
industria type-buy ec, texnansi sans
bauhaus type-buy ec, texnansi sans
swift type-buy ec, texnansi serif
swift-light type-buy – synonyms only – serif
syntax type-buy ec, texnansi sans
linoletter type-buy ec, texnansi serif
zapfino type-ghz 8r, ec, texnansi serif, handwriting
palatino-sans-light type-exp texnansi, ec sans
palatino-sans-normal type-exp texnansi, ec sans
palatino-sans-medium type-exp texnansi, ec sans
opus type-fsf 8r, ec, texnansi sans
typewriter type-fsf 8r, ec, texnansi mono
garamond type-fsf 8r, ec, texnansi serif
optima type-ghz 8r, ec, texnansi sans
optima-nova type-ghz 8r, ec, texnansi sans
optima-nova-os type-ghz 8r, ec, texnansi sans
optima-nova-light type-ghz 8r, ec, texnansi sans
optima-nova-medium type-ghz 8r, ec, texnansi sans
palatino type-ghz 8r, ec, texnansi serif
palatino-nova type-ghz 8r, ec, texnansi serif
palatino-nova-os type-ghz 8r, ec, texnansi serif
palatino-nova-light type-ghz 8r, ec, texnansi serif
palatino-nova-medium type-ghz 8r, ec, texnansi serif
aldus-nova type-ghz 8r, ec, texnansi serif
melior type-ghz 8r, ec, texnansi serif
verdana type-msw texnansi sans
arial type-msw texnansi sans

Table 5.10 The predefined body font identifiers for commercial Type 1 fonts

Typography 94

Selecting bodyfonts 5

Identifier file Supported styles
modern type-otf serif, sans, mono,

math, boldmath,
bfmath

latin-modern type-otf serif, sans, mono,
math, boldmath,
bfmath

modern-vari type-otf mono
latin-modern-vari type-otf mono
modern-cond type-otf mono
latin-modern-cond type-otf mono
computer-modern type-otf serif, sans, mono,

math, boldmath,
bfmath

concrete type-otf serif
euler type-otf math, boldmath,

bfmath
ams type-otf math
pagella type-otf serif
termes type-otf serif
bonum type-otf serif
schola type-otf serif
chorus type-otf serif
heros type-otf sans
adventor type-otf sans
cursor type-otf sans

Identifier file Supported styles
palatino type-otf serif, math
times type-otf serif, math
bookman type-otf serif
schoolbook type-otf serif
chancery type-otf calligraphy
helvetica type-otf sans
courier type-otf mono
antykwa-torunska type-otf serif, math
antykwa-torunska-light type-otf serif, math
antykwa-torunska-cond type-otf serif, math
antykwa-torunska-lightcond type-otf serif, math
antykwa-poltawskiego type-otf serif
iwona-light type-otf sans, math
iwona type-otf sans, math
iwona-medium type-otf sans, math
iwona-heavy type-otf sans, math
iwona-cond type-otf sans
iwona-light-cond type-otf sans
iwona-medium-cond type-otf sans
iwona-heavy-cond type-otf sans
kurier type-otf sans, math
kurier-light type-otf sans, math
kurier-medium type-otf sans, math
charter type-otf serif
gentium type-xtx serif

Table 5.11 The predefined body font identifiers for free Opentype fonts

Identifier file Supported styles
zapfino type-hgz serif, handwriting
optima-nova type-hgz sans
optima-nova-os type-hgz sans
optima-nova-light type-hgz sans
optima-nova-medium type-hgz sans
palatino-nova type-hgz serif
palatino-nova-os type-hgz serif
palatino-nova-light type-hgz serif
palatino-nova-medium type-hgz serif
palatino-sans type-hgz sans
palatino-informal type-hgz sans
melior type-hgz serif
– all four-variant fonts – type-xtx Xserif
– all four-variant fonts – type-xtx Xsans
– all four-variant fonts – type-xtx Xmono

Identifier file Supported styles
times type-xtx serif
palatino type-xtx serif
helvetica type-xtx sans
courier type-xtx mono
hoefler type-xtx serif
lucidagrande type-xtx sans
optima type-xtx sans
gillsans type-xtx sans
gillsanslt type-xtx sans
zapfino type-xtx handwriting, serif
applechancery type-xtx calligraphy, serif
timesnewroman type-xtx serif
arial type-xtx sans
lucida type-xtx serif, sans, mono,

handwriting, fax,
calligraphy

Table 5.12 The predefined body font identifiers for commercial Opentype
fonts

features this applies a predefined font feature set (see section 5.10)
text sets up the forced math text style

If you look closely, in table 5.12 you will notice three very special items: Xserif, Xsans and
Xmono. These belong to a special X ETEX-only trick called ‘wildcard typescripts’.

95 Typography

5 Body font environments

X ETEX offers some nice features in terms of automatically finding related fonts in a family,
namely the italic, bold, and bolditalic alternatives. To take advantage of that, there’s a set
of wildcard typescripts that take an arbitrary Macintosh font name as input, and provide as
many of the alternatives it can find. To set these typescripts (and the calling conventions)
apart from the familiar ones, the typescripts are identified with Xserif, Xsans, and Xmono.

To call these special typescripts, it’s most convenient to define a typeface that uses these
features. The named font slot should contain the display name of the Regular alternative
(not the family name) of the font in question. For example, you could have the following
mix:

\starttypescript[myface]
\definetypeface[myface][rm][Xserif][Baskerville] [default]
\definetypeface[myface][tt][Xmono] [Courier] [default][rscale=.87]
\definetypeface[myface][ss][Xsans] [Optima Regular][default]
\stoptypescript

As you can see, you can activate relative scaling of face sizes. The above definitions look
very much like any other typeface definition, except that the serif/sans/mono identifier is
preceded with X, and that there is no underlying "Optima Regular" defined anywhere. Those
missing bits of the definitions are handled by typescript and X ETEX magic.

5.9 Body font environments
Earlier we saw that within a single body font there are in fact different font sizes such as
super- and subscripts. The relations between these sizes are defined by body font environments.

For all regular font sizes, environments are predefined that fulfill their purpose adequately.
However when you want to do some extra defining yourself there is:

\definebodyfontenvironment [...]
OPTIONAL

1 [...]2 [..,.=.,..]
OPTIONAL

3

1 IDENTIFIER

2 5pt ... 12pt default

3 text = DIMENSION
script = DIMENSION
scriptscript = DIMENSION
x = DIMENSION
xx = DIMENSION
a = DIMENSION
b = DIMENSION
c = DIMENSION
d = DIMENSION
small = DIMENSION
big = DIMENSION
interlinespace = DIMENSION
em = normal bold slanted boldslanted type cap small... COMMAND

The first argument is optional, and specifier the typeface identifier that this particular body
font environment setup is for. It defaults to the current typeface.

Typography 96

Body font environments 5

The second argument is the size of the body font environment that is being defined. This
argument is not really optional, the macro syntax description is a little misleading.

The third argument once again is optional, and contains the actual settings as key-value pairs.
If it is missing, defaults will be guessed at by ConTEXt itself. Although the macro syntax
says the type is DIMENSION, floating point numbers are also acceptable. Such numbers are
multipliers that are applied to the font size when the body font environment is applied.

text Math text size or multiplier (default is 1.0)
script Math script size (default is 0.7)
scriptscript Math scriptscript size (default is 0.5)
x The size used for commands like \tfx (default is 0.8)
xx The size used for the \tfxx command (default is 0.6)
a The size for commands like \tfa (default is 1.200)
b The size for commands like \tfb (default is 1.440)
c The size for commands like \tfa (default is 1.728)
d The size for commands like \tfd (default is 2.074)
big The ‘larger’ font size (default is 1.2)
small The ‘smaller’ font size (default is 0.8)
interlinespace Distance between lines in a paragraph (default is 2.8ex)
em The style to use for emphasis (default is slanted)

So, when you want to have a somewhat bigger fontsize for just a few words (e.g. for a book
title) you can type:

\definebodyfontenvironment [24pt]
\switchtobodyfont[24pt]

For longer stretches of text you will probably want to set up most of the values explicitly,
using something like this

\definebodyfontenvironment
[22pt]
[text=22pt,

script=17.3pt,
scriptscript=14.4pt,

x=17.3pt,
xx=14.4pt,
big=28pt,

small=17.3pt]

To tweak already defined sizes, there is an accompanying setup command with the same
parameter conventions:

\setupbodyfontenvironment [...]
OPTIONAL

1 [...]2 [..,.=.,..]
OPTIONAL

3

1 inherits from \definebodyfontenvironment

2 inherits from \definebodyfontenvironment

3 inherits from \definebodyfontenvironment

97 Typography

5 Font feature sets

5.10 Font feature sets
As mentioned already, some fonts contain extra information besides the actual glyph shapes.
In traditional TEX fonts, the extra information is roughly limited to kerning pairs and ligature
information, and both of these ‘features’ are automatically applied to the text that is being
typeset. In the odd case where one of the two needs to be suppressed, a little bit of macro
trickery can do the job without too many complicating factors.

But with the new OpenType font format that is used by X ETEX and LuaTEX, the list of possible
features has increased enormously. OpenType fonts have not just kerning information and
ligature information, but there can also be other features like optional oldstyle figures, caps
and smallcaps glyphs, decorative swashes, etc. all inside a single font file.

Not only that, but some of these features are not even supposed to be active all the time.
Certain features should only be activated if the user asks for it, while other features depend
on the script and language that is in use for the text that is being typeset.

This is a big step forward in that there are now far fewer fonts needed to achieve the same
level of quality than before, all that extra font information also poses a big challenge for
macro writers. And add to that the fact that at the core, the two engines (X ETEX and LuaTEX)
handle OpenType fonts completely different from each other.

ConTEXt has a new subsystem called ‘font features’ to create order in this forest of features.
The most important command is \definefontfeature. This command can be used to group
various font features under a single symbolic name, that can then be used as e.g. the argu-
ment to the features key of \definetypeface.

\definefontfeature [...]1 [...]
OPTIONAL

2 [.=.]
3

1 TEXT

2 IDENTIFIER

3 compose = no yes
mode = node base
tlig = no yes
trep = no yes
script = IDENTIFIER
language = IDENTIFIER
..tag.. = no yes

\definefontfeature
[default-base]
[script=latn,language=dflt,liga=yes,kern=yes,tlig=yes,trep=yes]

As you can probably guess, the first argument is the symbolic name that is being defined.
The second argument is a mix of a-hoc settings and OpenType font features.

compose Use fallback composition in MkIV (experimental, undocumented)
protrusion Character protrusion in MkIV (see section 5.14)
expansion Character expansion in MkIV (see section 5.14)
script An OpenType script identifier
language An OpenType script language identifier

Typography 98

Displaying the current font setup 5

tlig A virtual feature for legacy (TEX-style) automatic ligatures (for compatibility,
there is an alias for this key called texligatures)

trep A virtual feature for legacy (TEX-style) automatic ligatures (for compatibility,
there is an alias for this key called texquotes) (only works in MkIV)

mode Processing mode for MkIV. node and base allowed, base is default
<tag> Any OpenType feature tag is acceptable, but in MkIV only a ‘known’ subset

actually has any effect, and then only in node mode. This list is given in ta-
ble 5.13. In X ETEX, processing depends on the internal subengine that is used
by X ETEX, and that is outside of ConTEXt’s control.

A few fontfeatures are predefined by context:

default liga=yes,kern=yes,tlig=yes,trep=yes
smallcaps liga=yes,kern=yes,tlig=yes,trep=yes,smcp=yes
oldstyle liga=yes,kern=yes,tlig=yes,trep=yes,onum=yes

At the moment, smallcaps and oldstyle only work in X ETEX (in MkIV, it would need an
extra mode=node pair).

5.11 Displaying the current font setup
With the command \showbodyfont an overview is generated of the available characters, and
an overview of the different fontsizes within a family can be summoned with \showbody-
fontenvironment.

\showbodyfont [...,...]
OPTIONAL

*

* inherits from \setupbodyfont

\showbodyfontenvironment [...,...]
OPTIONAL

*

* inherits from \setupbodyfont

Specifying actual IDENTIFIERs to these commands is currently unreliable because they inter-
nally are still counting on an older system of body font definitions, but you can safely use a
size argument to get the information for the current font set.
Below an example of the possible output is shown, for \showbodyfont[12pt]

[palatino] [12pt] \mr : Ag

\tf \sc \sl \it \bf \bs \bi \tfx \tfxx \tfa \tfb \tfc \tfd

\rm Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\ss Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\tt Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag

99 Typography

5 Displaying the current font setup

aalt Access All Alternates
abvf Above-Base Forms
abvm Above-Base Mark Position-

ing
abvs Above-Base Substitutions
afrc Alternative Fractions
akhn Akhands
blwf Below-Base Forms
blwm Below-Base Mark Position-

ing
blws Below-Base Substitutions
c2pc Petite Capitals From Capi-

tals
c2sc Small Capitals From Capi-

tals
calt Contextual Alternates
case Case-Sensitive Forms
ccmp Glyph Composition/Decomposition
cjct Conjunct Forms
clig Contextual Ligatures
cpsp Capital Spacing
cswh Contextual Swash
curs Cursive Positioning
dflt Default Processing
dist Distances
dlig Discretionary Ligatures
dnom Denominators
expt Expert Forms
falt Final glyph Alternates
fina Terminal Forms
fin2 Terminal Forms #2
fin3 Terminal Forms #3
frac Fractions
fwid Full Width
half Half Forms
haln Halant Forms
halt Alternate Half Width
hist Historical Forms
hkna Horizontal Kana Alternates
hlig Historical Ligatures
hngl Hangul
hojo Hojo Kanji Forms
hwid Half Width
init Initial Forms
isol Isolated Forms
ital Italics

jalt Justification Alternatives
jp04 JIS2004 Forms
jp78 JIS78 Forms
jp83 JIS83 Forms
jp90 JIS90 Forms
kern Kerning
lfbd Left Bounds
liga Standard Ligatures
ljmo Leading Jamo Forms
lnum Lining Figures
locl Localized Forms
mark Mark Positioning
medi Medial Forms
med2 Medial Forms #2
mgrk Mathematical Greek
mkmk Mark to Mark Positioning
mset Mark Positioning via Substi-

tution
nalt Alternate Annotation Forms
nlck NLC Kanji Forms
nukt Nukta Forms
numr Numerators
onum Old Style Figures
opbd Optical Bounds
ordn Ordinals
ornm Ornaments
palt Proportional Alternate Width
pcap Petite Capitals
pnum Proportional Figures
pref Pre-base Forms
pres Pre-base Substitutions
pstf Post-base Forms
psts Post-base Substitutions
pwid Proportional Widths
qwid Quarter Widths
rand Randomize
rkrf Rakar Forms
rlig Required Ligatures
rphf Reph Form
rtbd Right Bounds
rtla Right-To-Left Alternates
ruby Ruby Notation Forms
salt Stylistic Alternates
sinf Scientific Inferiors
size Optical Size
smcp Small Capitals

smpl Simplified Forms
ss01 Stylistic Set 1
ss02 Stylistic Set 2
ss03 Stylistic Set 3
ss04 Stylistic Set 4
ss05 Stylistic Set 5
ss06 Stylistic Set 6
ss07 Stylistic Set 7
ss08 Stylistic Set 8
ss09 Stylistic Set 9
ss10 Stylistic Set 10
ss11 Stylistic Set 11
ss12 Stylistic Set 12
ss13 Stylistic Set 13
ss14 Stylistic Set 14
ss15 Stylistic Set 15
ss16 Stylistic Set 16
ss17 Stylistic Set 17
ss18 Stylistic Set 18
ss19 Stylistic Set 19
ss20 Stylistic Set 20
subs Subscript
sups Superscript
swsh Swash
titl Titling
tjmo Trailing Jamo Forms
tnam Traditional Name Forms
tnum Tabular Figures
trad Traditional Forms
twid Third Widths
unic Unicase
valt Alternate Vertical Metrics
vatu Vattu Variants
vert Vertical Writing
vhal Alternate Vertical Half Met-

rics
vjmo Vowel Jamo Forms
vkna Vertical Kana Alternates
vkrn Vertical Kerning
vpal Proportional Alternate Ver-

tical Metrics
vrt2 Vertical Rotation
zero Slashed Zero

Table 5.13 The OpenType features that are understood by MkIV in mode=node
processing mode

Typography 100

Math fonts 5

And the output of \showbodyfontenvironment[12pt] is:

[palatino] [12pt]
text script scriptscript x xx small big interlinespace

20.7pt 14.4pt 12pt 17.3pt 14.4pt 17.3pt 20.7pt not set
17.3pt 12.11pt 8.65pt 13.84pt 10.38pt 13.84pt 20.76pt not set
14.4pt 10.08pt 7.2pt 11.52pt 8.64pt 11.52pt 17.28pt not set
12pt 8.4pt 6pt 9.6pt 7.2pt 9.6pt 14.4pt not set
11pt 7.7pt 5.5pt 8.8pt 6.6pt 8.8pt 13.2pt not set
10pt 7pt 5pt 8pt 6pt 8pt 12pt not set
9pt 6.3pt 4.5pt 7.2pt 5.4pt 7.2pt 10.8pt not set
8pt 5.6pt 4pt 6.4pt 4.8pt 6.4pt 9.6pt not set
7pt 4.9pt 3.5pt 5.6pt 4.2pt 5.6pt 8.4pt not set
6pt 4.2pt 3pt 4.8pt 3.6pt 4.8pt 7.2pt not set
5pt 3.5pt 2.5pt 4pt 3pt 4pt 6pt not set
4pt 2.8pt 2pt 3.2pt 2.4pt 3.2pt 4.8pt not set

5.12 Math fonts
There are only a few font families in existence that can handle math properly because such
fonts have to carry a complete set of characters and symbols for mathematical typesetting.
Among these, the Computer Modern Roman distinguishes itself by its many design sizes;
that really pays off when typesetting complicated math formulas.
Many TEX users have chosen TEX for its superb math typesetting.
This chapter will not go into any details but in math mode, the central concept is the math
family (not to be confused with the font families discussed earlier). There are math families
for \bf, \it, etc. as well as for the special math symbols. Within each family, there are
always exactly three member fonts: text, script and scriptscript, or a normal, smaller
and smallest font. The normal font size is used for running text and the smaller ones for sub
and superscripts. The next example will show what the members of a math family can do.
$\tf x^2+\bf x^2+\sl x^2+\it x^2+\bs x^2+ \bi x^2 =\rm 6x^2$
$\tf x^2+\bf x^2+\sl x^2+\it x^2+\bs x^2+ \bi x^2 =\tf 6x^2$
$\tf x^2+\bf x^2+\sl x^2+\it x^2+\bs x^2+ \bi x^2 =\bf 6x^2$
$\tf x^2+\bf x^2+\sl x^2+\it x^2+\bs x^2+ \bi x^2 =\sl 6x^2$

When this is typeset you see this:
x2 + x2 + x2 + x2 + x2 + x2 = 6x2

x2 + x2 + x2 + x2 + x2 + x2 = 6x2
x2 + x2 + x2 + x2 + x2 + x2 = 6x2
x2 + x2 + x2 + x2 + x2 + x2 = 6x2

As you can see, the alphabetic characters adapt to the selected font family but the symbols
are all typeset in the same font regardless. Technically this means that the symbols are set
in the fixed font family 0 whereas the alphabetic characters are typeset using variable family
numbers.

101 Typography

5 Em and Ex

Typesetting math formulas can also be done somewhat differently, as we will see in the next
example.
$\tf\mf x^2 + x^2 + x^2 + x^2 + x^2 + x^2 = 6x^2$
$\bf\mf x^2 + x^2 + x^2 + x^2 + x^2 + x^2 = 6x^2$
$\sl\mf x^2 + x^2 + x^2 + x^2 + x^2 + x^2 = 6x^2$
$\bs\mf x^2 + x^2 + x^2 + x^2 + x^2 + x^2 = 6x^2$
$\it\mf x^2 + x^2 + x^2 + x^2 + x^2 + x^2 = 6x^2$
$\bi\mf x^2 + x^2 + x^2 + x^2 + x^2 + x^2 = 6x^2$

A new command is used: \mf, which stands for math font. This command takes care of
the symbols in such a way that they are also set in the actually selected font, just like the
characters.
x2 + x2 + x2 + x2 + x2 + x2 = 6x2
x2 + x2 + x2 + x2 + x2 + x2 = 6x2
x2 + x2 + x2 + x2 + x2 + x2 = 6x2
x2 + x2 + x2 + x2 + x2 + x2 = 6x2
x2 + x2 + x2 + x2 + x2 + x2 = 6x2
x2 + x2 + x2 + x2 + x2 + x2 = 6x2

You should take into account that TEX typesets a formula as a whole. In some cases this means
that setups at the end of the formula have an effect that starts already at the beginning of
the formula.
For example, the exact location of \mf is not that important. We also could have typed:
$\bf x^2 + x^2 + x^2 + x^2 + x^2 + x^2 = \mf 6x^2$

There is much more to be said about math, but it is better to do that in chapter ??, about
math.

5.13 Em and Ex
In specifying dimensions we can distinguish physical units like pt and cm and internal units
like em and ex. These last units are related to the actual fontsize. When you use these
internal units in specifying for example horizontal and vertical spacing you don’t have to do
any recalculating when fonts are switched in the style definition.
Some insight in these units does not hurt. The width of an em is not the with of an M, but
that of an — (an em--dash). When this glyph is not available in the font another value is
used. Table 5.14 shows some examples. We see that the width of a digit is about .5em. In
Computer Modern Roman a digit is exactly half an em wide.

\tf \bf \sl \tt \ss \tfx

12 12 12 12 12 12

M M M M M M

— — — –- — —

Table 5.14 The width of an em.

Typography 102

Font handling 5

In most cases we use em for specifying width and ex for height. An ex equals the height of
a lowercase x. Table 5.15 shows some examples.

\tf \bf \sl \tt \ss \tfx

x x x x x x

Table 5.15 The height of an ex.

5.14 Font handling
Almost all users of typesetting systems based on TEX do so because of the quality of the output
it produces. pdfTEX (and through inheritance LuaTEX as well) contains a few extensions to
the typesetting engine that make the output even better than the results achieved by Knuth’s
original TEX. Although the extensions are made available by pdfTEX, they are not limited to
the pdf output, they will work with the dvi backend just as well. And when the extensions
are defined but not enabled, then the typeset output is 100% identical to when the feature is
not present at all.

5.14.1 Character protrusion
In the following fake paragraph, you can see a hyphenation point, a secondary sentence, sep-
arated by a comma, and a last sentence, ending with a period. Miraculously, this paragraph
fits into lines. Although exaggerated, these lines demonstrate that visually the hyphen and
punctuation characters make the margin look ragged.

-

,

.

Before computers started to take over the traditional typesetter’s job, it was common practice
to move hyphens and punctuation into the margin, like in:

-

,

.

In this alternative, the margin looks less ragged, and this becomes more noticeable once you
get aware of this phenomenon.

Sometimes, shifting the characters completely into the margin is too much for the sensitive
eye, for instance with an italic font, where the characters already hang to the right. In such
cases, we need to compromise.

103 Typography

5 Font handling

-

,

.

pdfTEX (and LuaTEX, that has inherited this feature) has provisions to move characters into
the margin when they end up at the end of a line. Such characters are called protruding
characters. pdfTEX takes protruding into account when breaking a paragraph.

We will demonstrate protruding using a quote from Hermann Zapf’s article “About micro--
typography and the hz--program” in Electronic Publishing, vol 6 (3), 1993.

[file zapf does not exist]

After TEX has typeset this paragraph (using a specific font size and line width) it may have
constructed the following lines.
Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their knowl-
edge and information about the rules of typography from books, from computer magazines or the instruction
manuals which they get with the purchase of a PC or software. There is not so much basic instruction, as of now,
as there was in the old days, showing the differences between good and bad typographic design. Many people
are just fascinated by their PC’s tricks, and think that a widely--praised program, called up on the screen, will
make everything automatic from now on.

As you can see, the height and depth of the lines depend on the characters, but their width
equals what TEX calls \hsize. However, the natural width of the lines may differ from
\hsize.
Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their knowl-
edge and information about the rules of typography from books, from computer magazines or the instruction
manuals which they get with the purchase of a PC or software. There is not so much basic instruction, as of now,
as there was in the old days, showing the differences between good and bad typographic design. Many people
are just fascinated by their PC’s tricks, and think that a widely--praised program, called up on the screen, will
make everything automatic from now on.

Here the inter--word space is fixed to what TEX considers to be a space. This example also
demonstrates that TEX does not have spaces, but stretches the white area between words to
suit its demands. When breaking lines, TEX’s mind is occupied by boxes, glue and penalties,
or in more common language: (parts of) words, stretchable white space, and more or less
preferred breakpoints.
Coming back to the use of type-
faces in electronic publishing:
many of the new typographers re-
ceive their knowledge and informa-
tion about the rules of typography
from books, from computer mag-

azines or the instruction manuals
which they get with the purchase
of a PC or software. There is not
so much basic instruction, as of
now, as there was in the old days,
showing the differences between

good and bad typographic design.
Many people are just fascinated by
their PC’s tricks, and think that a
widely--praised program, called up
on the screen, will make everything
automatic from now on.

This time we have enabled pdfTEX’s protruding mechanism. The characters that stick into
the margin are taken into account when breaking the paragraph into lines, but in the final
result, they do not count in the width. Here we used an ugly three column layout so that
we got a few more hyphens to illustrate the principle.

When that same text is typeset in the traditional way in two columns, it looks like this:

Typography 104

Font handling 5

Coming back to the use of typefaces in electronic pub-
lishing: many of the new typographers receive their
knowledge and information about the rules of typog-
raphy from books, from computer magazines or the in-
struction manuals which they get with the purchase of
a PC or software. There is not so much basic instruc-

tion, as of now, as there was in the old days, show-
ing the differences between good and bad typographic
design. Many people are just fascinated by their PC’s
tricks, and think that a widely--praised program, called
up on the screen, will make everything automatic from
now on.

As you can see, the hyphens and punctuation fit snugly into the line and as a result the line
endings look a bit ragged. With protrusion turned on, it looks like this:
Coming back to the use of typefaces in electronic pub-
lishing: many of the new typographers receive their
knowledge and information about the rules of typogra-
phy from books, from computer magazines or the in-
struction manuals which they get with the purchase of
a PC or software. There is not so much basic instruc-

tion, as of now, as there was in the old days, show-
ing the differences between good and bad typographic
design. Many people are just fascinated by their PC’s
tricks, and think that a widely--praised program, called
up on the screen, will make everything automatic from
now on.

Now the punctuation protrudes a little into the margin. Although the margin is now geomet-
rically uneven it looks straighter to the human eye because not so much whitespace ‘pushes
into’ the text.

5.14.2 Font expansion
In typesetting the two characters hz are tightly connected to Hermann Zapf and the next
couple of pages we will discuss a method for optimizing the look and feel of a paragraph
using a mechanism that is inspired by his work. Although official qualified in pdfTEX as font
adjusting, we will use the short qualification hz since this is how it is called in the pdfTEX
community.

First, here is again the same example text that was used in the previous section, typeset using
normal TEX--comptibale font settings:
Coming back to the use of typefaces in electronic pub-
lishing: many of the new typographers receive their
knowledge and information about the rules of typog-
raphy from books, from computer magazines or the in-
struction manuals which they get with the purchase of
a PC or software. There is not so much basic instruc-

tion, as of now, as there was in the old days, show-
ing the differences between good and bad typographic
design. Many people are just fascinated by their PC’s
tricks, and think that a widely--praised program, called
up on the screen, will make everything automatic from
now on.

The example below shows hz in action. This paragraph is typeset with hz enabled and has
a more even spacing than the text above.
Coming back to the use of typefaces in electronic pub-
lishing: many of the new typographers receive their
knowledge and information about the rules of typogra-
phy from books, from computer magazines or the in-
struction manuals which they get with the purchase of
a PC or software. There is not so much basic instruction,

as of now, as there was in the old days, showing the
differences between good and bad typographic design.
Many people are just fascinated by their PC’s tricks,
and think that a widely--praised program, called up on
the screen, will make everything automatic from now
on.

The average reader will not notice the trick, but those sensitive to character shapes will see
that some glyphs are widened slightly and others are narrowed slightly. Ideally the programs
that built the glyph should be defined in such a way that this goes unnoticed, but in practice
glyph programs are not that clever and so a brute force horizontal scaling is applied. As
long as the used percentage is small, the distortion will go unnoticed and the paragraph will
look slightly better because the whitespace distribution is more even.

105 Typography

5 Font handling

5.14.3 Other font handlings
In addition to the two handlings documented in the previous paragraphs (protruding and hz),
ConTEXt also provides the noligs handling (handy when one processes xml), flexspacing
and prespacing (meant for languages like French that need spacing around for instance :
and ;). These handlings are experimental.

5.14.4 How to use font handlings
Before we go into the details of the actual extensions, let’s see what is provided by ConTEXt as
the user--level interface. The ConTEXt interface to those new features is through a subsystem
called ‘font handling’, and at the top that subsystem is seamlessly integrated into the normal
alignment macros.

For example, assuming the system is set up already to support protrusion, you can simply
say

\setupalign[hanging]

to turn protrusion on. However, this will only work correctly if a number of special setups
have taken place internally. The command \setupalign only toggles a switch, and the
required setups have to be done elsewhere.

The list of font handling--related keys for \setupalign is:

hanging turns on character protrusion
nohanging turns off character protrusion
hz turns on font expansion
nohz turns off font expansion
spacing turns on special spacing rules
nospacing turns off special spacing

Largely because of the tight connection with the font itself, the method of defining and setting
font handling is a little different between pdfTEX and MkIV.

5.14.5 Setting up font handlings in MkII
Now, let’s move on to how to set up the system for font handling properly. Most of the
underlying features of pdfTEX cannot be turned merely on or off, it is possible to tweak the
machinery on the font as well as on the individual glyph level. You can define those settings
all on your own, but ConTEXt comes with a handy set of predefined values.

name \setupalign description
pure hanging full protrusion of only selected punctuation
normal hanging partial protrusion of punctuation and some asymmetrical let-

ters
hz hz variable correction of character widths
quality hanging,hz combination of hz and pure
highquality hanging,hz combination of hz and normal
flexspacing spacing automatic extra spacing around various punctuation characters
prespacing spacing like flexspacing, but ignoring . and , and with smaller effects
noligs – suppresses ligatures; because this is irreversible it is not con-

trolled via \setupalign

Typography 106

Font handling 5

You need to be aware of the fact that at the moment that you actually define a font, you need
to tell what handling you want to apply.

Note: setting up font handling involves a few low-level font definition commands, so you
may want to read the chapter about font definitions first.

Say that we want to hang only the serif fonts and say that we use Palatino as main typeface.

\setupfontsynonym [Serif] [handling=pure]
\definetypeface [palatino] [rm] [serif] [palatino] [default]

In the above example, the font loader is instructed to treat fonts with the virtual name Serif
in a special way by applying the font handling named pure. After that, the typeface collection
palatino is (re)defined and by that process the font tagged as Serif will get the ‘hanging’
settings attached it.

Now enable this typeface collection can be enabled by:

\setupbodyfont [palatino]

and finally, don’t forget to turn on hanging by:

\setupalign [hanging]

However, this only takes care of the Serif font. Normally, that is the virtual name for the
combination \rm\tf. If you also want the bold variants to hang, you have to add an extra
line:

\setupfontsynonym [SerifBold] [handling=pure]

And so on for all the alternatives. This is tedious, so ConTEXt provides a shortcut. If you
want to set all serif weights at once, you can call on a predefined typescript component before
defining the typeface:

\usetypescript [serif] [handling] [pure]

for hanging punctuation, or for all characters:

\usetypescript [serif] [handling] [normal]

The full example then becomes:

\usetypescript [serif] [handling] [pure]
\definetypeface [palatino] [rm] [serif] [palatino] [default]
\setupbodyfont [palatino]
\setupalign [hanging]

The first argument can be one of three named typescript groups: serif (for the virtual font
synonyms whose names begin with Serif), sans (for Sans), or mono (for Mono). The second
argument should always be handling. The third argument has to be one of named font
handlings that are listed in the table at the start of this section.

The typescripts that are used in these examples work by altering the font synonyms for
virtual symbolic font names like Serif and SerifBold en bloc. They will even work with
your own typescripts if (but only if) these typescripts use the same font naming conventions
as the ConTEXt core.

107 Typography

5 Font handling

The definition of font handlings is actually a two-step process. A named font handling
consists of one or more handling vectors that have to be defined first, those are then combined
under a single name.

This is not the right place to describe how to define the low-level vector definitions in detail,
for that you are referred to the documented source of the main handling definition file hand-
def.tex. But to give you an idea of what it looks like, here is a small excerpt of that file.
The pure handling vector is defined as:

\startfonthandling [pure]

\defineprotrudefactor , 0 1
\defineprotrudefactor . 0 1
\defineprotrudefactor : 0 1
\defineprotrudefactor ; 0 1
\defineprotrudefactor - 0 1

\defineprotrudefactor hyphen 0 1
\defineprotrudefactor endash 0 .5
\defineprotrudefactor emdash 0 .33 % .5

\stopfonthandling

The pure font handling itself is then defined as follows:

\definefonthandling [pure] [pure] [type=hanging]

The hz setup runs along the same lines. First here is a vector:

\startfonthandling [hz]

\defineadjustfactor A .5
\defineadjustfactor B .7
\defineadjustfactor C .7
...

\stopfonthandling

And then the definition of the hz handling is as follows:

\definefonthandling [hz] [hz,extended] [type=hz]

To wrap this up, here is the macro syntax for the font handling definition and setup.

\definefonthandling [...]1 [...,...]2 [.=.]
3

1 IDENTIFIER

2 IDENTIFIER

3 type = hanging hz spacing tag
right = NUMBER
left = NUMBER
factor = NUMBER
min = NUMBER
max = NUMBER
step = NUMBER

Typography 108

Font handling 5

As you can see, the \definefonthandling command accepts three arguments. The first is
the handling to be defined, the second is a list of handling vectors to be used, and the third
sets up a number of settings.
type the type of this font handling feature, for use by \setupalign
right used by type=hanging, default 1
left used by type=hanging, default 1
factor used by type=spacing, default 1
min used by type=hz, default 20
max used by type=hz, default 20
step used by type=hz, default 5
On top of the list at the beginning of this paragraph, a few more elaborate font handlings
are also predefined:
\definefonthandling [purebold] [pure] [type=hanging]
\definefonthandling [pureitalic] [pure] [type=hanging,right=1.5]
\definefonthandling [pureslanted] [pure] [type=hanging,right=1.5]
\definefonthandling [purebolditalic] [pure] [type=hanging,right=1.5]
\definefonthandling [pureboldslanted] [pure] [type=hanging,right=1.5]

The right parameter (there is also left) is a multiplication factor that is applied to the values
in the associated vector. Such definitions can be more extensive, like:
\definefonthandling
[normalitalic]
[punctuation,alpha,extended]
[type=hanging,right=1.5]

Here we have combined three vectors into one handling. For these extended font handlings,
there are no predefined typescripts, so you either have to use the font synonyms directly, or
define your own typescripts. Now, if you think this is overly complicated, you are proba-
bly right. Normally you will just invoke protruding handlings defined previously, but the
mechanisms are there to fine--tune the handlings to your precise wishes.
In case you want to alter some of the settings of an already defined font handling, there is

\setupfonthandling [...]1 [.=.]
2

1 IDENTIFIER

2 inherits from \definefonthandling

The first argument is the handling to be altered, the second sets up the settings.

5.14.6 Setting up font handlings in MkIV
In MkIV, font handling is merged with the font features (because these already have a low-
level connection to the font), so you can set up the font-side of things with the sixth argument
of \definetypeface, like so:
\definefontfeature

[hz] [default]
[protrusion=pure, mode=node, script=latn]

109 Typography

5 Font handling

\definetypeface [palatino] [rm] [serif] [palatino] [default] [features=hz]
\setupbodyfont [palatino]
\setupalign [hanging]

or by redefining the feature set that is used by the typescript you are using and then (re-
)executing the typescript, like so:

\definefontfeature
[default] [default]
[protrusion=pure, expansion=quality, mode=node, script=latn]

\usetypescript[palatino]
\setupbodyfont [palatino]
\setupalign [hanging]

There is a list of predefined font handling feature values that you can use:

For protrusion, there is:

name \setupalign description
pure hanging full protrusion of only selected punctuation
punctuation hanging partial protrusion of punctuation
alpha hanging partial of some asymmetrical letters
quality hanging the combination of punctuation and alpha

For expansion, there is:

name \setupalign description
quality hz variable correction of character widths

These are defined in the file font-ext.lua. The low--level definitions look like

fonts.protrusions.vectors[’pure’] = {
[0x002C] = { 0, 1 }, – comma
[0x002E] = { 0, 1 }, – period
[0x003A] = { 0, 1 }, – colon
[0x003B] = { 0, 1 }, – semicolon
[0x002D] = { 0, 1 }, – hyphen
[0x2013] = { 0, 0.50 }, – endash
[0x2014] = { 0, 0.33 }, – emdash

}
fonts.protrusions.classes[’pure’] = {

vector = ’pure’, factor = 1
}

That was the complete definition of protrusion=pure. The key classes has the same function
as the macro call \definefonthandling in MkII. It references the named vector pure and
sets up a parameter.

For protrusion, there is only the one parameter factor, but for expansion there are a few
more:

\startLUA
fonts.expansions.classes[’quality’] = {

stretch = 2, shrink = 2, step = .5, vector = ’default’, factor = 1

Typography 110

Encodings and mappings 5

}
fonts.expansions.vectors[’default’] = {

[byte(’A’)] = 0.5,
[byte(’B’)] = 0.7,
... – many more characters follow

}
\stopLUA

As you can see, the definition order of vector vs. class is not important, and the format of
the vector is a little different. The use of byte() is just so that that keying in hex numbers
can be avoided. The values are bare numbers instead of hashes because there is only one
per-character parameter involved with character expansion.
Also note that the values for the parameters stretch, shrink and step are divided by a
factor 10 compared to the MkII definition.
In MkIV, there is no support for the spacing key to \setupalign yet. That is because the
low--level features in pdfTEX are not present in LuaTEX, and there is no replacement yet. The
font handling noligs is, of course, replaced by the OpenType font feature tags for ligatures:
simply leave all of the relevant font features turned off.

5.15 Encodings and mappings
This section only applies to pdfTEX. If you are exclusively using X ETEX or MkIV, you can
safely ignore the following text.
Not every language uses the (western) Latin alphabet. Although in most languages the basic
26 characters are somehow used, they can be combined with a broad range of accents placed
in any place.
In order to get a character representation, also called glyph, in the resulting output, you have
to encode it in the input. This is no problem for a..z, but other characters are accessed by
name, for instance \eacute. The glyph é can be present in the font but when it’s not there,
TEX has to compose the character from a letter e and an accent ´.
In practice this means that the meaning of \eacute depends on the font and font encoding
used. There are many such encodings, each suited for a subset of languages.

encoding usage status
8r a (strange) mixture of encodings useless
default the 7 bit ascii encoding as used by plain TEX obsolete
ec the prefered encoding of TEX distributions okay
greek an encoding for modern greek okay
qx an encoding that covers most eastern european languages okay
t2a a cyrillic TEX font encoding ?
t2b another cyrillic TEX font encoding ?
t2c another another cyrillic TEX font encoding ?
t5 an encoding dedicated to vietnamese (many (double) accents) okay
texnansi a combination of TEX and Adobe standard encoding okay

These encodings are font related as is demonstrated in figure 5.1, 5.2, 5.3, and 5.4. Here we
used the \showfont command.

111 Typography

5 Encodings and mappings

`
0

000 00

´
1

001 01

ˆ
2

002 02

˜
3

003 03

¨
4

004 04

˝
5

005 05

˚
6

006 06

ˇ
7

007 07

˘
8

010 08

¯
9

011 09

˙
10

012 0a

¸
11

013 0b

˛
12

014 0c

‚
13

015 0d

‹
14

016 0e

›
15

017 0f

“
16

020 10

”
17

021 11

„
18

022 12

«
19

023 13

»
20

024 14

–
21

025 15

—
22

026 16

�
23

027 17

�
24

030 18

ı
25

031 19

26

032 1a

ff
27

033 1b

fi
28

034 1c

fl
29

035 1d

ffi
30

036 1e

ffl
31

037 1f

32

040 20

!
33

041 21

"
34

042 22

#
35

043 23

$
36

044 24

%
37

045 25

&
38

046 26

’
39

047 27

(
40

050 28

)
41

051 29

*
42

052 2a

+
43

053 2b

,
44

054 2c

-
hyph 45

055 2d

.
46

056 2e

/
47

057 2f

0
48

060 30

1
49

061 31

2
50

062 32

3
51

063 33

4
52

064 34

5
53

065 35

6
54

066 36

7
55

067 37

8
56

070 38

9
57

071 39

:
58

072 3a

;
59

073 3b

<
60

074 3c

=
61

075 3d

>
62

076 3e

?
63

077 3f

@
64

100 40

A
65

101 41

B
66

102 42

C
67

103 43

D
68

104 44

E
69

105 45

F
70

106 46

G
71

107 47

H
72

110 48

I
73

111 49

J
74

112 4a

K
75

113 4b

L
76

114 4c

M
77

115 4d

N
78

116 4e

O
79

117 4f

P
80

120 50

Q
81

121 51

R
82

122 52

S
83

123 53

T
84

124 54

U
85

125 55

V
86

126 56

W
87

127 57

X
88

130 58

Y
89

131 59

Z
90

132 5a

[
91

133 5b

\
92

134 5c

]
93

135 5d

^
94

136 5e

_
95

137 5f

‘
96

140 60

a
97

141 61

b
98

142 62

c
99

143 63

d
100

144 64

e
101

145 65

f
102

146 66

g
103

147 67

h
104

150 68

i
105

151 69

j
106

152 6a

k
107

153 6b

l
108

154 6c

m
109

155 6d

n
110

156 6e

o
111

157 6f

p
112

160 70

q
113

161 71

r
114

162 72

s
115

163 73

t
116

164 74

u
117

165 75

v
118

166 76

w
119

167 77

x
120

170 78

y
121

171 79

z
122

172 7a

{
123

173 7b

|
124

174 7c

}
125

175 7d

~
126

176 7e

-
127

177 7f

Ă
128

200 80

Ą
129

201 81

Ć
130

202 82

Č
131

203 83

Ď
132

204 84

Ě
133

205 85

Ę
134

206 86

Ğ
135

207 87

Ĺ
136

210 88

Ľ
137

211 89

Ł
138

212 8a

Ń
139

213 8b

Ň
140

214 8c

Ŋ
141

215 8d

Ő
142

216 8e

Ŕ
143

217 8f

Ř
144

220 90

Ś
145

221 91

Š
146

222 92

Ş
147

223 93

Ť
148

224 94

Ţ
149

225 95

Ű
150

226 96

Ů
151

227 97

Ÿ
152

230 98

Ź
153

231 99

Ž
154

232 9a

Ż
155

233 9b

Ĳ
156

234 9c

İ
157

235 9d

đ
158

236 9e

§
159

237 9f

ă
160

240 a0

ą
161

241 a1

ć
162

242 a2

č
163

243 a3

ď
164

244 a4

ě
165

245 a5

ę
166

246 a6

ğ
167

247 a7

ĺ
168

250 a8

ľ
169

251 a9

ł
170

252 aa

ń
171

253 ab

ň
172

254 ac

ŋ
173

255 ad

ő
174

256 ae

ŕ
175

257 af

ř
176

260 b0

ś
177

261 b1

š
178

262 b2

ş
179

263 b3

ť
180

264 b4

ţ
181

265 b5

ű
182

266 b6

ů
183

267 b7

ÿ
184

270 b8

ź
185

271 b9

ž
186

272 ba

ż
187

273 bb

ĳ
188

274 bc

¡
189

275 bd

¿
190

276 be

£
191

277 bf

À
192

300 c0

Á
193

301 c1

Â
194

302 c2

Ã
195

303 c3

Ä
196

304 c4

Å
197

305 c5

Æ
198

306 c6

Ç
199

307 c7

È
200

310 c8

É
201

311 c9

Ê
202

312 ca

Ë
203

313 cb

Ì
204

314 cc

Í
205

315 cd

Î
206

316 ce

Ï
207

317 cf

Ð
208

320 d0

Ñ
209

321 d1

Ò
210

322 d2

Ó
211

323 d3

Ô
212

324 d4

Õ
213

325 d5

Ö
214

326 d6

Œ
215

327 d7

Ø
216

330 d8

Ù
217

331 d9

Ú
218

332 da

Û
219

333 db

Ü
220

334 dc

Ý
221

335 dd

Þ
222

336 de

ß
223

337 df

à
224

340 e0

á
225

341 e1

â
226

342 e2

ã
227

343 e3

ä
228

344 e4

å
229

345 e5

æ
230

346 e6

ç
231

347 e7

è
232

350 e8

é
233

351 e9

ê
234

352 ea

ë
235

353 eb

ì
236

354 ec

í
237

355 ed

î
238

356 ee

ï
239

357 ef

ð
240

360 f0

ñ
241

361 f1

ò
242

362 f2

ó
243

363 f3

ô
244

364 f4

õ
245

365 f5

ö
246

366 f6

œ
247

367 f7

ø
248

370 f8

ù
249

371 f9

ú
250

372 fa

û
251

373 fb

ü
252

374 fc

ý
253

375 fd

þ
254

376 fe

ß
255

377 ff

name: ec-lmr10 at 11.0pt encoding: ec mapping: ec handling: default

Figure 5.1 The Latin Modern Roman font in ec encoding.

The situation is even more complicated than it looks, since the font may be virtual, that is,
built from several fonts.

The advantage of using specific encodings is that you can let TEX hyphenate words in the
appropriate way. The hyphenation patterns are applied to the internal data structures that
represent the sequence of glyphs. In spite of what you may expect, they are font--dependent!
Even more confusing: they not only depend on the font encoding, but also on the mapping
from lower to uppercase characters, or more precise, on the existence of such a mapping.

Unless you want to play with these encodings and mappings, in most cases you can forget
their details and rely on what other TEX experts tell you to do. Normally switching from one
to another encoding and/or mapping takes place with the change in fonts or when some

Typography 112

Encodings and mappings 5

0

000 00

€
1

001 01

2

002 02

3

003 03

⁄
4

004 04

˙
5

005 05

˝
6

006 06

˛
7

007 07

fl
8

010 08

9

011 09

10

012 0a

ff
11

013 0b

fi
12

014 0c

13

015 0d

ffi
14

016 0e

ffl
15

017 0f

ı
16

020 10

17

021 11

`
18

022 12

´
19

023 13

ˇ
20

024 14

˘
21

025 15

¯
22

026 16

˚
23

027 17

¸
24

030 18

ß
25

031 19

æ
26

032 1a

œ
27

033 1b

ø
28

034 1c

Æ
29

035 1d

Œ
30

036 1e

Ø
31

037 1f

32

040 20

!
33

041 21

"
34

042 22

#
35

043 23

$
36

044 24

%
37

045 25

&
38

046 26

’
39

047 27

(
40

050 28

)
41

051 29

*
42

052 2a

+
43

053 2b

,
44

054 2c

-
hyph 45

055 2d

.
46

056 2e

/
47

057 2f

0
48

060 30

1
49

061 31

2
50

062 32

3
51

063 33

4
52

064 34

5
53

065 35

6
54

066 36

7
55

067 37

8
56

070 38

9
57

071 39

:
58

072 3a

;
59

073 3b

<
60

074 3c

=
61

075 3d

>
62

076 3e

?
63

077 3f

@
64

100 40

A
65

101 41

B
66

102 42

C
67

103 43

D
68

104 44

E
69

105 45

F
70

106 46

G
71

107 47

H
72

110 48

I
73

111 49

J
74

112 4a

K
75

113 4b

L
76

114 4c

M
77

115 4d

N
78

116 4e

O
79

117 4f

P
80

120 50

Q
81

121 51

R
82

122 52

S
83

123 53

T
84

124 54

U
85

125 55

V
86

126 56

W
87

127 57

X
88

130 58

Y
89

131 59

Z
90

132 5a

[
91

133 5b

\
92

134 5c

]
93

135 5d

ˆ
94

136 5e

_
95

137 5f

‘
96

140 60

a
97

141 61

b
98

142 62

c
99

143 63

d
100

144 64

e
101

145 65

f
102

146 66

g
103

147 67

h
104

150 68

i
105

151 69

j
106

152 6a

k
107

153 6b

l
108

154 6c

m
109

155 6d

n
110

156 6e

o
111

157 6f

p
112

160 70

q
113

161 71

r
114

162 72

s
115

163 73

t
116

164 74

u
117

165 75

v
118

166 76

w
119

167 77

x
120

170 78

y
121

171 79

z
122

172 7a

{
123

173 7b

|
124

174 7c

}
125

175 7d

˜
126

176 7e

¨
127

177 7f

Ł
128

200 80

'
129

201 81

‚
130

202 82

ƒ
131

203 83

„
132

204 84

…
133

205 85

†
134

206 86

‡
135

207 87

ˆ
136

210 88

‰
137

211 89

Š
138

212 8a

‹
139

213 8b

Œ
140

214 8c

Ž
141

215 8d

^
142

216 8e

−
143

217 8f

ł
144

220 90

‘
145

221 91

’
146

222 92

“
147

223 93

”
148

224 94

•
149

225 95

–
150

226 96

—
151

227 97

˜
152

230 98

™
153

231 99

š
154

232 9a

›
155

233 9b

œ
156

234 9c

ž
157

235 9d

~
158

236 9e

Ÿ
159

237 9f

160

240 a0

¡
161

241 a1

¢
162

242 a2

£
163

243 a3

¤
164

244 a4

¥
165

245 a5

¦
166

246 a6

§
167

247 a7

¨
168

250 a8

©
169

251 a9

ª
170

252 aa

«
171

253 ab

¬
172

254 ac

-
173

255 ad

®
174

256 ae

¯
175

257 af

°
176

260 b0

±
177

261 b1

2
178

262 b2

3
179

263 b3

´
180

264 b4

µ
181

265 b5

¶
182

266 b6

·
183

267 b7

¸
184

270 b8

1
185

271 b9

º
186

272 ba

»
187

273 bb

¼
188

274 bc

½
189

275 bd

¾
190

276 be

¿
191

277 bf

À
192

300 c0

Á
193

301 c1

Â
194

302 c2

Ã
195

303 c3

Ä
196

304 c4

Å
197

305 c5

Æ
198

306 c6

Ç
199

307 c7

È
200

310 c8

É
201

311 c9

Ê
202

312 ca

Ë
203

313 cb

Ì
204

314 cc

Í
205

315 cd

Î
206

316 ce

Ï
207

317 cf

Ð
208

320 d0

Ñ
209

321 d1

Ò
210

322 d2

Ó
211

323 d3

Ô
212

324 d4

Õ
213

325 d5

Ö
214

326 d6

×
215

327 d7

Ø
216

330 d8

Ù
217

331 d9

Ú
218

332 da

Û
219

333 db

Ü
220

334 dc

Ý
221

335 dd

Þ
222

336 de

ß
223

337 df

à
224

340 e0

á
225

341 e1

â
226

342 e2

ã
227

343 e3

ä
228

344 e4

å
229

345 e5

æ
230

346 e6

ç
231

347 e7

è
232

350 e8

é
233

351 e9

ê
234

352 ea

ë
235

353 eb

ì
236

354 ec

í
237

355 ed

î
238

356 ee

ï
239

357 ef

ð
240

360 f0

ñ
241

361 f1

ò
242

362 f2

ó
243

363 f3

ô
244

364 f4

õ
245

365 f5

ö
246

366 f6

÷
247

367 f7

ø
248

370 f8

ù
249

371 f9

ú
250

372 fa

û
251

373 fb

ü
252

374 fc

ý
253

375 fd

þ
254

376 fe

ÿ
255

377 ff

name: texnansi-lmr10 at 11.0pt encoding: texnansi mapping: texnansi handling: default

Figure 5.2 The Latin Modern Roman font in texnansi encoding.

special output encoding is needed, for instance in pdf annotations and/or unicode vectors
that enable searching in documents. So, to summarize this: encodings and mappings depend
on the fonts used as well have consequences for the language specific hyphenation patterns.
Fortunately ConTEXt handles this for you automatically.

113 Typography

5 Encodings and mappings

0

000 00

∆
1

001 01

2

002 02

3

003 03

4

004 04

Π
5

005 05

Σ
6

006 06

µ
7

007 07

…
8

010 08

fk
9

011 09

Ω
10

012 0a

ff
11

013 0b

fi
12

014 0c

fl
13

015 0d

ffi
14

016 0e

ffl
15

017 0f

ı
16

020 10

17

021 11

`
18

022 12

´
19

023 13

ˇ
20

024 14

˘
21

025 15

¯
22

026 16

˚
23

027 17

¸
24

030 18

ß
25

031 19

æ
26

032 1a

œ
27

033 1b

ø
28

034 1c

Æ
29

035 1d

Œ
30

036 1e

Ø
31

037 1f

32

040 20

!
33

041 21

”
34

042 22

#
35

043 23

$
36

044 24

%
37

045 25

&
38

046 26

’
39

047 27

(
40

050 28

)
41

051 29

*
42

052 2a

+
43

053 2b

,
44

054 2c

-
hyph 45

055 2d

.
46

056 2e

/
47

057 2f

0
48

060 30

1
49

061 31

2
50

062 32

3
51

063 33

4
52

064 34

5
53

065 35

6
54

066 36

7
55

067 37

8
56

070 38

9
57

071 39

:
58

072 3a

;
59

073 3b

¡
60

074 3c

=
61

075 3d

¿
62

076 3e

?
63

077 3f

@
64

100 40

A
65

101 41

B
66

102 42

C
67

103 43

D
68

104 44

E
69

105 45

F
70

106 46

G
71

107 47

H
72

110 48

I
73

111 49

J
74

112 4a

K
75

113 4b

L
76

114 4c

M
77

115 4d

N
78

116 4e

O
79

117 4f

P
80

120 50

Q
81

121 51

R
82

122 52

S
83

123 53

T
84

124 54

U
85

125 55

V
86

126 56

W
87

127 57

X
88

130 58

Y
89

131 59

Z
90

132 5a

[
91

133 5b

“
92

134 5c

]
93

135 5d

ˆ
94

136 5e

˙
95

137 5f

‘
96

140 60

a
97

141 61

b
98

142 62

c
99

143 63

d
100

144 64

e
101

145 65

f
102

146 66

g
103

147 67

h
104

150 68

i
105

151 69

j
106

152 6a

k
107

153 6b

l
108

154 6c

m
109

155 6d

n
110

156 6e

o
111

157 6f

p
112

160 70

q
113

161 71

r
114

162 72

s
115

163 73

t
116

164 74

u
117

165 75

v
118

166 76

w
119

167 77

x
120

170 78

y
121

171 79

z
122

172 7a

–
123

173 7b

—
124

174 7c

˝
125

175 7d

˜
126

176 7e

¨
127

177 7f

€
128

200 80

Ą
129

201 81

Ć
130

202 82

>
131

203 83

132

204 84

133

205 85

Ę
134

206 86

Į
135

207 87

<
136

210 88

137

211 89

Ł
138

212 8a

Ń
139

213 8b

~
140

214 8c

^
141

215 8d

142

216 8e

†
143

217 8f

‡
144

220 90

Ś
145

221 91

Š
146

222 92

Ș
147

223 93

°
148

224 94

Ţ
149

225 95

˛
150

226 96

Ų
151

227 97

Ÿ
152

230 98

Ź
153

231 99

Ž
154

232 9a

Ż
155

233 9b

Ĳ
156

234 9c

{
157

235 9d

}
158

236 9e

§
159

237 9f
160

240 a0

ą
161

241 a1

ć
162

242 a2

®
163

243 a3

©
164

244 a4

÷
165

245 a5

ę
166

246 a6

į
167

247 a7

−
168

250 a8

×
169

251 a9

ł
170

252 aa

ń
171

253 ab

±
172

254 ac

173

255 ad

«
174

256 ae

»
175

257 af

¶
176

260 b0

ś
177

261 b1

š
178

262 b2

ș
179

263 b3

•
180

264 b4

ţ
181

265 b5

182

266 b6

ų
183

267 b7

ÿ
184

270 b8

ź
185

271 b9

ž
186

272 ba

ż
187

273 bb

ĳ
188

274 bc

·
189

275 bd

"
190

276 be

'
191

277 bf

À
192

300 c0

Á
193

301 c1

Â
194

302 c2

Ã
195

303 c3

Ä
196

304 c4

Å
197

305 c5

\
198

306 c6

Ç
199

307 c7

È
200

310 c8

É
201

311 c9

Ê
202

312 ca

Ë
203

313 cb

Ì
204

314 cc

Í
205

315 cd

Î
206

316 ce

Ï
207

317 cf

Ð
208

320 d0

Ñ
209

321 d1

Ò
210

322 d2

Ó
211

323 d3

Ô
212

324 d4

Õ
213

325 d5

Ö
214

326 d6

¤
215

327 d7

‰
216

330 d8

Ù
217

331 d9

Ú
218

332 da

Û
219

333 db

Ü
220

334 dc

Ý
221

335 dd

Þ
222

336 de

|
223

337 df

à
224

340 e0

á
225

341 e1

â
226

342 e2

ã
227

343 e3

ä
228

344 e4

å
229

345 e5

_
230

346 e6

ç
231

347 e7

è
232

350 e8

é
233

351 e9

ê
234

352 ea

ë
235

353 eb

ì
236

354 ec

í
237

355 ed

î
238

356 ee

ï
239

357 ef

ð
240

360 f0

ñ
241

361 f1

ò
242

362 f2

ó
243

363 f3

ô
244

364 f4

õ
245

365 f5

ö
246

366 f6

÷
247

367 f7

ø
248

370 f8

ù
249

371 f9

ú
250

372 fa

û
251

373 fb

ü
252

374 fc

ý
253

375 fd

þ
254

376 fe

„
255

377 ff

name: qx-lmr10 at 11.0pt encoding: qx mapping: qx handling: default

Figure 5.3 The Latin Modern Roman font in qx encoding.

Typography 114

Encodings and mappings 5

`
0

000 00

´
1

001 01

ˆ
2

002 02

˜
3

003 03

¨
4

004 04

�
5

005 05

˚
6

006 06

ˇ
7

007 07

˘
8

010 08

¯
9

011 09

˙
10

012 0a

¸
11

013 0b

�
12

014 0c

‚
13

015 0d

‹
14

016 0e

›
15

017 0f

“
16

020 10

”
17

021 11

„
18

022 12

«
19

023 13

»
20

024 14

–
21

025 15

—
22

026 16

�
23

027 17

�
24

030 18

ı
25

031 19

Ỷ
26

032 1a

ỷ
27

033 1b

Ỵ
28

034 1c

ỵ
29

035 1d

Đ
30

036 1e

đ
31

037 1f

32

040 20

!
33

041 21

"
34

042 22

#
35

043 23

$
36

044 24

%
37

045 25

&
38

046 26

’
39

047 27

(
40

050 28

)
41

051 29

*
42

052 2a

+
43

053 2b

,
44

054 2c

-
hyph 45

055 2d

.
46

056 2e

/
47

057 2f

0
48

060 30

1
49

061 31

2
50

062 32

3
51

063 33

4
52

064 34

5
53

065 35

6
54

066 36

7
55

067 37

8
56

070 38

9
57

071 39

:
58

072 3a

;
59

073 3b

<
60

074 3c

=
61

075 3d

>
62

076 3e

?
63

077 3f

@
64

100 40

A
65

101 41

B
66

102 42

C
67

103 43

D
68

104 44

E
69

105 45

F
70

106 46

G
71

107 47

H
72

110 48

I
73

111 49

J
74

112 4a

K
75

113 4b

L
76

114 4c

M
77

115 4d

N
78

116 4e

O
79

117 4f

P
80

120 50

Q
81

121 51

R
82

122 52

S
83

123 53

T
84

124 54

U
85

125 55

V
86

126 56

W
87

127 57

X
88

130 58

Y
89

131 59

Z
90

132 5a

[
91

133 5b

\
92

134 5c

]
93

135 5d

^
94

136 5e

_
95

137 5f

‘
96

140 60

a
97

141 61

b
98

142 62

c
99

143 63

d
100

144 64

e
101

145 65

f
102

146 66

g
103

147 67

h
104

150 68

i
105

151 69

j
106

152 6a

k
107

153 6b

l
108

154 6c

m
109

155 6d

n
110

156 6e

o
111

157 6f

p
112

160 70

q
113

161 71

r
114

162 72

s
115

163 73

t
116

164 74

u
117

165 75

v
118

166 76

w
119

167 77

x
120

170 78

y
121

171 79

z
122

172 7a

{
123

173 7b

|
124

174 7c

}
125

175 7d

~
126

176 7e

-
127

177 7f

À
128

200 80

Á
129

201 81

Ã
130

202 82

Ả
131

203 83

Ạ
132

204 84

Â
133

205 85

Ầ
134

206 86

Ấ
135

207 87

Ẫ
136

210 88

Ẩ
137

211 89

Ậ
138

212 8a

Ă
139

213 8b

Ằ
140

214 8c

Ắ
141

215 8d

Ẵ
142

216 8e

Ẳ
143

217 8f

Ặ
144

220 90

È
145

221 91

É
146

222 92

Ẽ
147

223 93

Ẻ
148

224 94

Ẹ
149

225 95

Ê
150

226 96

Ề
151

227 97

Ế
152

230 98

Ễ
153

231 99

Ể
154

232 9a

Ệ
155

233 9b

Ì
156

234 9c

Í
157

235 9d

Ĩ
158

236 9e

Ỉ
159

237 9f

à
160

240 a0

á
161

241 a1

ã
162

242 a2

ả
163

243 a3

ạ
164

244 a4

â
165

245 a5

ầ
166

246 a6

ấ
167

247 a7

ẫ
168

250 a8

ẩ
169

251 a9

ậ
170

252 aa

ă
171

253 ab

ằ
172

254 ac

ắ
173

255 ad

ẵ
174

256 ae

ẳ
175

257 af

ặ
176

260 b0

è
177

261 b1

é
178

262 b2

ẽ
179

263 b3

ẻ
180

264 b4

ẹ
181

265 b5

ê
182

266 b6

ề
183

267 b7

ế
184

270 b8

ễ
185

271 b9

ể
186

272 ba

ệ
187

273 bb

ì
188

274 bc

í
189

275 bd

ĩ
190

276 be

ỉ
191

277 bf

Ị
192

300 c0

Ò
193

301 c1

Ó
194

302 c2

Õ
195

303 c3

Ỏ
196

304 c4

Ọ
197

305 c5

Ô
198

306 c6

Ồ
199

307 c7

Ố
200

310 c8

Ỗ
201

311 c9

Ổ
202

312 ca

Ộ
203

313 cb

Ơ
204

314 cc

Ờ
205

315 cd

Ớ
206

316 ce

Ỡ
207

317 cf

Ở
208

320 d0

Ợ
209

321 d1

Ù
210

322 d2

Ú
211

323 d3

Ũ
212

324 d4

Ủ
213

325 d5

Ụ
214

326 d6

Ư
215

327 d7

Ừ
216

330 d8

Ứ
217

331 d9

Ữ
218

332 da

Ử
219

333 db

Ự
220

334 dc

Ỳ
221

335 dd

Ý
222

336 de

Ỹ
223

337 df

ị
224

340 e0

ò
225

341 e1

ó
226

342 e2

õ
227

343 e3

ỏ
228

344 e4

ọ
229

345 e5

ô
230

346 e6

ồ
231

347 e7

ố
232

350 e8

ỗ
233

351 e9

ổ
234

352 ea

ộ
235

353 eb

ơ
236

354 ec

ờ
237

355 ed

ớ
238

356 ee

ỡ
239

357 ef

ở
240

360 f0

ợ
241

361 f1

ù
242

362 f2

ú
243

363 f3

ũ
244

364 f4

ủ
245

365 f5

ụ
246

366 f6

ư
247

367 f7

ừ
248

370 f8

ứ
249

371 f9

ữ
250

372 fa

ử
251

373 fb

ự
252

374 fc

ỳ
253

375 fd

ý
254

376 fe

ỹ
255

377 ff

name: t5-lmr10 at 11.0pt encoding: t5 mapping: t5 handling: default

Figure 5.4 The Latin Modern Roman font in t5 encoding.

115 Typography

5 Encodings and mappings

If you want to know to what extent a font is complete and characters need to be composed
on the fly, you can typeset a a couple of tables. The (current) composition is shown by
\showaccents, as shown in figure 5.5

ec ec-uplr8a at 11.0pt: composed bottom char raw
\’ á b́ ć d́ é f́ ǵ h́ í j́ ḱ ĺ ḿ ń ó ṕ q́ ŕ ś t́ ú v́ ẃ x́ ý ź

Á B́ Ć D́ É F́ Ǵ H́ Í J́ Ḱ Ĺ Ḿ Ń Ó Ṕ Q́ Ŕ Ś T́ Ú V́ Ẃ X́ Ý Ź
\‘ à b̀ c̀ d̀ è f̀ g̀ h̀ ì j̀ k̀ l̀ m̀ ǹ ò p̀ q̀ r̀ s̀ t̀ ù v̀ ẁ x̀ ỳ z̀

À B̀ C̀ D̀ È F̀ G̀ H̀ Ì J̀ K̀ L̀ M̀ Ǹ Ò P̀ Q̀ R̀ S̀ T̀ Ù V̀ Ẁ X̀ Ỳ Z̀
\^ â b̂ ĉ d̂ ê f̂ ĝ ĥ î ˆ k̂ l̂ m̂ n̂ ô p̂ q̂ r̂ ŝ t̂ û v̂ ŵ x̂ ŷ ẑ

Â B̂ Ĉ D̂ Ê F̂ Ĝ Ĥ Î Ĵ K̂ L̂ M̂ N̂ Ô P̂ Q̂ R̂ Ŝ T̂ Û V̂ Ŵ X̂ Ŷ Ẑ
\~ ã b̃ c̃ d̃ ẽ f̃ g̃ h̃ ı̃ j̃ k̃ l̃ m̃ ñ õ p̃ q̃ r̃ s̃ t̃ ũ ṽ w̃ x̃ ỹ z̃

Ã B̃ C̃ D̃ Ẽ F̃ G̃ H̃ Ĩ J̃ K̃ L̃ M̃ Ñ Õ P̃ Q̃ R̃ S̃ T̃ Ũ Ṽ W̃ X̃ Ỹ Z̃
\" ä b̈ c̈ d̈ ë f̈ g̈ ḧ ï j̈ k̈ l̈ m̈ n̈ ö p̈ q̈ r̈ s̈ ẗ ü v̈ ẅ ẍ z̈

Ä B̈ C̈ D̈ Ë F̈ G̈ Ḧ Ï J̈ K̈ L̈ M̈ N̈ Ö P̈ Q̈ R̈ S̈ T̈ Ü V̈ Ẅ Ẍ Ÿ Z̈
\H a̋ b̋ c̋ d̋ e̋ f̋ g̋ h̋ i̋ j̋ k̋ l̋ m̋ n̋ ő p̋ q̋ r̋ s̋ t̋ ű v̋ w̋ x̋ y̋ z̋

A̋ B̋ C̋ D̋ E̋ F̋ G̋ H̋ I̋ J̋ K̋ L̋ M̋ N̋ Ő P̋ Q̋ R̋ S̋ T̋ Ű V̋ W̋ X̋ Y̋ Z̋
\r å b̊ c̊ d̊ e̊ f̊ g̊ h̊ i̊ j̊ k̊ l̊ m̊ n̊ o̊ p̊ q̊ r̊ s̊ t̊ ů v̊ ẘ x̊ ẙ z̊

Å B̊ C̊ D̊ E̊ F̊ G̊ H̊ I̊ J̊ K̊ L̊ M̊ N̊ O̊ P̊ Q̊ R̊ S̊ T̊ Ů V̊ W̊ X̊ Y̊ Z̊
\v ǎ b̌ č ď ě f̌ ǧ ȟ ǐ ǰ ǩ ľ m̌ ň ǒ p̌ q̌ ř š ǔ v̌ w̌ x̌ y̌ ž

Ǎ B̌ Č Ď Ě F̌ Ǧ Ȟ Ǐ J̌ Ǩ Ľ M̌ Ň Ǒ P̌ Q̌ Ř Š Ť Ǔ V̌ W̌ X̌ Y̌ Ž
\u ă b̆ c̆ d̆ ĕ f̆ ğ h̆ ı̆ j̆ k̆ l̆ m̆ n̆ ŏ p̆ q̆ r̆ s̆ t̆ ŭ v̆ w̆ x̆ y̆ z̆

Ă B̆ C̆ D̆ Ĕ F̆ Ğ H̆ Ĭ J̆ K̆ L̆ M̆ N̆ Ŏ P̆ Q̆ R̆ S̆ T̆ Ŭ V̆ W̆ X̆ Y̆ Z̆
\= ā b̄ c̄ d̄ ē f̄ ḡ h̄ ı̄ j̄ k̄ l̄ m̄ n̄ ō p̄ q̄ r̄ s̄ t̄ ū v̄ w̄ x̄ ȳ z̄

Ā B̄ C̄ D̄ Ē F̄ Ḡ H̄ Ī J̄ K̄ L̄ M̄ N̄ Ō P̄ Q̄ R̄ S̄ T̄ Ū V̄ W̄ X̄ Ȳ Z̄
\. ȧ ḃ ċ ḋ ė ḟ ġ ḣ ı̇ j̇ k̇ l̇ ṁ ṅ ȯ ṗ q̇ ṙ ṡ ṫ u̇ v̇ ẇ ẋ ẏ ż

Ȧ Ḃ Ċ Ḋ Ė Ḟ Ġ Ḣ İ J̇ K̇ L̇ Ṁ Ṅ Ȯ Ṗ Q̇ Ṙ Ṡ Ṫ U̇ V̇ Ẇ Ẋ Ẏ Ż
\b a

¯
b
¯

c
¯

d
¯

e
¯

f
¯

g
¯

h
¯

i
¯

j
¯

k
¯

l
¯

m
¯

n
¯

o
¯

p
¯

q
¯

r
¯

s
¯

t
¯

u
¯

v
¯

w
¯

x
¯

y
¯

z
¯

A
¯

B
¯

C
¯

D
¯

E
¯

F
¯

G
¯

H
¯

I
¯

J
¯

K
¯

L
¯

M
¯

N
¯

O
¯

P
¯

Q
¯

R
¯

S
¯

T
¯

U
¯

V
¯

W
¯

X
¯

Y
¯

Z
¯

\d a. b. c. d. e. f. g. h. i. j. k. l. m. n. o. p. q. r. s. t. u. v. w. x. y. z.
A. B. C. D. E. F. G. H. I. J. K. L. M. N. O. P. Q. R. S. T. U. V. W. X. Y. Z.

\k ą b̨ c̨ d̨ ę f̨ g̨ h̨ į j̨ k̨ l̨ m̨ n̨ ǫ p̨ q̨ r̨ s̨ t̨ ų v̨ w̨ x̨ y̨ z̨
Ą B̨ C̨ D̨ Ę F̨ G̨ H̨ Į J̨ K̨ L̨ M̨ N̨ Ǫ P̨ Q̨ R̨ S̨ T̨ Ų V̨ W̨ X̨ Y̨ Z̨

\c a̧ b̧ ç ḑ ȩ f̧ ģ ḩ i̧ j̧ ķ ļ m̧ ņ o̧ p̧ q̧ ŗ ş u̧ v̧ w̧ x̧ y̧ z̧
A̧ B̧ Ç Ḑ Ȩ F̧ Ģ Ḩ I̧ J̧ Ķ Ļ M̧ Ņ O̧ P̧ Q̧ Ŗ Ş U̧ V̧ W̧ X̧ Y̧ Z̧

Figure 5.5 Output of \showaccents for the current (palatino) font in pdfTEX

Typography 116

Encodings and mappings 5

With \showcharacters, you get a list of named characters (and glyphs) as known to the
system. Note: the following table will look different in each of the three typesetting engines.

ec ec-qplr at 11.0pt: composed bottom char raw
, textcomma
. textperiod
´ textacute
. textbottomdot
˘ textbreve
ˇ textcaron
¸ textcedilla
ˆ textcircumflex
¨ textdiaeresis
˙ textdotaccent
` textgrave
˝ texthungarumlaut
¯ textmacron
˛ textogonek
˚ textring
˜ texttilde
, textbottomcomma
ı dotlessi
 dotlessj
I dotlessI
J dotlessJ
– endash
— emdash
æ aeligature
Æ AEligature
ĳ ijligature
Ĳ IJligature
œ oeligature
Œ OEligature
ß ssharp
ß Ssharp
þ thorn
Þ Thorn
ð eth
Ð Eth
¡ exclamdown
¿ questiondown
C© copyright
R© registered
TM trademark
§ sectionmark
¶ paragraphmark
1/4 onequarter
1/2 onehalf

3/4 threequarter
1 onesuperior
2 twosuperior
3 threesuperior
c textcent

textcurrency
$ textdollar
¤ texteuro
f textflorin
£ textsterling
Y textyen
a ordfeminine
o ordmasculine
% percent
0/00 perthousand
- softhyphen
· periodcentered
� compoundwordmark
^ textasciicircum
~ textasciitilde
/ textslash
\ textbackslash
{ textbraceleft
} textbraceright
_ textunderscore

textvisiblespace
textbrokenbar

• textbullet
† textdag
‡ textddag
◦ textdegree
÷ textdiv
· · · textellipsis
/ textfraction
¬ textlognot
− textminus
µ textmu
× textmultiply
± textpm
" quotedbl
„ quotedblbase
“ quotedblleft
” quotedblright
‘ quotesingle

‚ quotesinglebase
‘ quoteleft
’ quoteright
‹ guilsingleleft
› guilsingleright
« leftguillemot
» rightguillemot
Â Acircumflex
â acircumflex
Ĉ Ccircumflex
ĉ ccircumflex
Ê Ecircumflex
ê ecircumflex
Ĝ Gcircumflex
ĝ gcircumflex
Ĥ Hcircumflex
ĥ hcircumflex
Î Icircumflex
î icircumflex
Ĵ Jcircumflex
̂ jcircumflex
Ô Ocircumflex
ô ocircumflex
Ŝ Scircumflex
ŝ scircumflex
Û Ucircumflex
û ucircumflex
Ŵ Wcircumflex
ŵ wcircumflex
Ŷ Ycircumflex
ŷ ycircumflex
À Agrave
à agrave
È Egrave
è egrave
Ì Igrave
ì igrave
Ò Ograve
ò ograve
Ù Ugrave
ù ugrave
Ỳ Ygrave
ỳ ygrave
Ã Atilde

117 Typography

5 Encodings and mappings

ã atilde
Ĩ Itilde
ı̃ itilde
Ñ Ntilde
ñ ntilde
Õ Otilde
õ otilde
Ũ Utilde
ũ utilde
Ỹ Ytilde
ỹ ytilde
Ä Adiaeresis
ä adiaeresis
Ë Ediaeresis
ë ediaeresis
Ï Idiaeresis
ï idiaeresis
Ö Odiaeresis
ö odiaeresis
Ü Udiaeresis
ü udiaeresis
Ÿ Ydiaeresis
ÿ ydiaeresis
Á Aacute
á aacute
Ć Cacute
ć cacute
É Eacute
é eacute
Í Iacute
í iacute
Ĺ Lacute
ĺ lacute
Ń Nacute
ń nacute
Ó Oacute
ó oacute
Ŕ Racute
ŕ racute
Ś Sacute
ś sacute
Ú Uacute
ú uacute
Ý Yacute
ý yacute
Ź Zacute
ź zacute

đ dstroke
Ð Dstroke
H Hstroke
h hstroke
T Tstroke
t tstroke
Ċ Cdotaccent
ċ cdotaccent
Ė Edotaccent
ė edotaccent
Ġ Gdotaccent
ġ gdotaccent
İ Idotaccent
ı̇ idotaccent
Ż Zdotaccent
ż zdotaccent
Ā Amacron
ā amacron
Ē Emacron
ē emacron
Ī Imacron
ı̄ imacron
Ō Omacron
ō omacron
Ū Umacron
ū umacron
Ç Ccedilla
ç ccedilla
Ķ Kcedilla
ķ kcedilla
Ļ Lcedilla
ļ lcedilla
Ņ Ncedilla
ņ ncedilla
Ŗ Rcedilla
ŗ rcedilla
Ş Scedilla
ş scedilla
Ţ Tcedilla
ţ tcedilla
Ő Ohungarumlaut
ő ohungarumlaut
Ű Uhungarumlaut
ű uhungarumlaut
Ą Aogonek
ą aogonek
Ę Eogonek

ę eogonek
Į Iogonek
į iogonek
Ų Uogonek
ų uogonek
Å Aring
å aring
Ů Uring
ů uring
Ă Abreve
ă abreve
Ĕ Ebreve
ĕ ebreve
Ğ Gbreve
ğ gbreve
Ĭ Ibreve
ı̆ ibreve
Ŏ Obreve
ŏ obreve
Ŭ Ubreve
ŭ ubreve
Č Ccaron
č ccaron
Ď Dcaron
ď dcaron
Ě Ecaron
ě ecaron
Ľ Lcaron
ľ lcaron
Ň Ncaron
ň ncaron
Ř Rcaron
ř rcaron
Š Scaron
š scaron
Ť Tcaron
ť tcaron
Y̌ Ycaron
y̌ ycaron
Ž Zcaron
ž zcaron
Ł Lstroke
ł lstroke
Ø Ostroke
ø ostroke
ä aumlaut
ë eumlaut

Typography 118

Encodings and mappings 5

ï iumlaut
ö oumlaut
ü uumlaut
Ä Aumlaut
Ë Eumlaut
Ï Iumlaut
Ö Oumlaut
Ü Uumlaut
ş scommaaccent
Ş Scommaaccent
ţ tcommaaccent
Ţ Tcommaaccent
l, lcommaaccent
L, Lcommaaccent
Ẽ Etilde
ẽ etilde
A Ahook
a ahook
E Ehook
e ehook
I Ihook
i ihook
O Ohook
o ohook
U Uhook
u uhook
Y Yhook
y yhook
Â Acircumflexgrave
Â Acircumflexacute
Â Acircumflextilde
Â Acircumflexhook
â acircumflexgrave
â acircumflexacute
â acircumflextilde

â acircumflexhook
Ê Ecircumflexgrave
Ê Ecircumflexacute
Ê Ecircumflextilde
Ê Ecircumflexhook
ê ecircumflexgrave
ê ecircumflexacute
ê ecircumflextilde
ê ecircumflexhook
Ô Ocircumflexgrave
Ô Ocircumflexacute
Ô Ocircumflextilde
Ô Ocircumflexhook
ô ocircumflexgrave
ô ocircumflexacute
ô ocircumflextilde
ô ocircumflexhook
Ă Abrevegrave
Ă Abreveacute
Ă Abrevetilde
Ă Abrevehook
ă abrevegrave
ă abreveacute
ă abrevetilde
ă abrevehook
A. Adotbelow
a. adotbelow
E. Edotbelow
e. edotbelow
I. Idotbelow
i. idotbelow
O. Odotbelow
o. odotbelow
U. Udotbelow
u. udotbelow

Y. Ydotbelow
y. ydotbelow
O. Ohorndotbelow
o. ohorndotbelow
U. Uhorndotbelow
u. uhorndotbelow
Â. Acircumflexdotbelow
â. acircumflexdotbelow
Ê. Ecircumflexdotbelow
ê. ecircumflexdotbelow
Ô. Ocircumflexdotbelow
ô. ocircumflexdotbelow
Ă. Abrevedotbelow
ă. abrevedotbelow
O Ohorn
Ò Ohorngrave
Ó Ohornacute
Õ Ohorntilde
O Ohornhook
o ohorn
ò ohorngrave
ó ohornacute
õ ohorntilde
o ohornhook
U Uhorn
Ù Uhorngrave
Ú Uhornacute
Ũ Uhorntilde
U Uhornhook
u uhorn
ù uhorngrave
ú uhornacute
ũ uhorntilde
u uhornhook

119 Typography

5 Encodings and mappings

Introduction 6

6 Fonts

6.1 Introduction
This chapter will cover the details of defining fonts and collections of fonts, and it will explain
how to go about installing fonts in both MkII and MkIV. It helps if you know what a font
is, and are familiar with the ConTEXt font switching macros.

The original ConTEXt font model was based on plain TEX, but evolved into a more extensive
one primarily aimed at consistently typesetting Pragma ADE’s educational documents. The
fact that pseudo caps had to be typeset in any font shape in the running text as well as
superscripts, has clearly determined the design. The font model has been relatively stable
since 1995.

Currently there are three layers of font definitions:

• simple font definitions: such definitions provide \named access to a specific font in a
predefined size

• body font definitions: these result in a coherent set of fonts, often from a same type
foundry or designer, that can be used intermixed as a ‘style’

• typescript definitions: these package serif, sans serif, mono spaced and math and other
styles in such a way that you can conveniently switch between different combinations

These three mechanisms are actually build on top of each other and all rely on a low level
mapping mechanism that is responsible for resolving the real font file name and the specific
font encoding used.

When TEX users install one of the TEX distributions, like TEX-live, automatically a lot of fonts
will be installed on their system. Unfortunately it is not that easy to get a clear picture
of what fonts are there and what is needed to use them. And although the texmf tree is
prepared for commercial fonts, adding newly bought fonts is not trivial. To compensate this,
ConTEXt MkII comes with texfont.pl, a program that can install fonts for you. And if the
global setup is done correctly, MkIV and X ETEX can use the fonts installed in your operation
system without the need for extra installation work.

6.2 Font files and synonyms
In ConTEXt, whenever possible you should define symbolic names for fonts. The mapping
from such symbolic names onto real font names can be done such that it takes place unnoticed
for the user. This is good since the name depends on the encoding and therefore not seldom
is obscure and hard to remember. The trick is knowing how to use the \definefontsynonym
command.

The first argument is the synonym that is being defined or redefined. Redefinition is not only
allowed but often very useful. The second argument is the replacement of the synonym. This
replacement can be a real font name, but it can also be another synonym. The optional third
argument can be used for to specify font settings.

121 Fonts

6 Font files and synonyms

\definefontsynonym [...]1 [...]2 [.=.]
OPTIONAL

3

1 TEXT

2 IDENTIFIER

3 encoding = IDENTIFIER
features = IDENTIFIER
handling = IDENTIFIER
mapping = IDENTIFIER

There is no limit on the number of indirection levels, but the last one in the chain has to be
a valid font name. ConTEXt knows it has reached the bottom level when there is no longer
any replacement possible.

Font settings actually take place at the bottom level, since they are closely related to specific
instances of fonts. Any settings that are defined higher up in the chain perculate down,
unless they are already defined at the lower level.

encoding The font file encoding for tfm-based (MkII) fonts.
handling The font handling for MkII (see previous chapter).
features The font handling for MkIV and X ETEX (see previous chapter).
mapping letter case change mapping for MkII that may be used in special cases; never

actually used in the ConTEXt core. See chapter 10 on languages for details.

Here is an example of the use of font synonyms:

\definefontsynonym [Palatino] [uplr8t] [encoding=ec]

In this example, the argumnet uplr8t is the real font (the actual file name is uplr8t.tfm, but
file extensions are normally omitted), and it contains the metrics for the Type 1 font URW
Palladio L in EC encoding. From now on, the name Palatino can be used in further font
definitions to identify this font, instead of the dreadfully low--level (and hard to remember)
name uplr8t and its accompanying encoding.

A note on font names: In pdfTEX, the real font is the name of the TEX metrics file, minus the
extension, as we saw already. In X ETEX and MkIV a font name is a bit more complex, because
in both cases OpenType fonts can be accessed directly by their official font name (but with
any embedded spaces stripped out) as well as via the disk file name.

In these two systems, ConTEXt first attempts to find the font using the official font name. If
that doesn’t work, then it tries to use the font by file name as a fallback. Since this is not
very efficient and also because it may generate —harmless, but alarming looking— warnings
it is possible to force ConTEXt into one or the other mode by using a prefix, so you will most
often see synonym definitions like this:

\definefontsynonym [MSTimes] [name:TimesNewRoman] [features=default]
\definefontsynonym [Iwona-Regular] [file:Iwona-Regular] [features=default]

In X ETEX, the file prefix implies that X ETEX will search for an OpenType font (with extension
otf or ttf) and if that fails it will try to find a TEX font (with extension tfm). In MkIV, the
list is a little longer: OpenType (otf, ttf), Type 1 (afm), Omega (ofm), and finally TEX (tfm).

Fonts 122

Simple font definitions 6

The use of aliases to hide the complexity of true font names is already very useful, but
ConTEXt goes further than that. An extra synonym level is normally defined that attaches
this font name to a generic name like Serif or Sans.
\definefontsynonym [Serif] [Palatino]

An important advantage of using names like Serif in macro and style definitions is that it
can easily be remapped onto a completely different font than Palatino. This is often useful
when you are experimenting with a new environment file for a book or when you are writing
a ConTEXt module.
In fact, inside an environment file it is useful to go even further and define new symbolic
names that map onto Serif.
\definefontsynonym [TitleFont] [Serif]

By using symbolic names in the main document and in style and macro definitions, you can
make them independent of a particular font and let them adapt automatically to the main
document fonts. That is of course assuming these are indeed defined in terms of Serif,
Sans, etcetera. All the ConTEXt predefined typescripts are set up this way, and you are very
much encouraged to stick to the same logic for your own font definitions as well.
The list of ‘standard’ symbolic names is given in table 6.1
As mentioned earlier, the items in the third argument of \definefontsynonym perculate down
the chain of synonyms. Occasionally, you may want to splice some settings into that chain,
and that is where \setupfontsynonym comes in handy.

\setupfontsynonym [...]1 [.=.]
2

1 IDENTIFIER

2 inherits from \definefontsynonym

For example, the predefined MkII typescripts for font handling that we saw in the previous
chapter contain a sequence of commands like this:
\setupfontsynonym [Serif] [handling=pure]
\setupfontsynonym [SerifBold] [handling=pure]
\setupfontsynonym [SerifItalic] [handling=pure]
....

6.3 Simple font definitions
The most simple font definition takes place with \definefont.

\definefont [...]1 [...]2 [...]
OPTIONAL

3

1 IDENTIFIER

2 FILE

3 TEXT

123 Fonts

6 Simple font definitions

name style, alternative explanation
Blackboard – Used by the \bbd macro
Calligraphic – Used by the \cal macro
Fraktur – Used by the \frak macro
Gothic – Used by the \goth macro
OldStyle – Used by the \os macro
MPtxtfont – The default font for MetaPost
Calligraphy cg,tf
Handwriting hw,tf
MathRoman(Bold) mm,mr(bf)
MathItalic(Bold) mm,mi(bf)
MathSymbol(Bold) mm,sy(bf)
MathExtension(Bold) mm,ex(bf)
MathAlpha(Bold) mm,ma(bf)
MathBeta(Bold) mm,mb(bf)
MathGamma(Bold) mm,mc(bf)
MathDelta(Bold) mm,md(bf)
Mono tt,tf
MonoBold tt,bf
MonoItalic tt,it
MonoBoldItalic tt,bi
MonoSlanted tt,sl
MonoBoldSlanted tt,bs
MonoCaps tt,sc
Sans ss,tf
SansBold ss,bf
SansItalic ss,it
SansBoldItalic ss,bi
SansSlanted ss,sl
SansBoldSlanted ss,bs
SansCaps ss,sc
Serif rm,tf
SerifBold rm,bf
SerifItalic rm,it
SerifBoldItalic rm,bi
SerifSlanted rm,sl
SerifBoldSlanted rm,bs
SerifCaps rm,sc

Table 6.1 Standard symbolic font names, and the style--alternative pair they
belong to.

This macro defines a font with the same name as the first argument and you can use its
name as an identifier to select that font. The second argument works in the same way as the
second argument to \definefontsynonym: you can use either a font synonym or a real font.
There is an optional third argument that can be either a bare number like 1.5 , or a named

Fonts 124

Simple font definitions 6

setup (see section ??). In case of a bare number, that is a local setting for the interline space.
In case of a setup, that setup can do whatever it wants.

For instance:

\loadmapfile [koeieletters]
\definefont [ContextLogo] [koeielogos at 72pt]
\ContextLogo \char 2

will result in

�
If you want a fixed size font like in the example above, you can define a font using the
primitive TEX at or scaled modifiers.

Be warned that at is often useful, but scaled is somewhat unreliable since it scales the font
related to its internal design size, and that is often unknown. Depending on the design size
is especially dangerous when you use symbolic names, since different fonts have different
design sizes, and designers differ in their ideas about what a design size is. Compare for
instance the 10pt instance of a Computer Modern Roman with Lucida Bright (which more
looks like a 12pt then).

\definefont [TitleFont] [Serif scaled 2400]

Hardcoded sizes can be useful in many situations, but they can be annoying when you want
to define fonts in such a way that their definitions adapt themselves to their surroundings.
That is why ConTEXt provides an additional way of scaling:

\definefont [TitleFont] [Serif sa 2.4]

The sa directive means as much as ‘scaled at the body font size’. Therefore this definition
will lead to a 24pt scaling when the (document) body font size equals 10pt. Because the
definition has a lazy nature, the font size will adapt itself to the current body font size.

There is an extra benefit to using sa instead of at. Instead of a numeric multiplier, you can
also use the identifiers that were defined in the body font environment that specified the
related dimensions. For example, this scales the font to the b size, being 1.440 by default:

\definefont [TitleFont] [Serif sa b]

In fact, if you use a bare name like in

\definefont [TitleFont] [Serif]

it will internally be converted to

\definefont [TitleFont] [Serif sa *]

which in turn expands into the current actual font size, after the application of size corrections
for super-- and subscripts etc.

For example

\definefont [TitleFont] [Sans]
{\TitleFont test} and {\tfc \TitleFont test}

125 Fonts

6 Defining body fonts

gives

test and test
A specialized alternative to sa that is sometimes useful is mo. Here the size maps onto to
body font size only after it has passed through an optional size remapping. Such remappings
are defined by the macro \mapfontsize:

\mapfontsize [...]1 [...]2

1 DIMENSION

2 DIMENSION

Such remapping before applying scaling is sometimes handy for math fonts, where you may
want to use slightly different sizes than the ones given in the body font environment. In the
ConTEXt distribution, this happens only with the Math Times fonts, where the predefined
typescript contains the following lines:

\mapfontsize [5pt] [6.0pt]
\mapfontsize [6pt] [6.8pt]
\mapfontsize [7pt] [7.6pt]
\mapfontsize [8pt] [8.4pt]
\mapfontsize [9pt] [9.2pt]
\mapfontsize [10pt] [10pt]
\mapfontsize [11pt] [10.8pt]
\mapfontsize [12pt] [11.6pt]
\mapfontsize [14.4pt] [13.2pt]

As we have seen, \definefont creates a macro name for a font switch. For ease of use, there
is also a direct method to access a font:

\definedfont [...]*

* inherits from \definefont

Where the argument has exactly the same syntax as the second argument to \definefont.
In fact, this macro executes \definefont internally, and then immediately switches to the
defined font.

6.4 Defining body fonts
In older versions of ConTEXt, the model for defining fonts that will be described in this
section was the top--level user interface. These days, typescripts are used at the top--level,
and the body font definitions are wrapped inside of those.

Most commercial fonts have only one design size, and when you create a typescript for such
fonts, you can simply reuse the predefined size definitions. Later on we will see that this
means you can just refer to a default definition.

Fonts 126

Defining body fonts 6

Still, you may need (or want) to know the details of body font definitions if you create
your own typescripts, especially if the fonts are not all that standard. For example, because
Latin Modern comes in design sizes, there was a need to associate a specific font with each
bodyfont size. You may find yourself in a similar situation when you attempt to create a
typescript for a ‘professional’ commercial font set.
The core of this intermediate model is the \definebodyfont command that is used as follows:
\definebodyfont [10pt] [rm] [tf=tir at 10pt]

This single line actually defines two font switches \tf for use after a \rm command, and
\rmtf for direct access.
As one can expect, the first implementation of a font model in TEX is also determined and
thereby complicated by the fact that the Computer Modern Roman fonts come in design
sizes. As a result, definitions can look rather complex and because most TEX users start with
those fonts, font definitions are considered to be complex.
Another complicating factor is that in order to typeset math, even more (font) definitions are
needed. Add to that the fact that sometimes fonts with mixed encodings have to be used, i.e.
with the glyphs positioned in different font slots, and you can understand why font handling
in TEX is often qualified as ‘the font mess’. Flexibility simply has its price.
Like most other TEX users, Hans Hagen started out using the Computer Modern Roman
fonts. Since these fonts have specific design sizes, ConTEXt supports extremely accurate
\definebodyfont definitions with specific font names and sizes for each combination. The
following is an example of that:
\definebodyfont [12pt] [rm]

[tf=cmr12,
tfa=cmr12 scaled \magstep1,
tfb=cmr12 scaled \magstep2,
tfc=cmr12 scaled \magstep3,
tfd=cmr12 scaled \magstep4,
bf=cmbx12,
it=cmti12,
sl=cmsl12,
bi=cmbxti10 at 12pt,
bs=cmbxsl10 at 12pt,
sc=cmcsc10 at 12pt]

It should be clear to you that for fonts with design sizes, similar \definebodyfont commands
will have to be written for each of the requested body font sizes. But many commercial fonts
do not come in design sizes at all. In fact, many documents have a rather simple design and
use only a couple of fonts for all sizes.
The previous example used the available TEX--specifications scaled and at, but (as we say
already) ConTEXt supports special keyword that is a combination of both: sa (scaled at).
For example, for the Helvetica Type 1 font definition we could define:
\definebodyfont [12pt] [ss]
[tf=hv sa 1.000,
bf=hvb sa 1.000,

127 Fonts

6 Defining body fonts

it=hvo sa 1.000,
sl=hvo sa 1.000,
tfa=hv sa 1.200,
tfb=hv sa 1.440,
tfc=hv sa 1.728,
tfd=hv sa 2.074,
sc=hv sa 1.000]

The scaling is done in relation to the bodyfont size. In analogy with TEX’s \magstep we can
use \magfactor: instead of sa 1.440 we could specify sa \magfactor2.
If you are happy with the relative sizes as defined in the body font environment (and there
is no reason not to), the \definebodyfont can be four lines shorter. That is because ConTEXt
predeclares a whole collection of names that combine the styles rm, ss, tt, tf, hw and cg
with the alternatives bf, it, sl, bi, bs, and sc with the postfixes a, b, c, d, x and xx.
For the combination of ss and sl, the following identifiers are predeclared:
\ss \ssa \ssb \ssc \ssd \ssx \ssxx
\sl \sla \slb \slc \sld \slx \slxx
\sssl \sssla \ssslb \ssslc \sssld

And because there are no more sizes in the definition any more, we can just as well combine
all of the requested sizes in a single \definebodyfont by using a list of sizes as the first
argument. This means exactly the same as repeating that whole list five (or more) times, but
saves a lot of typing:
\definebodyfont [12pt,11pt,10pt,9pt,8pt] [ss]
[tf=hv sa 1.000,
bf=hvb sa 1.000,
it=hvo sa 1.000,
sl=hvo sa 1.000,
sc=hv sa 1.000]

Because the font names (may) depend on the encoding vector, we had better use the previ-
ously discussed method for mapping symbolic names. So, any one of the three following
lines can be used, but the third one is best:
\definebodyfont [10pt,11pt,12pt] [ss] [tf=hv sa 1.000]
\definebodyfont [10pt,11pt,12pt] [ss] [tf=Helvetica sa 1.000]
\definebodyfont [10pt,11pt,12pt] [ss] [tf=Sans sa 1.000]

And in the actual ConTEXt core, the default body fonts are in fact defined with commands
like this:
\definebodyfont [default] [rm]
[tf=Serif sa 1,
...
it=SerifItalic sa 1,
...]

We saw that \tf is the default font. Here \tf is defined as Serif sa 1 which means that it
is a serif font, scaled to a normal font size. This Serif is mapped elsewhere on for example
Palatino which in turn is mapped on the actual filename uplr8t, as demonstrated earlier.

Fonts 128

Defining body fonts 6

\definebodyfont [...,...]1 [...,...]
OPTIONAL

2 [..,.=.,..]
3

1 5pt ... 12pt small big

2 rm ss tt hw cg mm

3 tf = FILE
bf = FILE
sl = FILE
it = FILE
bs = FILE
bi = FILE
sc = FILE
mr = FILE
ex = FILE
mi = FILE
sy = FILE
ma = FILE
mb = FILE
mc = FILE
md = FILE

The macro syntax for \definebodyfont is a bit abbreviated. Besides the two--letter keys that
are listed for the third argument, it is also possible to assign values to font identifiers with
the alphabetic suffixes a through d like tfa as well as the ones with an x or xx suffix like
bfx. You can even define totally new keywords, if you want that.

As an example we will define a bigger fontsize of \tf:

\definebodyfont [10pt,11pt,12pt] [rm]
[tfe=Serif at 48pt,
ite=SerifItalic at 48pt]

\tfe Big {\it Words}.

This becomes:

Big Words.
Note that there is a small trick here: the assignment to ite is needed for the command \it
to work properly. Without that, the command \it would run the ‘normal’ version of it and
that has a size of 11pt.

The keywords mr, ex, mi, sy, ma, mb,mc and md all relate to math families. As was already
hinted at in table 6.1, these have extended relatives suffixed by bf for use within bold math
environments.

Calls of \definebodyfont for the mm style look quite different from the other styles, because
they set up these special keywords, and nothing else. The first four keys are required in
all math setups just to do basic formula typesetting, the other four (ma . . . md) can be left
undefined. Those are normally used for fonts with special symbols or alphabets like the
AMS symbol fonts msam and msbm.

Here is what a setup for a fairly standard mm could look like:

129 Fonts

6 Defining body fonts

\definebodyfont [10pt] [mm]
[mr=cmr10,
ex=cmex10,
mi=cmmi10,
sy=cmsy10]

\definebodyfont [17.3pt,14.4pt,12pt,11pt,10pt,9pt] [mm]
[ma=msam10 sa 1,
mb=msbm10 sa 1]

The keys mc and md are left undefined. This example explicitly shows how multiple \define-
bodyfonts are combined by ConTEXt automatically and that there is no need to do everything
within a single definition (in fact this was already implied by the tfe trick above.)

Apart from the calling convention as given in the macro syntax that has already been shown,
there are a few alternative forms of \definebodyfont that can be used to defined and call
body fonts by name:

\definebodyfont [...]1 [...]2 [...]3

1 IDENTIFIER

2 inherits from \setupbodyfont

3 inherits from \setupbodyfont

This was used in the default serif font defintion shown above: the first argument to \define-
bodyfont was the identifier default because these definitions were to be used from within
other definitions.

An actual size will be provided by the commands at the top--level in the calling chain,
the third argument in that \definebodyfont call will also be default instead of actually
specifying settings.

\definebodyfont [...]1 [...]2 [...]3

1 inherits from \setupbodyfont

2 inherits from \setupbodyfont

3 IDENTIFIER

The use of the default actually happens deep inside ConTEXt so there is clear code that can
be shown, but if it was written out, a call would for example look like this:

\definebodyfont
[17.3pt,14.4pt,12pt,11pt,10pt,9pt,8pt,7pt,6pt,5pt,4pt]
[rm,ss,tt,mm]
[default]

To end this section: for advanced TEX users there is the dimension--register \bodyfontsize.
This variable can be used to set fontwidths. The number (rounded) points is available in
\bodyfontpoints.

Fonts 130

Typescripts and typefaces 6

This way of defining fonts has been part of ConTEXt from the beginning, but as more com-
plicated designs started to show up, we felt the need for a more versatile mechanism.

6.5 Typescripts and typefaces
On top of the existing traditional font module, ConTEXt now provides a more abstract layer of
typescripts and building blocks for definitions and typefaces as font containers. The original
font definition files have been regrouped into such typescripts thereby reducing the number
of files involved.

As we saw earlier, ‘using’ a typescript is done via the a call to the macro \usetypescript.
Here is the macro syntax setup again:

\usetypescript [...,...]1 [...,...]
OPTIONAL

2 [...,...]
OPTIONAL

3

1 IDENTIFIER

2 IDENTIFIER

3 IDENTIFIER

Typescripts are in fact just organized definitions, and ‘using’ a typescript therefore actually
means nothing more than executing the set of definitions that is contained within a particular
typescript.

The main defining command for typescripts is a start--stop pair that wraps the actual macro
definitions.

\starttypescript [...] [...] [...]
....

\stoptypescript

As with \usetypescript, there can be up to three arguments, and these two sets of argu-
ments are linked to eachother: the values of the first and second argument in the call to
\starttypescript of

\starttypescript [palatino] [texnansi,ec,qx,t5,default]
...

\stoptypescript

are what make the MkII-style call to \usetypescript

\usetypescript [palatino] [ec]
...

possible and meaningful: the first argument in both cases is the same so that this matches,
and the second argument of \usetypescript appears in the list that is the second argument
of \starttypescript, so this also matches. ConTEXt will execute all matching blocks it
knows about: there may be more than one.

To perform the actual matching, ConTEXt scans through the list of known \starttypescript
blocks for each of the combinations of items in the specified arguments of \usetypescript.
These blocks can be preloaded definitions in TEX’s memory, or they may come from a file.

131 Fonts

6 Typescripts and typefaces

There is a small list of typescript files that is tried always, and by using \usetypescriptfile
you actually add extra ones at the end of this list.

The automatically loaded files for the three possible engines are, in first to last order:

pdftex xetex luatex explanation
type-tmf type-tmf type-tmf Core TEX community fonts
type-siz type-siz type-siz Font size setups
type-one Type 1 free fonts

type-otf type-otf OpenType free fonts
type-xtx MacOSX font support

type-akb Basic Adobe Type 1 mappings
type-loc type-loc type-loc A user configuration file

Extra arguments to \usetypescript are ignored, and that is why that same two-argument
call to \usetypescript works correctly in MkIV as well, even tough the typescript itself uses
only a single argument:

\starttypescript [palatino]
...

\stoptypescript

On the other hand, extra arguments to \starttypescript are not ignored: a \starttype-
script with two specified arguments will not be matched by a \usetypescript that has only
one specified argument.

However, you can force any key at all to match by using the special keyword all in your
\usetypescript or \starttypescript. We will see later that this use of a wildcard is some-
times handy.

6.5.1 A typescript in action
Before we can go on and explain how to write \starttypescript blocks, we have to step
back for a moment to the macro \definetypeface, and especially to the third, fourth and
fifth argument:

\starttypescript [palatino] [texnansi,ec,qx,t5,default]
\definetypeface[palatino] [rm] [serif] [palatino] [default]
...

Remember how in the previous chapter there were the tables that listed all the predefined
combinations? It was said there that these ‘. . . are nothing more than convenience names that
are attached to a group of fonts by the person that wrote the font definition’.

Here is how that works: these arguments of \definetypeface are actually used as parts of
\usetypescript calls. To be preciese, inside the macro definition of \definetypeface, there
are the following lines:

\def\definetypeface
...
\usetypescript[#3,map][#4][name,default,\typefaceencoding,special]
\usetypescript[#3][#5][size]
...

Fonts 132

Typescripts and typefaces 6

In our example #3 is serif, #4 is palatino, and #5 is default. The value of \typefaceen-
coding is inherited from the calling \usetypescript. That means that the two lines expand
into:

\usetypescript[serif,map][palatino] [name,default,ec,special]
\usetypescript[serif][default][size]

And those typescripts will be searched for. This example is using MkII, so the list of typescript
files is type-tmf, type-siz, type-one, type-akb, and type-loc. The first two arguments of
\usetypescript are handled depth first, so first all ‘serif’ typescripts are tried against all the
files in the list and then all the ‘map’ typescripts.

Not all of the seached typescript blocks are indeed present in the list of files that have to be
scanned, but a few are, and one apparently even more than once:

type-tmf.tex serif palatino name
type-one.tex serif palatino texnansi,ec,8r,t5
type-one.tex serif palatino ec,texnansi,8r
type-one.tex map all –
type-siz.tex serif default size

All of the found blocks are executed, so let’s look at them in order

\starttypescript [serif] [palatino] [name]
\definefontsynonym [Serif] [Palatino]
\definefontsynonym [SerifBold] [Palatino-Bold]
\definefontsynonym [SerifItalic] [Palatino-Italic]
\definefontsynonym [SerifSlanted] [Palatino-Slanted]
\definefontsynonym [SerifBoldItalic] [Palatino-BoldItalic]
\definefontsynonym [SerifBoldSlanted] [Palatino-BoldSlanted]
\definefontsynonym [SerifCaps] [Palatino-Caps]

\stoptypescript

This block has mapped the standard symbolic names to names in the ‘Palatino’ family, one
of the standard font synonym actions as explained in the beginning of this chapter.

\starttypescript [serif] [palatino] [texnansi,ec,8r,t5]
\definefontsynonym [Palatino]

[\typescriptthree-uplr8a] [encoding=\typescriptthree]
\definefontsynonym [Palatino-Italic]

[\typescriptthree-uplri8a] [encoding=\typescriptthree]
\definefontsynonym [Palatino-Bold]

[\typescriptthree-uplb8a] [encoding=\typescriptthree]
\definefontsynonym [Palatino-BoldItalic]

[\typescriptthree-uplbi8a] [encoding=\typescriptthree]
\definefontsynonym [Palatino-Slanted]

[\typescriptthree-uplr8a-slanted-167] [encoding=\typescriptthree]
\definefontsynonym [Palatino-BoldSlanted]

[\typescriptthree-uplb8a-slanted-167] [encoding=\typescriptthree]
\definefontsynonym [Palatino-Caps]

[\typescriptthree-uplr8a-capitalized-800] [encoding=\typescriptthree]

133 Fonts

6 Typescripts and typefaces

\loadmapfile[\typescriptthree-urw-palatino.map]
\stoptypescript

This maps the Palatino names onto the actual font files. Some further processing is taking
place here: the calling \usetypescript that was called from within the \definetypeface
knows that it wants ec encoding. Because this is the third argument, it becomes the replace-
ment of \typescriptthree. The body of the typescript therefore reduces to:

\definefontsynonym[Palatino] [ec-uplr8a] [encod-
ing=ec]
\definefontsynonym[Palatino-Italic] [ec-uplri8a] [encod-
ing=ec]
\definefontsynonym[Palatino-Bold] [ec-uplb8a] [encod-
ing=ec]
\definefontsynonym[Palatino-BoldItalic] [ec-uplbi8a] [encod-
ing=ec]
\definefontsynonym[Palatino-Slanted] [ec-uplr8a-slanted-167] [encod-
ing=ec]
\definefontsynonym[Palatino-BoldSlanted][ec-uplb8a-slanted-167] [encod-
ing=ec]
\definefontsynonym[Palatino-Caps] [ec-uplr8a-capitalized-800][encoding=ec]

\loadmapfile[ec-urw-palatino.map]

Incidentally, this also loads a font map file. In earlier versions of ConTEXt, this was done
by separate typescripts in the file type-map.tex, but nowadays all map loading is combined
with the definition of the synonyms that link to the true fonts on the harddisk. This way,
there is a smaller chance of errors creeping in. See section 6.9 for more details on font map
files.

The third match is a block that sets sets up ‘TeXPalladioL’ font synonyms. These will not
actually be used, but it is a match so it will be executed anyway.

\starttypescript [serif] [palatino] [ec,texnansi,8r]
\definefontsynonym[TeXPalladioL-BoldItalicOsF]

[\typescriptthree-fplbij8a][encoding=\typescriptthree]
...
\stoptypescript

The next matched entry loads the font map files for the default fonts:

\starttypescript [map] [all]
\loadmapfile[original-base.map]
\loadmapfile[original-ams-base.map]

\stoptypescript

this will not really be needed for the palatino \rm typescript, but it ensures that even if there
is something horribly wrong with the used typescripts, at least pdfTEX will be able to find
the Latin Modern (the default font set) on the harddisk.

The last match is the missing piece of the font setup:

Fonts 134

Typescripts and typefaces 6

\starttypescript [serif] [default] [size]
\definebodyfont
[4pt,5pt,6pt,7pt,8pt,9pt,10pt,11pt,12pt,14.4pt,17.3pt]
[rm] [default]

\stoptypescript

and now the typescript is complete.

As explained earlier, that last block references a named \definebodyfont that is defined in
type-unk.tex:

\definebodyfont [default] [rm]
[tf=Serif sa 1,
bf=SerifBold sa 1,
it=SerifItalic sa 1,
sl=SerifSlanted sa 1,
bi=SerifBoldItalic sa 1,
bs=SerifBoldSlanted sa 1,
sc=SerifCaps sa 1]

similar default blocks are defined for the other five font styles also.

Looking back, you can see that the Palatino-specific typescripts did actually do anything
except definining font synonyms, loading a map file, and calling a predefined bodyfont.

6.5.2 Some more information
As we saw already, typescripts and its invocations have up to three specifiers. An invocation
matches the script specification when the three arguments have common keywords, and the
special keyword all is equivalent to any match.

Although any keyword is permitted in any of the three arguments, the current definitions
(and macros like \definetypeface) make heavy use of some keys in particular:

pattern application
[serif] [*] [*] serif fonts
[sans] [*] [*] sans serif fonts
[mono] [*] [*] mono spaced fonts
[math] [*] [*] math fonts
[*] [*] [size] size specifications
[*] [*] [name] symbolic name mapping
[*] [*] [special] special settings
[*] [all] [*] default case(s)
[map] [*] [*] map file specifications

When you take a close look at the actual files in the distribution you will notice a quite a
few other keywords. One in particular is worth mentioning: instead of the predefined sizes
in default, you can use the dtp size scripts with their associated body font environments by
using

\usetypescript [all] [dtp] [size]

or

135 Fonts

6 Typescripts and typefaces

\definetypeface[palatino] [rm] [serif] [palatino] [dtp]

In the top--level typescript for the palatino, we had a bunch of \definetypeface commands,
as follows:

\definetypeface [funny] [rm] [serif] [palatino] [default] [encoding=texnansi]
\definetypeface [funny] [ss] [sans] [palatino] [default] [encoding=texnansi]
\definetypeface [funny] [tt] [mono] [palatino] [default] [encoding=texnansi]
\definetypeface [funny] [mm] [math] [palatino] [default] [encoding=texnansi]

Once these commands are executed (wether or not as part of a typescript), \funny will enable
this specific collection of fonts. In a similar way we can define a collection \joke.

\definetypeface [joke] [rm] [serif] [times] [default] [encoding=texnansi]
\definetypeface [joke] [ss] [sans] [helvetica] [default] [rscale=.9,

encoding=texnansi]
\definetypeface [joke] [tt] [mono] [courier] [default] [rscale=1.1,

encoding=texnansi]
\definetypeface [joke] [mm] [math] [times] [default] [encoding=texnansi]

And the familiar Computer Modern Roman as \whow:

\definetypeface [whow] [rm] [serif] [modern] [latin-modern] [encoding=ec]
\definetypeface [whow] [ss] [sans] [modern] [latin-modern] [encoding=ec]
\definetypeface [whow] [tt] [mono] [modern] [latin-modern] [encoding=ec]
\definetypeface [whow] [mm] [math] [modern] [latin-modern] [encoding=ec]

Now has become possible to switch between these three font collections at will. Here is a
sample of some text and a little bit of math:

Who is {\it fond} of fonts?
Who claims that $t+e+x+t=m+a+t+h$?
Who {\ss can see} {\tt the difference} here?

When typeset in \funny, \joke, and whow, the samples look like:

Who is fond of fonts?
Who claims that t + e + x + t = m + a + t + h?
Who can see the difference here?

Who is fond of fonts?
Who claims that t + e + x + t = m + a + t + h?
Who can see the difference here?

Who is fond of fonts?
Who claims that t+ e+ x+ t = m+ a+ t+ h?
Who can see the difference here?
With \showbodyfont you can get an overview of this font.

When defining the joke typeface collection, we used a scale directive. The next sample
demonstrates the difference between the non scaled and the scaled alternatives.

Who is fond of fonts?
Who claims that t + e + x + t = m + a + t + h?
Who can see the difference here?

Fonts 136

Typescripts and typefaces 6

[funny] \mr : Ag

\tf \sc \sl \it \bf \bs \bi \tfx \tfxx \tfa \tfb \tfc \tfd

\rm Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\ss Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\tt Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag

Figure 6.1 The funny typeface collection.

[joke] \mr : Ag

\tf \sc \sl \it \bf \bs \bi \tfx \tfxx \tfa \tfb \tfc \tfd

\rm Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\ss Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\tt Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag

Figure 6.2 The joke typeface collection.

Who is fond of fonts?
Who claims that t + e + x + t = m + a + t + h?
Who can see the difference here?

It may not be immediately clear from the previous examples, but a big difference between
using typeface definitions and the old method of redefining over and over again, is that the
new method uses more resources. This is because each typeface gets its own name space
assigned. As an intentional side effect, the symbolic names also follow the typeface. This
means that for instance:

\definefont[MyBigFont][Serif sa 1.5] \MyBigFont A bit larger!

will adapt itself to the currently activated serif font shape, here \funny, \joke and \whow.

A bit larger!
A bit larger!
A bit larger!

6.5.3 A bit more about math
Math is kind of special in the sense that it has its own set of fonts, either or not related to
the main text font. By default, a change in style, for instance bold, is applied to text only.

$ \sqrt{625} = 5\alpha$
$\bf \sqrt{625} = 5\alpha$
$ \sqrt{625} = \bf 5\alpha$
$\bfmath \sqrt{625} = 5\alpha$

The difference between these four lines is as follows:

137 Fonts

6 Typescripts and typefaces

[whow] \mr : Ag

\tf \sc \sl \it \bf \bs \bi \tfx \tfxx \tfa \tfb \tfc \tfd

\rm Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\ss Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\tt Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag

Figure 6.3 The whow typeface collection.
√

625 = 5α
√

625 = 5α
√

625 = 5α
√

625 = 5α

In order to get a bold α symbol, we need to define bold math fonts.16 Assuming the font’s
typescripts support bold math, the most convenient way of doing this is the following:

\definetypeface [whow] [mm]
[math,boldmath] [modern] [default] [encoding=texnansi]

Bold math looks like this:
√

625 = 5α√
625 = 5α√
625 = 5α√
625 = 5α

The definitions are given on the next page. Such definitions are normally collected in the
project bound file, for instance called typeface.tex, that is then manually added to the list
of typescript files:

\usetypescriptfile[typeface] % project scripts

It is also possible to avoid typescripts. When definitions are used only once, it makes sense
to use a more direct method. We will illustrate this with a bit strange example.

Imagine that you want some math formulas to stand out, but that you don’t have bold fonts.
In that case you can for instance scale them. A rather direct method is the following.

\definebodyfont
[funny]
[12pt,11pt,10pt,9pt,8pt,7pt] [mm]
[mrbf=MathRoman mo 2,
exbf=MathExtension mo 2,
mibf=MathItalic mo 2,
sybf=MathSymbol mo 2]

Our math sample will now look like:
√

625 = 5α
√

625 = 5α

Bold math is already prepared in the core modules, so normally one can do with less code16

Fonts 138

Predefined font, style and alternative keywords 6

√
625 = 5α√

625 = 5α
We can also use an indirect method:

\definebodyfont
[smallmath] [mm]
[mrbf=MathRoman mo .5,
exbf=MathExtension mo .5,
mibf=MathItalic mo .5,
sybf=MathSymbol mo .5]

\definebodyfont
[funny]
[12pt,11pt,10pt,9pt,8pt,7pt]
[mm] [smallmath]

This method is to be preferred when we have to define more typefaces since it saves key-
strokes.
√

625 = 5α
√

625 = 5α
√

625 = 5α√
625 = 5α

For efficiency reasons, the font definitions (when part of a typeface) are frozen the first time
they are used. Until that moment definitions will adapt themselves to changes in for instance
scaling and (mapped) names. Freezing definitions is normally no problem because typefaces
are defined for a whole document and one can easily define more instances. When you
redefine it, a frozen font is automatically unfrozen.

6.6 Predefined font, style and alternative keywords
Some of the internal commands are worth mentioning because they define keywords and
you may want to add to the list.

Font size switching is done with keywords like twelvepoint and commands like \twelve-
point or \xii, which is comparable to the way it is done in plain TEX. These commands are
defined with:

\definebodyfontswitch [fourteenpointfour] [14.4pt]
\definebodyfontswitch [twelvepoint] [12pt]
\definebodyfontswitch [elevenpoint] [11pt]
\definebodyfontswitch [tenpoint] [10pt]
\definebodyfontswitch [ninepoint] [9pt]
\definebodyfontswitch [eightpoint] [8pt]
\definebodyfontswitch [sevenpoint] [7pt]
\definebodyfontswitch [sixpoint] [6pt]
\definebodyfontswitch [fivepoint] [5pt]
\definebodyfontswitch [fourpoint] [4pt]

139 Fonts

6 Predefined font, style and alternative keywords

\definebodyfontswitch [xii] [12pt]
\definebodyfontswitch [xi] [11pt]
\definebodyfontswitch [x] [10pt]
\definebodyfontswitch [ix] [9pt]
\definebodyfontswitch [viii] [8pt]
\definebodyfontswitch [vii] [7pt]
\definebodyfontswitch [vi] [6pt]

But be warned that \xi is later redefined as a greek symbol.
The keys in \setupbodyfont are defined in terms of:
\definefontstyle [rm,roman,serif,regular] [rm]
\definefontstyle [ss,sansserif,sans,support] [ss]
\definefontstyle [tt,teletype,type,mono] [tt]
\definefontstyle [hw,handwritten] [hw]
\definefontstyle [cg,calligraphic] [cg]

In many command setups we encounter the parameter style. In those situations we can
specify a key. These keys are defined with \definealternativestyle. The third argument
is only of importance in chapter and section titles, where, apart from \cap, we want to obey
the font used there.
\definealternativestyle [mediaeval] [\os] []
\definealternativestyle [normal] [\tf] []
\definealternativestyle [bold] [\bf] []
\definealternativestyle [type] [\tt] []
\definealternativestyle [mono] [\tt] []
\definealternativestyle [slanted] [\sl] []
\definealternativestyle [italic] [\it] []
\definealternativestyle [boldslanted,

slantedbold] [\bs] []
\definealternativestyle [bolditalic,

italicbold] [\bi] []
\definealternativestyle [small,

smallnormal] [\tfx] []
\definealternativestyle [smallbold] [\bfx] []
\definealternativestyle [smalltype] [\ttx] []
\definealternativestyle [smallslanted] [\slx] []
\definealternativestyle [smallboldslanted,

smallslantedbold] [\bsx] []
\definealternativestyle [smallbolditalic,

smallitalicbold] [\bix] []
\definealternativestyle [sans,

sansserif] [\ss] []
\definealternativestyle [sansbold] [\ss\bf] []
\definealternativestyle [smallbodyfont] [\setsmallbodyfont] []
\definealternativestyle [bigbodyfont] [\setbigbodyfont] []
\definealternativestyle [cap,

capital] [\smallcapped] [\smallcapped]

Fonts 140

Symbols and glyphs 6

\definealternativestyle [smallcaps] [\sc] [\sc]
\definealternativestyle [WORD] [\WORD] [\WORD]

In section 5.4 we have already explained how emphasizing is defined. With oldstyle digits
this is somewhat different. We cannot on the forehand in what font these can be found. By
default we have the setup:
\definefontsynonym [OldStyle] [MathItalic]

As we see they are obtained from the same font as the math italic characters. The macro \os
fetches the runtime setting by executing \symbolicfont{OldStyle}, which is just a low-level
version of \definedfont[OldStyle sa *]. A few other macros behave just like that:
macro synonym default value
\os OldStyle MathItalic (lmmi10)
\frak Fraktur eufm10
\goth Gothic eufm10
\cal Calligraphic cmsy10 (lmsy10)
\bbd Blackboard msbm10
In addition to all the alrady mentioned commands there are others, for example macros for
manipulating accents. These commands are discussed in the file font-ini. More information
can also be found in the file core-fnt and specific gimmicks in the file supp-fun. So enjoy
yourself.

6.7 Symbols and glyphs
Some day you may want to define your own symbols, if possible in such a way that they
nicely adapt themselves to changes in style and size. A good example are the eurosymbols.
You can take a look in symb-eur.tex to see how such a glyph is defined.
\definefontsynonym [EuroSerif] [eurose]
\definefontsynonym [EuroSerifBold] [euroseb]
...
\definefontsynonym [EuroSans] [eurosa]
\definefontsynonym [EuroSansBold] [eurosab]
...
\definefontsynonym [EuroMono] [euromo]
\definefontsynonym [EuroMonoBold] [euromob]

Here we use the free Adobe euro fonts, but there are alternatives available. The symbol itself
is defined as:
\definesymbol [euro] [\getglyph{Euro}{\char160}]

You may notice that we only use the first part of the symbolic name. ConTEXt will complete
this name according to the current style. You can now access this symbol with \symbol
[euro]

\tf \bf \sl \it \bs \bi
Serif ¤ ¤ ¤ ¤ ¤ ¤

Sans ¤ ¤ ¤ ¤ ¤ ¤

Mono ¤ ¤ ¤ ¤ ¤ ¤

141 Fonts

6 Encodings

More details on defining symbols and symbol sets can be found in the documentation of the
symbol modules.

6.8 Encodings

TODO: Add macro syntax definition blocks

Until now we assumed that an a will become an a during type setting. However, this is not
always the case. Take for example ä or æ. This character is not available in every font and
certainly not in the Computer Modern Typefaces. Often a combination of characters \"a or a
command \ae will be used to produce such a character. In some situation TEX will combine
characters automatically, like in fl that is combined to fl and not fl. Another problem occurs
in converting small print to capital print and vice versa.

Below you see an example of the texnansi mapping:

\startmapping[texnansi]
\definecasemap 228 228 196 \definecasemap 196 228 196
\definecasemap 235 235 203 \definecasemap 203 235 203
\definecasemap 239 239 207 \definecasemap 207 239 207
\definecasemap 246 246 214 \definecasemap 214 246 214
\definecasemap 252 252 220 \definecasemap 220 252 220
\definecasemap 255 255 159 \definecasemap 159 255 159

\stopmapping

This means so much as: in case of a capital the character with code 228 becomes character
228 and in case of small print the character becomes character 196.

These definitions can be found in enco-ans. In this file we can also see:

\startencoding[texnansi]
\defineaccent " a 228
\defineaccent " e 235
\defineaccent " i 239
\defineaccent " o 246
\defineaccent " u 252
\defineaccent " y 255

\stopencoding

and

\startencoding[texnansi]
\definecharacter ae 230
\definecharacter oe 156
\definecharacter o 248
\definecharacter AE 198

\stopencoding

As a result of the way accents are placed over characters we have to approach accented
characters different from normal characters. There are two methods: TEX does the accenting

Fonts 142

Map files 6

itself or prebuild accentd glyphs are used. The definitions above take care of both methods.
Other definitions are sometimes needed. In the documentation of the file enco-ini more
information on this can be found.

6.9 Map files

TODO: This section is too informal

If you’re already sick of reading about fonts, you probably don’t want read this section. But
alas, dvi post processors and pdfTEX will not work well if you don’t provide them map files
that tell them how to handle the files that contain the glyphs.

In its simplest form, a definition looks as follows:

usedname < texnansi.enc < realname.pfb

This means as much as: when you want to include a file that has the tfm file usedname, take
the outline file realname.pfb and embed it with the texnansi encoding vector. Sometimes
you need more complicated directives and you can leave that to the experts. We try to keep
up with changes in the map file syntax, the names of fonts, encodings, locations in the TEX
tree, etc. However, it remains a troublesome area.

It makes sense to take a look at the cont-sys.rme file to see what preferences make sense.
If you want to speed up the typescript processing, say (in cont-sys.tex:

\preloadtypescripts

If you want to change the default encoding, you should add something:

\setupencoding [default=texnansi]

You can let ConTEXt load the map files for pdfTEX:

\autoloadmapfilestrue

The following lines will remove existing references to map files and load a few defaults.

\resetmapfiles
\loadmapfile[original-base.map]
\loadmapfile[original-ams-base.map]
\loadmapfile[original-public-lm.map]

As said, map files are a delicate matter.

6.10 Installing fonts

TODO: Document use of MkIVand
X ETEX and in particular OSFONTDIR

Most TEX distributions come with a couple of fonts, most noticeably the Computer Modern
Roman typefaces. In order to use a font, TEX has to know its characteristics. These are

143 Fonts

6 Installing fonts

defined in tfm and vf files. In addition to these files, on your system you can find a couple
of more file types.

suffix content
tfm TEX specific font metric files that, in many cases, can be generated from afm files
vf virtual font files, used for building glyph collections from other ones
afm Adobe font metric files that are more limited than tfm files (especially for math

fonts)
pfm Windows specific font metric files, not used by TEX applications
pfb files that contain the outline specification of the glyphs fonts, also called Type 1
enc files with encoding vector specifications
map files that specify how and what font files are to be included

On your disk (or cdrom) these files are organized in such a way that they can be located
fast.17 The directory structure normally is as follows:

texmf / fonts / tfm / vendor / name / *.tfm
/ afm / vendor / name / *.afm
/ pfm / vendor / name / *.pfm
/ vf / vendor / name / *.vf
/ type1 / vendor / name / *.pfb

/ pdftex / config / *.cfg
/ config / *.map
/ config / encoding / *.enc

The texmf-local or even better texmf-fonts tree normally contains your own fonts, so that
you don’t have to reinstall them when you reinstall the main tree. The pdftex directory
contains the files that pdfTEX needs in order to make decisions about the fonts to include.
The enc files are often part of distributions, as is the configuration cfg file. When you install
new fonts, you often also have to add or edit map files.

ConTEXt comes with a Perl script texfont.pl that you can use to install new fonts. Since its
usage is covered by a separate manual, we limit ourselves to a short overview.

Say that you have just bought a new font. A close look at the files will reveal that you got at
least a bunch of afm and pfb files and if you’re lucky tfm files.

Installing such a font can be handled by this script. For this you need to know (or invent)
the name of the font vendor, as well as the name of the font. The full set of command line
switches is given below:18

switch meaning
fontroot texmf font root (automatically determined)
vendor vendor name (first level directory)
collection font collection (second level directory)
encoding encoding vector (default: texnansi)
sourcepath when installing, copy from this path

If you have installed teTEX or fpTEX (possibly from the TEXlive cdrom) you will have many thousands of font files17

on your system.
there are a couple of more switches described in the manual mtexfonts.18

Fonts 144

Installing fonts 6

install copy files from source to font tree
makepath when needed, create the paths
show run tex on *.tex afterwards

You seldom need to use them all. In any case it helps if you have a local path defined already.
The next sequence does the trick:
texfont –ve=FontFun –co=FirstFont –en=texnansi –ma –in

This will generate the tfm files from the afm files, and copy them to the right place. The
Type 1 files (pfb) will be copied too. The script also generates a map file. When this is done
successfully, a TEX file is generated and processed that shows the font maps. If this file looks
right, you can start using the fonts. The TEX file also show you how to define the fonts.
This script can also do a couple of more advanced tricks. Let us assume that we have bought
(or downloaded) a new font package in the files demofont.afm and demofont.pfb which are
available on the current (probably scratch) directory. First we make sure that this font is
installed (in our case we use a copy of the public Iwona Regular):
texfont –ve=test –co=test –ma –in demofont

We can now say:
\loadmapfile[texnansi-test-test.map]
\definefontsynonym[DemoFont][texnansi-demofont]
\ruledhbox{\definedfont[DemoFont at 50pt]Interesting}

Interesting
From this font, we can derive a slanted alternative by saying:
texfont –ve=test –co=test –ma –in –sla=.167 demofont

The map file is automatically extended with the entry needed.
\definefontsynonym[DemoFont-Slanted][texnansi-demofont-slanted-167]
\ruledhbox{\definedfont[DemoFont-Slanted at 50pt]Interesting}

Interesting
We can also create a wider version:
texfont –ve=test –co=test –ma –in –ext=1.50 demofont

When you use the –make and –install switch, the directories are made, fonts installed, and
entries appended to the map file if needed.
\definefontsynonym[DemoFont-Extended][texnansi-demofont-extended-1500]
\ruledhbox{\definedfont[DemoFont-Extended at 50pt]Interesting}

Interesting

145 Fonts

6 Getting started

Instead of using pseudo caps in TEX by using \kap, you can also create a pseudo small caps
font.

texfont –ve=test –co=test –ma –in –cap=0.75 demofont

This method is much more robust but at the cost of an extra font.

\definefontsynonym[DemoFont-Caps][texnansi-demofont-capitalized-750]
\ruledhbox{\definedfont[DemoFont-Caps at 50pt]Interesting}

INTERESTING
switch meaning
extend=factor stretch the font to the given factor
narrow=factor shrink the font to the given factor
slant=factor create a slanted font
caps=factor replace lowercase characters by small uppercase ones
test use test/test as vendor/collection

When manipulating a font this way, you need to provide a file name. Instead of a factor you
can give the keyword default or a *.

texfont –test –auto –caps=default demofont

The previous example runs create fonts with the rather verbose names:

demofont
demofont-slanted-167
demofont-extended-150
demofont-capitalized-750

This naming scheme makes it possible to use more instances without the risk of conflicts.

In the distribution you will find an example batch file type-tmf.datwhich creates metrics for
some free fonts for the encoding specified. When you create the default font metrics this way,
preferably texmf-fonts, you have a minimal font system tuned for you prefered encoding
without the risk for name clashes. When you also supply –install, the font outlines will be
copied from the main tree to the fonts tree, which sometimes is handy from the perspective
of consistency.

6.11 Getting started

TODO: This section needs to be modernized

The way TEX searches for files (we’re talking web2c now) is determined by the configuration
file to which the TEXMFCNF environment variable points (the following examples are from my
own system):

set TEXMFCNF=T:/TEXMF/WEB2C

When searching for files, a list of directories is used:

Fonts 146

Remarks 6

set TEXMF={$TEXMFFONTS,$TEXMFPROJECT,$TEXMFLOCAL,!!$TEXMFMAIN}

Here we’ve added a font path, which itself is set with:

set TEXMFMAIN=E:/TEX/TEXMF
set TEXMFLOCAL=E:/TEX/TEXMF-LOCAL
set TEXMFFONTS=E:/TEX/TEXMF-FONTS

Now you can generate metrics and map files. The batch file is searched for at the ConTEXt
data path in the texmf tree or on the local path.

texfont –encoding=ec –batch type-tmf.dat

If you want to play with encoding, you can also generate more encodings, like 8r or texnansi.

texfont –encoding=texnansi –batch type-tmf.dat
texfont –encoding=8r –batch type-tmf.dat

After a while, there will be generated tfm, vf, and map files. If you let ConTEXt pass the map
file directives to pdfTEX, you’re ready now. Otherwise you need to add the names of the
mapfiles to the file pdftex.cfg. You can best add them in front of the list, and, if you use
ConTEXt exclusively, you can best remove the other ones.

As a test you can process the TEX files that are generated in the process. These also give you
an idea of how well the encoding vectors match your expectations.

Now, the worst that can happen to you when you process your files, is that you get messages
concerning unknown tfm files or reports on missing fonts when pdfTEX writes the file. In
that case, make sure that you indeed have the right fonts (generated) and/or that the map
files are loaded. As a last resort you can load all map files by saying:

\usetypescript [map] [all]

and take a look at the log file and see what is reported.

In due time we will provide font generation scripts for installation of other fonts as well as
extend the typescript collection.

6.12 Remarks
It really makes sense to take a look at the font and type definition files (font-*.tex and
type-*.tex). There are fallbacks defined, as well as generic definitions. Studying styles and
manual source code may also teach you a few tricks.

7 Introduction

7 Colors

7.1 Introduction
Judicious use of color can enhance your document’s layout. For example. in interactive
documents color can be used to indicate hyperlinks or other aspects that have no meaning
in paper documents, or background colors can be used to indicate screen areas that are used
for specific information components.
In this chapter we describe the ConTEXt color support. We will also pay attention to back-
grounds and overlays because these are related to the color mechanism.

7.2 Color
One of the problems in typesetting color is that different colors may result in identical gray
shades. We did some research in the past on this subject and we will describe the ConTEXt
facilities on this matter and the way ConTEXt forces us to use color consistently. Color should
not be used indiscriminately, therefore you first have to activate the color mechanism:
\setupcolors[state=start]

Other color parameters are also available:

\setupcolors [..,.=.,..]
*

* state = start stop global local
conversion = yes no always
reduction = yes no
rgb = yes no
cmyk = yes no
mpcmyk = yes no
mpspot = yes no
textcolor = IDENTIFIER
split = c m y k p s no IDENTIFIER
criterium = all none

The parameter state can also be set at local or global. If you do not know whether the
use of color will cross a page boundary, then you should use global or start to keep track
of the color. We use local in documents where color will never cross a page border, as is
the case in many screen documents. This will also result in a higher processing speed. (For
most documents it does not hurt that much when one simply uses start).
By default both the rgb and cmyk colorspaces are supported. When the parameter cmyk is
set at no, then the cmyk color specifications are automatically converted to rgb. The reverse
is done when rgb=no. When no color is allowed the colors are automatically converted to
weighted grayshades. You can set this conversion with conversion. When set to always, all
colors are converted to gray, when set to yes, only gray colors are converted.
Colors must be defined. For some default color spaces, this is done in the file colo-xxx.tex.
After definition the colors can be recalled with their mnemonic name xxx. By default the file
colo-rgb.tex is loaded. In this file we find definitions like:

Colors 148

Color 7

\definecolor [darkred] [r=.5, g=.0, b=.0]
\definecolor [darkgreen] [r=.0, g=.5, b=.0]
............

A file with color definitions is loaded with:

\setupcolor[rgb]

Be aware of the fact that there is also a command \setupcolors that has a different meaning.
The rgb file is loaded by default.

Color must be activated like this:

\startcolor[darkgreen]
We can use as many colors as we like. But we do have to take into
account that the reader is possibly \color [darkred] {colorblind}. The
use of color in the running text should always be carefully considered.
The reader easily tires while reading multi||color documents.
\stopcolor

In the same way you can define cmyk colors and grayshades:

\definecolor [cyan] [c=1,m=0,y=0,k=0]
\definecolor [gray] [s=0.75]

gray can also be defined like this:

\definecolor [gray] [r=0.75,r=0.75,b=0.75]

When the parameter conversion is set at yes the color definitions are automatically down-
graded to the s--form: [s=.75]. The s stands for ‘screen’. When reduction is yes, the black
component of a cmyk color is distilled from the other components.

One of the facillities of color definition is the heritage mechanism:

\definecolor [important] [red]

These definitions enable you to use colors consistently. Furthermore it is possible to give all
important issues a different color, and change colors afterwards or even in the middle of a
document.

So, next to \setupcolors we have the following commands for defining colors:

149 Colors

7 Color

\definecolor [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 r = TEXT
g = TEXT
b = TEXT
c = TEXT
m = TEXT
y = TEXT
k = TEXT
s = TEXT
h = TEXT
t = TEXT
a = TEXT
p = TEXT
e = TEXT

A color definition file is loaded with:

\setupcolor [...]*

* IDENTIFIER

Typesetting color is done with:

\color [...]1 {...}2

1 TEXT

2 TEXT

\startcolor [...]* ... \stopcolor

* IDENTIFIER

A complete palette of colors is generated with:

\showcolor [...]*

* IDENTIFIER

Figure 7.1 shows the colors that are standard available (see colo-rgb.tex).
The use of color in TEX is not trivial. TEX itself has no color support. Currently color support
is implemented using TEX’s low level \mark’s and \special’s. This means that there are
some limitations, but in most cases these go unnoticed.
It is possible to cross page boundaries with colors. The headers and footers and the floating
figures or tables will stil be set in the correct colors. However, the mechanism is not robust.
In this sentence we use colors within colors. Aesthetically this is bad.

Colors 150

Grayscales 7

red green blue

middlered middlegreen middleblue

darkred darkgreen darkblue

yellow magenta cyan

middleyellow middlemagenta middlecyan

darkyellow darkmagenta darkcyan

lightgray darkergray black

Figure 7.1 Some examples of colors.

As soon as a color is defined it is also available as a command. So there is a command
\darkred. These commands do obey grouping. So we can say {\darkred this is typeset
in dark red}.

There are a number of commands that have the parameter color. In general, when a style
can be set, color can also be set.

The default color setup is:

\setupcolors [conversion=yes, reduction=no, rgb=yes, cmyk=yes]

This means that both colorspaces are supported and that the k--component in cmyk colors
is maintained. When reduction=yes, the k--component is ‘reduced’. With conversion=no
equal color components are converted to gray shades.

7.3 Grayscales
When we print a document on a black and white printer we observe that the differences
between somes colors are gone. Figure 7.2 illustrates this effect.

Figure 7.2 Three cyan variations with equal gray shades.

In a black and white print all blocks look the same but the three upper blocks have different
cyan based colors. The lower blocks simulate grayshades. We use the following conversion
formula:

gray = .30 × red + .59 × green + .11 × blue

151 Colors

7 Colorgroups and palettes

A color can be displayed in gray with the command:

\graycolor [...]*

* TEXT

The actual values of a color can be recalled by the commands \colorvalue{name} and \gray-
value{name}.
We can automatically convert all used colors in weighted grayshades.
\setupcolors [conversion=always]

7.4 Colorgroups and palettes
TEX itself has hardly any built--in graphical features. However the ConTEXt color mechanism
is designed by looking at the way colors in pictures are used. One of the problems is the
effect we described in the last section. On a color printer the picure may look fine, but in
black and white the results may be disappointing.
In TEX we can aproach this problem systematically. Therefore we designed a color mechanism
that can be compared with that in graphical packages.
We differentiate between individual colors and colorgroups. A colorgroup contains a number
of gradations of a color. By default the following colorgroups are defined.

red
1 2 3 4 5 6 7 8

green
blue

yellow
magenta

cyan

The different gradations within a colorgroup are represented by a number. A colorgroup is
defined with:

\definecolorgroup [...]1 [...]
OPTIONAL

2 [x:y:z=,..]3

1 IDENTIFIER

2 rgb cmyk gray s

3 TRIPLET

An example of a part of the rgb definition is:
\definecolorgroup
[blue][rgb]
[1.00:1.00:1.00,

Colors 152

Colorgroups and palettes 7

0.90:0.90:1.00,
..............,
0.40:0.40:1.00,
0.30:0.30:1.00]

The [rgb] is not mandatory in this case, because ConTEXt expects rgb anyway. This command
can be viewed as a range of color definitions.

\definecolor [blue:1] [r=1.00, g=1.00, b=1.00]
\definecolor [blue:2] [r=0.90, g=0.90, b=1.00]
..............
\definecolor [blue:7] [r=0.40, g=0.40, b=1.00]
\definecolor [blue:8] [r=0.30, g=0.30, b=1.00]

A color within a colorgroup can be recalled with name:number, for example: blue:4.

There is no maximum to the number of gradations within a colorgroup, but on the bases
of some experiments we advise you to stay within 6 to 8 gradations. We can explain this.
Next to colorgroups we have palettes. A pallet consists of a limited number of logical colors.
Logical means that we indicate a color with a name. An example of a palette is:

top bottom up down strange charm
alfa

The idea behind palettes is that we have to avoid colors that are indistinguishable in black
and white print. A palette is defined by:

\definepalet
[example]
[strange=red:3,

top=green:1,
.....

bottom=yellow:8]

We define a palette with the command:

\definepalet [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 IDENTIFIER = IDENTIFIER

ConTEXt contains a number of predefined palettes. Within a palette we use the somewhat
abstract names of quarks: top, bottom, up, down, strange and charm. There is also friend and
rude because we ran out of names. Be aware of the fact that these are just examples in the
rgb definition file and based on our own experiments. Any name is permitted.

The system of colorgroups and palettes is based on the idea that we compose a palette from
the elements of a colorgroup with different numbers. Therefore the prerequisite is that equal
numbers should have an equal grayshade.

153 Colors

7 Colorgroups and palettes

red
1
2
3
4
5
6
7
8

green blue yellow magenta cyan

When a palette is composed we can use the command:

\setuppalet [...]*

* IDENTIFIER

After that we can use the colors of the chosen palette. The logical name can be used in for
example \color[strange]{is this not strange}.

An example of the use of palettes is shown in the verbatim typesetting of TEX code. Within
this mechanism colors with names like prettyone, prettytwo, etc. are used. There are two
palettes, one for color and one for gray:

\definecolor [colorprettyone] [r=.9, g=.0, b=.0]
\definecolor [grayprettyone] [s=.3]

These palettes are combined into one with:

\definepalet
[colorpretty]
[prettyone=colorprettyone, prettytwo=colorprettytwo,
prettythree=colorprettythree, prettyfour=colorprettyfour]

\definepalet
[graypretty]
[prettyone=grayprettyone, prettytwo=grayprettytwo,
prettythree=grayprettythree, prettyfour=grayprettyfour]

Now we can change all colors by resetting the palette with:

\setuptyping[palet=colorpretty]

Each filter can be set differently:

\definepalet [MPcolorpretty] [colorpretty]
\definepalet [MPgraypretty] [graypretty]

As you can see a palette can inherit its properties from another palette. This example shows
something of the color philosophy in ConTEXt: you can treat colors as abstractions and group
them into palettes and change these when necessary.

On behalf of the composition of colorgroups and palettes there are some commands available
to test whether the colors are distinguishable.

Colors 154

Colorgroups and palettes 7

\showcolorgroup [...]1 [...,...]2

1 IDENTIFIER

2 horizontal vertical name value NUMBER

\showpalet [...]1 [...,...]2

1 IDENTIFIER

2 horizontal vertical name value

\comparecolorgroup [...]*

* IDENTIFIER

\comparepalet [...]*

* IDENTIFIER

The overviews we have shown thusfar are generated by the first two commands and the gray
values are placed below the baseline. On the left there are the colors of the grayshades.

This overview is made with \comparecolorgroup[green] and the one below with \com-
parepalet[gamma].

The standard colorgroups and palettes are composed very carefully and used systematically
for coloring pictures. These can be displayed adequately in color and black and white.

155 Colors

7 Colorgroups and palettes

name: vew1179

file: vew1179a

state: unknown

name: vew1182

file: vew1182a

state: unknown

name: vew1218

file: vew1218a

state: unknown

name: spin016

file: spin016a

state: unknown

Figure 7.3 Some examples of the use of color.

8

8 Verbatim text
Text can be displayed in verbatim (typed) form. The text is typed between the commands:

unknown setup ‘starttyping’

Like in:

\starttyping
In this text there are enough examples of verbatim text. The command
definitions and examples are typeset with the mentioned commands. Like in
this example.
\stoptyping

For in--line typed text the command \type is available.

\type {...}*

* TEXT

A complete file can be added to the text with the command:

\typefile [...]
OPTIONAL

1 {...}2

1 IDENTIFIER

2 TEXT

The style of typing is set with:

157 Verbatim text

8

\setuptyping [...]
OPTIONAL

1 [..,.=.,..]
2

1 file typing IDENTIFIER

2 space = on off
page = yes no
option = slanted normal commands color none
text = yes no
icommand = COMMAND
vcommand = COMMAND
ccommand = COMMAND
before = COMMAND
after = COMMAND
margin = DIMENSION standard yes no
evenmargin = DIMENSION
oddmargin = DIMENSION
blank = DIMENSION small medium big standard halfline line
escape =
space = on off
tab = NUMBER yes no
page = yes no
indentnext = yes no
style = normal bold slanted boldslanted type cap small... COMMAND
color = IDENTIFIER
palet = IDENTIFIER
lines = yes no hyphenated
empty = yes all no
numbering = line file no
bodyfont = 5pt ... 12pt small big

This setup influences the display verbatim (\starttyping) and the verbatim typesetting of
files (\typefile) and buffers (\typebuffer). The first optional argument can be used to
define a specific verbatim environment.

\setuptyping[file][margin=default]

When the key space=on, the spaces are shown:

No alignment is to be preferred
over aligning by means of
spaces or the s t r e t c h i n g of words

A very special case is:

\definetyping
[broadtyping]

\setuptyping
[broadtyping]
[oddmargin=-1.5cm,evenmargin=-.75cm]

This can be used in:

\startbroadtyping
A verbatim line can be very long and when we don’t want to hyphenate we
typeset it in the margin on the uneven pages.
\stopbroadtyping

Verbatim text 158

8

At a left hand side page the verbatim text is set in the margin.

A verbatim line can be very long and when we don’t want to hyphenate we
typeset it in the margin on the uneven pages.

An in--line verbatim is set up by:

\setuptype [..,.=.,..]
*

* space = on off
option = slanted normal none
style = normal bold slanted boldslanted type cap small... COMMAND
color = IDENTIFIER

When the parameter option is set at slanted all text between << and >> is type-
set in a slanted letter. This feature can be used with all parameters. In this way
\type{aa<<bb>>cc} will result in: aabbcc.

For reasons of readability you can also use other characters than { and } as outer parenthesis.
You can choose your own non--active (a non--special) character, for example: \type+like
this+ or \type-like that-. Furthermore you can use the mentioned << and >>, as in
\type<<like this>> or even \type<like that>.

The parameter option=commands enables you to process commands in a typed text. In this
option \ is replaced by /. This option is used for typesetting manuals like this one. For
example:

\seethis <</rm : this command has no effect>>
/vdots
\sihtees <</sl : neither has this one>>

The double << and >> overtake the function of {}.

Within the type--commands we are using \tttf. When we would have used \tt, the \sl
would have produced a slanted and \bf a bold typeletter. Now this will not happen:

\seethis : this command has no effect
...
\sihtees : neither has this one

One of the most interesting options of typesetting verbatim is a program source code. We
will limit the information on this topic and refer readers to the documentation in the files
verb-xxx.tex and cont-ver.tex. In that last file you can find the following lines:

\definetyping [MP] [option=MP]
\definetyping [PL] [option=PL]
\definetyping [JS] [option=JS]
\definetyping [TEX] [option=TEX]

Here we see that it is possible to define your own verbatim environment. For that purpose
we use the command:

159 Verbatim text

8

\definetyping [...]1 [..,.=.,..]
2

1 inherits from \setuptyping

2 inherits from \setuptyping

The definitions above couple such an environment to an option.

\startMP
beginfig (12) ;
MyScale = 1.23 ;
draw unitsquare scaled MyScale shifted (10,20) ;

endfig ;
\stopMP

In color (or reduced gray) this will come out as:

beginfig (12) ;
MyScale = 1.23 ;
draw unitsquare scaled MyScale shifted (10,20) ;

endfig ;

These environments take care of typesetting the text in such a way that the typographics
match the chosen language. It is possible to write several filters. Languages like MetaPost,
MetaFont, Perl, JavaScript, sql, and off course TEX are supported. By default color is used
to display these sources, where several palettes take care of the different commands. That
is why you see the parameter palet in \setuptyping. One can use font changes or even
own commands instead, by assigning the appropriate values to the icommand (for identifiers),
vcommand (for variables) and ccommand parameters (for the rest). By default we have:

\setuptyping [icommand=\ttsl, vcommand=, ccommand=\tf]

We have some alternatives for \type. When typesetting text with this command the words
are not hyphenated. Hyphenation is performed however when one uses:

\typ {...}*

* TEXT

When you are thinking of producing a manual on TEX you have two commands that may
serve you well:

\tex {...}*

* TEXT

unknown setup ‘arg’

The first command places a \ in front of typed text and the second command encloses the
text with arg.

Text backgrounds 9

9 Backgrounds and Overlays
9.1 Text backgrounds

In a number of commands, for example \framed, you can use backgrounds. A background
may have a color or a screen (pure gray). By default the backgroundscreen is set at 0.95.
Usable values lie between 0.70 and 1.00.
Building screens in TEX is memory consuming and may cause error messages. The screens
are therefore build up externally by means of PostScript or pdf instructions. This is set up
with:

\setupscreens [..,.=.,..]
*

* method = dot rule external
resolution = NUMBER
factor = NUMBER
screen = NUMBER

The parameter factor makes only sense when the method line or dot is chosen. The
parameter screen determines the ‘grid’ of the screen. Text on a screen of 0.95 is still readable.
Visually the TEX screens are comparable with PostScript screens. When memory and time
are non issues TEX screens come out more beautiful than postscript screens. There are many
ways to implement screens but only the mentioned methods are implemented.
Behind the text in the pagebody screens can be typeset. This is done by enclosing the text
with the commands:

\startbackground
\stopbackground

We have done so in this text. Backgrounds can cross page boundaries when necessary.
Extra vertical whitespace is added around the text for reasons of readability.

\startbackground {...}* ... \stopbackground

* TEXT

The background can be set up with:

\setupbackground [..,.=.,..]
*

* leftoffset = DIMENSION
rightoffset = DIMENSION
topoffset = DIMENSION
bottomoffset = DIMENSION
before = COMMAND
after = COMMAND
state = start stop
inherits from \setupframed

161 Backgrounds and Overlays

9 Layout backgrounds

The command \background can be used in combination with for example placeblocks:

\placetable
{Just a table.}
\background
\starttable[|c|c|c|]
\HL
\VL red \VL green \VL blue \VL \AR
\VL cyan \VL magenta \VL yellow \VL \AR
\HL
\stoptable

The command \background expects an argument. Because a table is ‘grouped’ it will generate
arg by itself and no extra braces are necessary.

\background {...}*

* TEXT

A fundamental difference between colors and screens is that screens are never converted.
There is a command \startraster that acts like \startcolor, but in contrast to the color
command, ConTEXt does not keep track of screens across page boundaries. This makes sense,
because screens nearly always are used as simple backgrounds.

9.2 Layout backgrounds
In interactive or screen documents the different screen areas may have different functions.
Therefore the systematic use of backgrounds may seem obvious. It is possible to indicate all
areas or compartments of the pagebody (screenbody). This is done with:

\setupbackgrounds [...]
OPTIONAL

1 [...,...]
OPTIONAL

2 [..,.=.,..]
3

1 top header TEXT footer bottom page paper leftpage rightpage

2 leftedge leftmargin TEXT rightmargin rightedge

3 state = start stop cd:repeat
inherits from \setupframed

Don’t confuse this command with \setupbackground (singular). A background is only cal-
culated when something has changed. This is more efficient while generating a document.
When you want to calculate each background separately you should set the parameter state
at repeat. The page background is always recalculated, since it provides an excellent place
for page dependent buttons.

After \setupbackgrounds without any arguments the backgrounds are also re--calculated.

A specific part of the layout is identified by means of an axis (see figure 9.1).

Backgrounds and Overlays 162

Overlays 9

leftedge leftmargin text rightmargin rightedge

top

header

text

footer

bottom

Figure 9.1 The coordinates in \setupbackgrounds.

You are allowed to provide more than one coordinate at a time, for example:

\setupbackgrounds
[header,text,footer]
[text]
[background=screen]

or

\setupbackgrounds
[text]
[text,rightedge]
[background=color,backgroundcolor=MyColor]

Some values of the paremeter page, like offset and corner also apply to other compartments,
for example:

\setupbackgrounds
[page]
[offset=.5\bodyfontsize
depth=.5\bodyfontsize]

When you use menus in an interactive or screen document alignment is automatically ad-
justed for offset and/or depth. It is also possible to set the parameter page to the standard
colors and screens.

If for some reason an adjustment is not generated you can use \setupbackgrounds (without
an argument). In that case ConTEXt will calculate a new background.

9.3 Overlays
TEX has only limited possibilities to enhance the layout with specific features. In ConTEXt we
have the possibility to ‘add something to a text element’. You can think of a drawing made
in some package or other ornaments. What we technically do is lay one piece of text over
another piece text. That is why we speak of ‘overlays’.

When we described the backgrounds you saw the paremeters color and screen. These are
both examples of an overlay. You can also define your own background:

\defineoverlay[gimmick][\green a green text on a background]

\framed
[height=2cm,background=gimmick,align=middle]
{at\\the\\foreground}

163 Backgrounds and Overlays

9 Overlays

This would look like this:

a green text on a background

at
the

foreground

An overlay can be anything:

\defineoverlay
[gimmick]
[{\externalfigure[cow][width=\overlaywidth,height=\overlayheight]}]

\framed
[height=2cm,width=5cm,background=gimmick,align=right]
{\vfill this is a cow}

We can see that in designing an overlay the width and height are available in macros. This
enables us to scale the figure.

name: dummy

file: cow

state: unknownthis is a cow

We can combine overlays with one another or with a screen and color.

name: dummy

file: cow

state: unknown

A Cow

this is a cow

The TEX definitions look like this:

\defineoverlay
[gimmick]
[{\externalfigure[cow][width=\overlaywidth,height=\overlayheight]}]

\defineoverlay
[nextgimmick]
[\red A Cow]

\framed
[height=2cm,width=.5\textwidth,
background={screen,gimmick,nextgimmick},align=right]
{\vfill this is a cow}

Introduction 10

10 Language specific issues

10.1 Introduction
One of the more complicated corners of ConTEXt is the department that deals with languages.
Fortunately users will seldom notice this, but each language has its own demands and we put
quite some effort in making sure that most of the issues on hyphenation rules and accented
and non latin characters could be dealt with. For as long as it does not violate the ConTEXt
user interface, we also support existing input schemes.

In the early days TEX was very American oriented, but since TEX version 3 there is (simultane-
ous) support for multiple languages. The input of languages with many accents —sometimes
more accents per character— may look rather complicated, depending on the use of dedicated
input encodings or special TEX commands.

The situation is further complicated by the fact that specific input does not have a one--to--
one relation with the position of a glyph in a font. We discussed this in section ??. It is
important to make the right choices for input and font encoding.

In this chapter we will deal with hyphenation and language specific labels. More details
can be found in the language definition files (lang-xxx), the font files (font-xxx) and the
encoding files (enco-xxx). There one can find details on how to define commands that
deal with accents and special characters as covered in a previous chapter, sorting indexes,
providing support for Unicode, and more.

10.2 Automatic hyphenating
Each language has its own hyphenation rules. As soon as you switch to another language,
ConTEXt will activate the appropriate set of hyphenation patterns for that language. Lan-
guages are identified by their official two character identifiers, like: Dutch (nl), English (en),
German (de) and French (fr). A language is chosen with the following command:19

\language [...]*

* nl fr en uk de es cz ..

Some short cut commands are also available. They can be used enclosed in braces:

\nl \en \de \fr \sp \uk \pl \cz ...

The command \language[nl] can be compared with \nl. The first command is more
transparant. The two character commands may conflict with existing commands. Take,
for example, Italian and the code for italic type setting. For this reason we use capitals for
commands that may cause any conflicts. One may also use the full names, like czech.

At any instance you can switch to another language. In the example below we switch from
English to French and vice versa.

In case of any doubt please check if the hyphenation patterns are included in the fmt--file.19

165 Language specific issues

10 Definitions and setups

The French composer {\fr Olivier Messiaen} wrote \quote {\fr Quatuor pour
la fin du temps} during the World War II in a concentration camp. This
may well be one of the most moving musical pieces of that period.

We use these language switching commands if we cannot be certain that an alternative
hyphenation pattern is necessary.
The French com-
poser Olivier Mes-
siaen wrote ‘Qua-

tuor pour la fin du
temps’ during the
World War II in a

concentration camp.
This may well be one
of the most mov-

ing musical pieces
of that period.

How far do we go in changing languages. Borrowed words like perestrojka and glasnost
are often hyphenated okay, since these are Russian words used in an English context. When
words are incorrectly hyphenated you can define an hyphenation pattern with the TEX--
command:
\hyphenation{ab-bre-via-tion}

You can also influence the hyphenation in a text by indicating the allowed hyphenation
pattern in the word: at the right locations the command \- is added: al\-lo\-wed.

10.3 Definitions and setups
When a format file is generated the hyphenation pattern one needs should be added to this
file. The definition and installation of a language is therefore not transparant for the user.
We show the process to give some insight in the mechanism. An example:20

\installlanguage
[en]
[spacing=broad,
leftsentence=–-,
rightsentence=–-,
leftsubsentence=–-,
rightsubsentence=–-,
leftquote=\upperleftsinglesixquote,
rightquote=\upperrightsingleninequote,
leftquotation=\upperleftdoublesixquote,
rightquotation=\upperrightdoubleninequote,
date={month,\ ,day,{,\ },year},
default=en,
state=stop]

and:
\installlanguage
[uk]
[default=en,
state=stop]

With the first definition you define the language component. You can view this definition in
the file lang-ger.tex, the german languages. Languages are arranged in language groups.

The somewhat strange name \upperleftsinglesixquote is at least telling us what the quote will look like.20

Language specific issues 166

Definitions and setups 10

This arrangement is of no further significance at the moment. Since language definitions are
preloaded, users should not bother about setting up such files.

The second definition inherits its set up from the English installation. In both definitions
state is set at stop. This means that no patterns are loaded yet. That is done in the files
cont-xx, the language and interface specific ConTEXt versions. As soon as state is set at
start, a new pattern is loaded, which can only be done during the generation of a format
file.

We use some conventions in the file names of the patterns lang-xx.pat and the exceptions
lang-xx.hyp. Normally a language is installed with a two character code. However there are
three character codes, like deo for hyphenating ‘old deutsch’ and nlx the Dutch extended
characterset, or 8--bit encoding. On distributions that come with patterns, the filenames
mentioned can be mapped onto the ones available on the system. This happens in the file
cont-usr.tex.

After installation you are not bound to the two character definitions. Default the longer
(English) equivalents are defined:

\installlanguage[german][de]

\installlanguage [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 spacing = packed broad
lefthyphenmin = NUMBER
righthyphenmin = NUMBER
state = start stop
leftsentence = COMMAND
rightsentence = COMMAND
leftsubsentence = COMMAND
rightsubsentence = COMMAND
leftquote = COMMAND
rightquote = COMMAND
leftquotation = COMMAND
rightquotation = COMMAND
leftspeech = COMMAND
middlespeech = COMMAND
rightspeech = COMMAND
limittext = TEXT
date = TEXT
compoundhyphen = COMMAND
leftcompoundhyphen = COMMAND
rightcompoundhyphen = COMMAND
default = IDENTIFIER

\setuplanguage [...]1 [..,.=.,..]
2

1 nl fr en uk de es cz ..

2 inherits from \installlanguage

The setup in these commands relate to the situations that are shown below.

167 Language specific issues

10 Date

\currentdate
<	all right there we go	>				
<		<	all right	>	there we go	>
<	all right	<	there	>	we go	>
\quote{all right there we go}
\quotation{all right there we go}
\quotation{\quote{all right} there we go}
\quotation{all right \quote{there} we go}

This becomes:

August 23, 2009
—all right there we go—
— —all right— there we go—
—all right —there— we go—
‘all right there we go’
“all right there we go”
“ ‘all right’ there we go”
“all right ‘there’ we go”

We will discuss || in one of the next sections.

10.4 Date
Typesetting a date is also language specific so we have to pay some attention to dates here.
When the computer runs at the actual time and date the system date can be recalled with:

\currentdate [...,...]*

* inherits from \date

The sequence in which day, month and year are given is not mandatory.
The pattern [day,month,year] results in 23 August 2009. We use \current-
date[weekday,month,day,{,},year] to obtain Sunday August 23,2009.

A short cut looks like this: [dd,mm,yy] and will result in 230809. Something like [d,m,y]
would result in 23August2009 and with [referral] you will get a 20090823. Combinations
are also possible. Characters can also be added to the date pattern. The date 23–08–09 is
generated by the pattern [dd,–,mm,–,yy].

A date can be (type)set with the command:

\date [..,.=.,..]
OPTIONAL

1 [...,...]
OPTIONAL

2

1 d = NUMBER
m = NUMBER
y = NUMBER

2 day month year weekday d m y w dd mm yy space – day+ d+ dd+ referral
TEXT

Language specific issues 168

Labels and heads 10

The first (optional) argument is used to specify the date:

\date[d=10,m=3,y=1996][weekday,month,day, year]

When no argument is given you will obtain the actual date. When the second argument is
left out the result equals that of \currentdate. The example results in:

Sunday March 10 1996

10.5 Labels and heads
In some cases ConTEXt will generate text labels automatically, for example the word Figure
is generated automatically when a caption is placed under a figure. These kind of words are
called textlabels. Labels can be set with the command:

\setuplabeltext [...]
OPTIONAL

1 [.=.]
2

1 nl fr en uk de es cz ..

2 IDENTIFIER = TEXT

Relevant labels are: table, figure, chapter, appendix and comparable text elements. An
example of such a set up is:

\setuplabeltext[en][chapter=Chapter]
\setuplabeltext[nl][hoofdstuk=Hoofdstuk]

The space after Chapter is essential, because otherwise the chapternumber will be placed
right after the word Chapter (Chapter1 instead of Chapter 1). A labeltext can recalled with:

\labeltext {...}*

* TEXT

Some languages, like Chinese, use split labels. These can be passed as a comma separated
list, like chapter={left,right}.

Titleheads for special sections of a document, like abbreviations and appendices are set up
with:

\setupheadtext [...]
OPTIONAL

1 [.=.]
2

1 nl fr en uk de es cz ..

2 IDENTIFIER = TEXT

Examples of titleheads are Content, Tables, Figures, Abbreviations, Index etc. An example
definition looks like:

\setupheadtext[content=Content]

A header can be recalled with:

169 Language specific issues

10 Language specific commands

\headtext {...}*

* TEXT

Labels and titleheads are defined in the file lang-xxx. You should take a look in these files
to understand the use of titleheads and labels.

The actual language that is active during document generation does not have to be the same
language that is used for the labels. For this reason next to \language we have:

\mainlanguage [...]*

* nl fr en uk de es cz ..

When typesetting a document, there is normally one main language, say \mainlanguage[en].
A temporary switch to another language is then accomplished by for instance \language[nl],
since this does not influence the labels and titles. language.

10.6 Language specific commands
German TEX users are accustomed to entering "e and getting ë typeset in return. This and a lot
more are defined in lang-ger using the compound character mechanism built in ConTEXt.
Certain two or three character combinations result in one glyph or proper hyphenation.
The example below illustrates this. Some macros are used that will not be explained here.
Normally, users can stick to simply using the already defined commands.

\startlanguagespecifics[de]
\installcompoundcharacter "a {\moveaccent{-.1ex}\"a\midworddiscretionary}
\installcompoundcharacter "s {\SS}
.....
\installcompoundcharacter "U {\smashaccent\"U}
\installcompoundcharacter "Z {SZ}
.....
\installcompoundcharacter "ck {\discretionary {k-}{k}{ck}}
\installcompoundcharacter "TT {\discretionary{TT-}{T}{TT}}
.....
\installcompoundcharacter "‘ {\handlequotation\c!leftquotation}

\stoplanguagespecifics

The command \installcompoundcharacter takes care of the German type setting, "a is
converted to "a, "U in "U, "ck for the right hyphenation, etc. One can add more definitions,
but this will violate portability. In a Polish ConTEXt the / is used instead of a ".

10.7 Automatic translation
It is possible to translate a text automatically in the actual language. This may be comfortable
when typesetting letterheads. The example below illustrates this.

Language specific issues 170

Composed words 10

\translate [..,.=.,..]
*

* IDENTIFIER = TEXT

It depends on the actual language whether a labeltext is type set in
English {\en as an \translate [en=example, fr=exemple], \fr or in French
as an \translate}.

The second command call \translate uses the applied values. That is, \translate with no
options uses the options of the last call to \translate.

It depends on the actual language whether a labeltext is type set in English as an example,
or in French as an exemple.

10.8 Composed words
Words consisting of two separate words are often separated by an intra word dash, as in x--
axis. This dash can be placed between | |, for example |–|. This command, which does
not begin with a \, serves several purposes. When || is typed the default intra word dash
is used, which is –. This dash is set up with:

\setuphyphenmark [.=.]
*

* sign = – –- - ~ () = /

The | | is also used in word combinations like (intra)word, which is typed as (intra|)|word.
The mechanism is not foolproof but it serves most purposes. In case the hyphenation is
incorrect you can hyphenate the first word of the composed one by hand: (in\-tra|)|word.

input normal hyphenated

intra||word intra--word in-tra--word
intra|-|word intra-word in-tra-word
intra|(|word) intra(word) in-tra(-word)
(intra|)|word (intra)word (in-tra-)word
intra|--|word intra–word in-tra–word
intra|~|word intraword in-tra-word

Table 10.1 Hyphenation of composed words.

The main reason behind this mechanism is that TEX doesn’t really know how to hyphenate
composed words and how to handle subsentences. TEX know a lot about math, but far less
about normal texts. Using this command not only serves consistency, but also makes sure
that TEX can break compound words at the right places. It also keeps boundary characters
at the right place when a breakpoint is inserted.

171 Language specific issues

10 Pattern files manual

10.9 Pattern files manual

TODO: A large part of this section is obsolete

TEX has two mysterious commands that the average user will never or seldom meet:

\hyphenation{as-so-ciates}
\patterns {.ach4}

Both commands can take multiple strings, so in fact both commands should be plural. The
first command can be given any time and can be used to tell TEX that a word should be
hyphenated in a certain way. The second command can only be issued when TEX is in virgin
mode, i.e. starting with a clean slate. Normally this only happens when a format is generated.

The second command is more mysterious than the first one and its entries are a compact
way to tell TEX between what character sequences it may hyphenate words. The numbers
represent weights and the (often long) lists of such entries are generated with a special
program called patgen. Since making patterns is work for specialists, we will not go into the
nasty details here.

In the early stage of ConTEXt development it came with its own pattern files. Their names
started with lang- and their suffixes were pat and hyp.

However, when ConTEXt went public, I was convinced to drop those files and use the files
already available in distributions. This was achieved by using the ConTEXt filename remap-
ping mechanism. Although those files are supposed to be generic, this is not always the
case, and it remains a gamble if they work with ConTEXt. Even worse, their names are not
consistent and the names of some files as well as locations in the tree keep changing. The
price ConTEXt users pay for this is lack of hyphenation until such changes are noticed and
taken care of. Because constructing the files is an uncoordinated effort, all pattern files have
their own characteristics, most noticably their encoding.

After the need to adapt the name mapping once again, I decided to get back to providing
ConTEXt specific pattern files. Pattern cooking is a special craft and TEX users may call
themselves lucky that it’s taken care of. So, let’s start with thanking all those TEX experts
who dedicate their time and effort to get their language hyphenated. It’s their work we will
build (and keep building) upon.

In the process of specific ConTEXt support, we will take care of:

• consistent naming, i.e. using language codes when possible as a prelude to a more
sophisticated naming scheme, taking versions into account

• consistent splitting of patterns and hyphenation exceptions in files that can be recognized
by their suffix

• making the files encoding independent using named glyphs

• providing a way to use those patterns in plain TEX as well

Instead of using a control sequence for the named glyphs, we use a different notation:

[ssharp] [zcaron] [idiaeresis]

Language specific issues 172

Pattern files manual 10

The advantage of this notation is that we don’t have to mess with spacing so that parsing
and cleanup with scripts becomes more robust. The names conform to the ConTEXt way of
naming glyphs and the names and reverse mappings are taken from the encoding files in
the ConTEXt distribution, so you need to have ConTEXt installed.

The ConTEXt pattern files are generated by a Ruby script. Although the converting is rather
straightforward, some languages need special treatment, but a script is easily adapted. If you
want a whole bunch of pattern files, just say:

ctxtools –patterns all

or, if you want one language:

ctxtools –patterns nl

If for some reason this program does not start, try:

texmfstart ctxtools –patterns nl

When things run well, this will give you four files:

lang-nl.pat the patterns in an encoding indepent format
lang-nl.hyp the hyphenation exceptions
lang-nl.log the conversion log (can be deleted afterwards)
lang-nl.rme the preambles of the files used (copyright notices and such)

If you redistribute the files, it makes sense to bundle the rme files as well, unless the originals
are already in the distribution. It makes no sense to keep the log files on your system. When
the file lang-all.xml is present, the info from that file will be used and added to the pattern
and hyphenation files. In that case no rme and log file will be generated, unless –log is
provided.

In the Dutch pattern file you will notice entries like the following:

e[ediaeresis]n3

So, instead of those funny (encoding specific) ^^fc or (format specific) \"e we use names.
Although this looks ConTEXt dependent it is rather easy to map those names back to char-
acters, especially when one takes into account that most languages only have a few of those
special characters and we only have to deal with lower case instances.

The ConTEXt support module supp-pat.tex is quite generic and contains only a few lines of
code. Actually, most of the code is dedicated to the simple xml handler. Loading a pattern
meant for EC encoded fonts in another system than ConTEXt is done as follows:

\bgroup

\input supp-pat

\lccode"E4="E4 \definepatterntoken adiaeresis ^^e4
\lccode"F6="F6 \definepatterntoken odiaeresis ^^f6
\lccode"FC="FC \definepatterntoken ediaeresis ^^fc
\lccode"FF="FF \definepatterntoken ssharp ^^ff

\enablepatterntokens
\enablepatternxml

173 Language specific issues

10 Installing languages

\input lang-de.pat
\input lang-de.hyp

\egroup

In addition to this one may want to set additional lower and uppercase codes. In ε-TEX these
are stored with the language.
Just for completeness we provide the magic command to generate the xml variants:
ctxtools –patterns –xml all

This will give you files like:
<?xml version=’1.0’ standalone=’yes’?>

<!– some comment –>

<patterns>
... e&ediaeresis;n3 ...
</patterns>

This is also accepted as input but for our purpose it’s probably best to stick to the normal
method. The pattern language is a TEX specific one anyway.

10.10 Installing languages
Installing a language in ConTEXt should not take too much effort assuming the language is
supported. Language specific labels are grouped in lang-* files, like lang-ger.tex for the
germanic languages.
Patterns will be loaded from the files in the general TEX distribution unless lang-nl.pat is
found, in which case ConTEXt assumes that you prefer the ConTEXt patterns. In that case,
run
ctxtools –patterns all

You need to move the files to the ConTEXt base path that you can locate with:
textools –find context.tex

You can also use kpsewhich, but the above method does an extensive search. Of course you
can also generate the files on a temporary location. Now it’s time to generate the formats:
texexec –make –all

Since X ETEX needs patterns in utf-8 encoding, we provide a switch for achieving that:
texexec –make –all –utf8

Beware: you need to load patterns for each language and encoding combination you are
going to use. You can configure your local cont-usr file to take care of this. When an
encoding does not have the characters that are needed, you will get an error. When using
the non ConTEXt versions of teh patterns this may go unnoticed because the encoding is hard
coded in the file. Of course it will eventually get noticed when the hyphenations come out
wrong.
The ConTEXt distribution has a file lang-all.xml that holds the copyright and other notes of
the patterns. A discription looks like:

Language specific issues 174

Commands 10

<description language=’nl’>
<sourcefile>nehyph96.tex</sourcefile>
<title>TeX hyphenation patterns for the Dutch language</title>
<copyright>
<year>1996</year>
<owner> Piet Tutelaers (P.T.H.Tutelaers@tue.nl)</owner>
<comment>8-bit hyphenation patterns for TeX based upon the new
Dutch spelling, officially since 1 August 1996. These
patterns follow the new hyphenation rules in the
‘Woordenlijst Nederlandse Taal, SDU Uitgevers, Den Haag
1995’ (the so called ‘Groene Boekje’) described in
section 5.2 (Het afbreekteken)</comment>

</copyright>
</description>

This file is ‘work in process’: more details will be added and comments will be enriched.

10.11 Commands
You can at any moment add additional hyphenation exceptions to the language specific
dictionaries. For instance:

\language[nl] \hyphenation{pa-tiÃńn-ten}

Switching to another language is done with the \language command. The document lan-
guage is set with \mainlanguage.

If you want to let TEX know that a word should be hyphenated in a special way, you use the
\- command, for instance:

Con\-TeXt

Compound words are not recognized by the hyphenation engine, so there you need to add
directives, like:

the ConTeXt|-|system

If you are using xml as input format, you need to load the hyphenation filter module. Here
we assume that utf encoding is used:

\useXMLfilter[utf,hyp]

In your xml file you can now add:

<hyphenations language=’nl’ regime=’utf’>
<hyphenation>pa-tiÃńn-ten</hyphenation>
<hyphenation>pa-tiÃńn-ten-or-ga-ni-sa-tie</hyphenation>
<hyphenation>pa-tiÃńn-ten-plat-form</hyphenation>

</hyphenations>

This filter also defines some auxiliary elements. Explicit hyphenation points can be inserted
as follows:

Zullen we hier af<hyphenate/>bre<hyphenate/>ken of niet?

175 Language specific issues

10 Languages

The compound token can be anything, but keep in mind that some tokens are treated special
(see other manuals).

Wat is eigenlijk een patiÃńnten<compound token="-"/>platform?

A language is set with:

nederlands <language code="en">english</language> nederlands

If you set attribute scope to global, labels (as used for figure captions and such) adapt to
the language switch. This option actually invokes \mainlanguage.

10.12 Languages
When users in a specific language area use more than one font encoding, patterns need to be
loaded multiple times. In theory this means that one can end up with more instances than
TEX can host. However, the number of sensible font encodings is limited as is the number
of languages that need hyphenation. Now that memory is cheap and machines are fast,
preloading a lot of pattern files is no problem. The following table shows the patterns that
are preloaded in the version of ConTEXt that is used to process this file.

FIXME: \showpatterns doesn’t exist anymore

In the (near) future the somewhat arcane pl0 and il2 encodings will go away since they are only
used for Polish and Czech/Slovak computer modern fonts, which can be replaced by Latin Modern
alternatives. Also, a new dense encoding may find its way into this list.

10.13 Hyphenation
If you want to know what patterns are used, you can try to hyphenate a word with \showhy-
phenations.

language : en (internal code:3)
font : ec-qplr at 11.0pt
encoding : ec
mapping : not set
handling : not set
sample : abra-cadabra

While hypenating, TEX has to deal with ligatures as well. While Thomas, Taco and I were
discussing the best ways to neutralize the ancient greek patterns, Taco Hoekwater came up
with the following explanation.21

fi flffiffl
The most common ligatures.

Thomas Schmitz is responsible for the associated third party module.21

Language specific issues 176

Hyphenation 10

Any direct use of a ligature (as accessed by \char or through active characters) is wrong and
will create faulty hypenation. Normally, when TeX sees ‘office’, it has the six tokens office
and it knows from the patterns that it can hyphenate between the ff. It will build an internal
list of four nodes, like this:

[char, o , ffi]
[lig , ffi, c ,[f,f,i]]
[char, c , e]
[char, e , NULL]

As you can see from the ffi line, it has remembered the original characters. While hyphen-
ating, it temporarily changes back to that, then re-instates the ligature afterwards.

If you feed it the ligature directly, like so:

[char, o , ffi]
[char, ffi , c]
[char, c , e]
[char, e , NULL]

it cannot do that. It tries to hyphenate as if the ffi was a character, and the result is wrong
hyphenation.

11 Introduction

11 Text elements

11.1 Introduction
The core of ConTEXt is formed by the commands that structures the text. The most common
structuring elements are chapters and sections. The structure is visualized by means of titles
and summarized in the table of contents.
A text can be subdivided in different ways. As an introduction we use the methods of H. van
Krimpen, K. Treebus and the Collectief Gaade. First we examine the method of van Krimpen:
1. French title
2. title
3. history & copyright
4. mission
5. preface/introduction

6. . . .
7. list of illustrations
8. acknowledgement
9. errata
10. the content

11. notes
12. literature
13. register(s)
14. colofon

The French title is found at the same spread as the back of the cover, or first empty sheet. In
the colofon we find the used font, the names of the typesetter and illustrator, the number of
copies, the press, the paper, the binding, etc.
The subdivision of Treebus looks like this:
1. French title
2. titlepage
3. colofon
4. copyright
5. mission
6. preface (1)
7. table of content

8. list of illustrations
9. introduction/preface (2)
10. . . .
11. epilogue
12. appendices
13. summaries
14. notes

15. literature
16. used words
17. addenda
18. register
19. acknowledgement pho-

tos
20. (colofon)

In this way of dividing a text the colofon is printed on the back of the titlepage. The first
preface is written by others and not by the author.
The last text structure is that of the Collectief Gaade:
1. French title
2. series title
3. title
4. copyright
5. mission
6. blank

7. preface
8. table of content
9. introduction
10. . . .
11. appendices
12. notes

13. list of illustrations
14. used words
15. bibliography
16. colofon
17. register

Since there seems to be no standardized way of setting up a document, ConTEXt will only
provide general mechanisms. These are designed in such a way that they meet the following
specifications:
1. In a text the depth of sectioning seldom exceeds four. However, in a complex manuals

more depth can be useful. In paper documents a depth of six may be very confusing for
the reader but in electronic documents we need far more structure. This is caused by the
fact that a reader cannot make a visual representation of the electronic book. Elements
to indicate this structure are necessary to be able to deal with the information.

Text elements 178

Subdividing the text 11

2. Not every level needs a number but in the background every level is numbered to be able
to refer to these unnumbered structuring elements.

3. The names given to the structuring elements must be a logical ones and must relate to
their purpose.

4. It is possible to generate tables of contents and registers at every level of the document
and they must support complex interactivity.

5. A document will be divided in functional components like introductions and appendices
with their respective (typographical) characteristics.

6. The hyphenation of titles must be handled correctly.

7. Headers and footers are supported based on the standard labels used in a document. For
example chapter in a book and procedure in a manual.

8. A ConTEXt user must be able to design titles without worrying about vertical and hori-
zontal spacing, referencing and synchronisation.

These prerequisites have resulted in a heavy duty mechanism that works in the background
while running ConTEXt. The commands that are described in the following sections are an
example of an implementation. We will also show examples of self designed titles.

11.2 Subdividing the text
A text is divided in chapters, sections, etc. with the commands:

\part [...,...]
OPTIONAL

1 {...}2

1 REFERENCE

2 TEXT

\chapter [...,...]
OPTIONAL

1 {...}2

1 REFERENCE

2 TEXT

\section [...,...]
OPTIONAL

1 {...}2

1 REFERENCE

2 TEXT

\subsection [...,...]
OPTIONAL

1 {...}2

1 REFERENCE

2 TEXT

179 Text elements

11 Subdividing the text

\subsubsection [...,...]
OPTIONAL

1 {...}2

1 REFERENCE

2 TEXT

and

\title [...,...]
OPTIONAL

1 {...}2

1 REFERENCE

2 TEXT

\subject [...,...]
OPTIONAL

1 {...}2

1 REFERENCE

2 TEXT

\subsubject [...,...]
OPTIONAL

1 {...}2

1 REFERENCE

2 TEXT

\subsubsubject [...,...]
OPTIONAL

1 {...}2

1 REFERENCE

2 TEXT

The first series of commands (\chapter . . .) generate a numbered head, with the second
series the titles are not numbered. There are a few more levels available than those shown
above.

level numbered title unnumbered title

1 \part
2 \chapter \title
3 \section \subject
4 \subsection \subsubject
5 \subsubsection \subsubsubject

Table 11.1 The structuring elements.

By default \part generates no title because most of the times these require special attention
and a specific design. In the background however the partnumbering is active and carries
out several initialisations. The other elements are set up to typeset a title.

Text elements 180

Subdividing the text 11

A structuring element has two arguments. The first argument, the reference, makes it possible
to refer to the chapter or section from another location of the document. In chapter 12 this
mechanism is described in full. A reference is optional and can be left out.

\section{Subdividing a text}

ConTEXt generates automatically the numbers of chapters and sections. However there are
situations where you want to enforce your own numbering. This is also supported.

\setuphead[subsection][ownnumber=yes]
\subsection{399}{The old number}
\subsection[someref]{400}{Another number}

In this example an additional argument appears. In the background ConTEXt still uses its
own numbering mechanism, so operations that depend upon a consistent numbering still
work okay. The extra argument is just used for typesetting the number. This user--provided
number does not have to be number, it may be anything, like ABC-123.

399 The old number

400 Another number
You can automatically place titles of chapters, sections or other structuring elements in the
header and footer with the marking mechanism. Titles that are too long can be shortened
by:

\nomarking {...}*

* TEXT

For example:

\chapter{Influences \nomarking{in the 20th century:} an introduction}

The text enclosed by \nomarking is replaced by dots in the header or footer. Perhaps an
easier strategy is to use the automatic marking limiting mechanism. The next command puts
the chapter title left and the section title right in the header. Both titles are limited in length.

\setupheadertexts[chapter][section]
\setupheader[leftwidth=.4\hsize,rightwidth=.5\hsize]

A comparable problem may occur in the table of contents. In that case we use \nolist:

\chapter{Influences in the 20th century\nolist{: an introduction}}

When you type the command \\ in a title a new line will be generated at that location.
When you type \crlf in a title you will enforce a new line only in the table of contents. For
example:

\chapter{Influences in the 20th century:\crlf an introduction}

This will result in a two line title in the table of context, while the title is only one line in the
text.

It is possible to define your own structuring elements. Your ‘own’ element is derived from
an existing text element.

181 Text elements

11 Variations in titles

\definehead [...]1 [...]2

1 IDENTIFIER

2 SECTION

An example of a definition is:

\definehead[category][subsubject]

From this moment on the command \category behaves just like \subsubject, i.e., \category
inherits the default properties of \subsubject. For example, \category is not numbered.

A number of characteristics available with \setuphead are described in section 11.3. Your
own defined structuring elements can also be set up. The category defined above can be set
up as follows:

\setuphead[category][page=yes]

This setup causes each new instance of category to be placed at the top of a new page.

We can also block the sectionnumbering with \setupheads[sectionnumber=no]. Section-
numbering will stop but ConTEXt will continue the numbering on the background. This is
necessary to be able to perform local actions like the generating local tables of content.

In defining your own structuring elements there is always the danger that you use existing
TEX or ConTEXt commands. It is of good practice to use capitals for your own definitions.
For example:

\definehead[WorkInstruction][section]

11.3 Variations in titles
The numbering and layout of chapters, sections and subsections can be influenced by several
commands. These commands are also used in the design of your own heads. We advise you
to start the design process in one of the final stages of your document production process.
You will find that correct header definitions in the setup area of your source file will lead to
a very clean source without any layout commands in the text.

The following commands are at your disposal:

Text elements 182

Variations in titles 11

\setuphead [...,...]1 [..,.=.,..]
2

1 SECTION

2 style = normal bold slanted boldslanted type cap small... COMMAND
textstyle = normal bold slanted boldslanted type cap small... COMMAND
numberstyle = normal bold slanted boldslanted type cap small... COMMAND
color = IDENTIFIER
textcolor = IDENTIFIER
numbercolor = IDENTIFIER
number = yes no
ownnumber = yes no
page = left right yes
continue = yes no
header = none empty high nomarking
text = none empty high nomarking
footer = none empty high nomarking
before = COMMAND
inbetween = COMMAND
after = COMMAND
alternative = normal inmargin middle TEXT
hang = none broad fit line NUMBER
command = \...#1#2
numbercommand = \...#1
textcommand = \...#1
deepnumbercommand = \...#1
deeptextcommand = \...#1
prefix = + - TEXT
placehead = yes no empty
incrementnumber = yes no LIST FILE
resetnumber = yes no
file = IDENTIFIER
expansion = yes no command
margintext = yes no
inherits from \setupheads

Later we will cover many of the parameters mentioned here. This command can be used to
set up one or more heads, while the next can be used to set some common features.

\setupheads [..,.=.,..]
*

* sectionnumber = yes NUMBER no
alternative = normal margin middle TEXT paragraph
separator = TEXT
stopper = TEXT
align = inner outer left right flushleft flushright middle center

normal no yes
aligntitle = yes float no
tolerance = verystrict strict tolerant verytolerant stretch
indentnext = yes no
command = \...#1#2
margin = DIMENSION

The number of a title can be set up with:

183 Text elements

11 Variations in titles

\setupheadnumber [...]1 [...]2

1 SECTION

2 NUMBER +cd:number -cd:number

This command accepts absolute and relative numbers, so [12], [+2] and [+]. The relative
method is preferred, like:

\setuphead[chapter][+1]

This command is only used when one writes macros that do tricky things with heads. A
number can be recalled by:

\headnumber [...]
OPTIONAL

*

* SECTION

and/or:

\currentheadnumber

For example:

\currentheadnumber : 3
\headnumber [chapter] : 11
\headnumber [section] : 11.3

When you want to use the titlenumber in calculations you must use the command \cur-
rentheadnumber. This number is calculated by and available after:

\determineheadnumber [...]*

* SECTION

When headers and footers use the chapter and section titles they are automatically adapted
at a new page. The example below results in going to new right hand side page for each
chapter.

\setuphead
[chapter]
[page=right,
after={\blank[2*big]}]

In extensive documents you can choose to start sections on a new page. The title of the first
section however should be placed directly below the chapter title. You can also prefer to start
this first section on a new page. In that case you set continue at no. Figure 11.1 shows the
difference between these two alternatives.

\setuphead
[section]

Text elements 184

Variations in titles 11

[page=yes,continue=no,
after=\blank]

chapter 1
section 1.1

section 1.2 section 1.3

chapter 1 section 1.1 section 1.2 section 1.3

Figure 11.1 Two alternatives for the first section.

It is also possible that you do not want any headers and footers on the page where a new
chapter begins. In that case you should set header at empty, high, nomarking or an identifi-
cation of a self defined header (this is explained in section 4.16).

By default the titles are typeset in a somewhat larger font. You can set the text and number
style at your own chosen bodyfont. When the titles make use of the same body font (serif,
sans, etc.) as the running text you should use neutral identifications for these fonts. So you
use \tfb instead of \rmb. Font switching is also an issue in titles. For example if we use
\ssbf instead of \ss\bf there is a chance that capitals and synonyms are not displayed the
way they should. So you should always use the most robust definitions for fontswitching.
Commands like \kap adapt their behaviour to these switchings.

A chapter title consists of a number and a text. It is possible to define your own command
that typesets both components in a different way.

11.3.1 Title alternative equals normal
11.3.2 Title alternative equals inmargin

Title alternative equals middle
These titles were generates by:

\setupheads[alternative=normal]
\subsection{Title alternative equals normal}
\setupheads[alternative=inmargin]
\subsection{Title alternative equals inmargin}
\setupheads[alternative=middle]
\subsubject{Title alternative equals middle}

185 Text elements

11 Variations in titles

In this manual we use a somewhat different title layout. The design of such a title is time con-
suming, not so much because the macros are complicated, but because cooking up something
original takes time. In the examples below we will show the steps in the design process.
\def\HeadTitle#1#2%
{\hbox to \hsize

{\hfill % the % after {#1} suppresses a space
\framed[height=1cm,width=2cm,align=left]{#1}%
\framed[height=1cm,width=4cm,align=right]{#2}}}

\setuphead[subsection][command=\HeadTitle]

11.3.3 Title

A reader will expect the title of a section on the left hand side of the page, but we see an
alternative here. The title is at the right hand side. One of the advantages of using \framed
is, that turning frame=on, some insight can be gained in what is happening.

11.3.4 Another title
This alternative looks somewhat better. The first definition is slightly altered. This example
also shows the features of the command \framed.
\def\HeadTitle#1#2%
{\hbox to \hsize \bgroup
\hfill
\setupframed[height=1cm,offset=.5em,frame=off]
\framed[width=2cm,align=left]{#1}%
\framed[width=4cm,align=right,leftframe=on]{#2}%
\egroup}

\setuphead
[subsection]
[command=\HeadTitle,
style=\tfb]

We see that the font is set with the command \setuphead. These font commands should
not be placed in the command \HeadTitle. You may wonder what happens when ConTEXt
encounters a long title. Here is the answer.

11.3.5 A somewhat
longer titleSince we have fixed the height at 1cm, the second line of the title end up below the frame.

We will solve that problem in the next alternative. A \tbox provides a top aligned box.
\def\HeadTitle#1#2%
{\hbox to \hsize \bgroup
\hfill
\setupframed[offset=.5em,frame=off]
\tbox{\framed[width=3cm,align=left]{#1}}%
\tbox{\framed[width=4cm,align=right,leftframe=on]{#2}}%
\egroup}

Text elements 186

Meta--structure 11

\setuphead
[subsection]
[command=\HeadTitle]

This definition results in a title and a number that align on their first lines (due to \tbox).

11.3.6 A consider-
ably longer
title

When the title design becomes more complex you have to know more of TEX. Not every
design specification can be foreseen.

\setuphead[subsubject] [alternative=text,style=bold]
\setuphead[subsubsubject][alternative=text,style=slantedbold]

Titles in the text Why are titles in the text more difficult to program in TEX than we
may expect beforehand. The answer lies in the fact that ConTEXt supports the generation
of parallel documents. These are documents that have a printable paper version and an
electronic screen version. These versions are coupled and thus hyperlinked by their titles.
This means that when you click on a title you will jump to the same title in the other
document. So we couple document versions:

\coupledocument
[screenversion]
[repman-e]
[chapter,section,subsection,subsubsection,part,appendix]
[The Reporting Manual]

\setuphead
[chapter,section,subsection,subsubsection,part,appendix]
[file=screenversion]

The first argument in \coupledocument identfies the screen document and the second argu-
ment specifies the file name of that document. The third argument specifies the coupling
and the fourth is a description. After generating the documents you can jump from one
version to another by just clicking the titles. This command only preloads references, the
actual coupling is achieved by \setuphead command. Because titles in a text may take up
several lines some heavy duty manipulation is necessary when typesetting such titles as we
will see later.

11.4 Meta--structure
You can divide your document in functional components. The characteristics of the titles may
depend in what component the title is used. By default we distinguish the next functional
components:

187 Text elements

11 Alternative mechanisms

• frontmatter • bodypart • appendices • backmatter
Introductions and extroductions are enclosed by \start ... \stop constructs. In that case
the titles will not be numbered like the chapters, but they are displayed in the table of con-
tents. Within the component ‘bodypart’ there are no specific actions or layout manipulations,
but in the ‘appendices’ the titles are numbered by letters (A, B, C, etc.).
\startfrontmatter
\completecontent
\chapter{Introduction} in content, no number

\stopfrontmatter

\startbodymatter
\chapter{First} number 1, in content
\section{Alfa} number 1.1, in content
\section{Beta} number 1.2, in content

\chapter{Second} number 2, in content
\subject{Blabla} no number, not in content

\stopbodymatter

\startappendices
\chapter{Index} letter A, in content
\chapter{Abbreviations} letter B, in content

\stopappendices

\startbackmatter
\chapter{Acknowlegdement} no number, in content
\title{Colofon} no number, not in content

\stopbackmatter

When this code is processed, you will see that commands like \title and \subject never
appear in the table of content and never get a number. Their behaviour is not influenced by
the functional component they are used in. The behaviour of the other commands depend
on the setup within such a component. Therefore it is possible to adapt the numbering in a
functional component with one parameter setup.

11.5 Alternative mechanisms
Not every document can be structured in chapters and sections. There are documents with
other numbering mechanisms and other ways to indicate levels in the text. The title mecha-
nism supports these documents.
At the lowest level, the macros of ConTEXt do not work with chapters and sections but with
sectionblocks. The chapter and section commands are predefined sectionblocks. In dutch
this distinction is more clear, since there we have \hoofdstuk and \paragraaf as instances
of ‘secties’.

\definesectionblock [...]1 [..,.=.,..]
OPTIONAL

2

1 inherits from \setupsectionblock

2 inherits from \setupsectionblock

Text elements 188

Alternative mechanisms 11

\setupsectionblock [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 number = yes no
page = yes right
before = COMMAND
after = COMMAND

\definesection [...]*

* IDENTIFIER

\setupsection [...]1 [...]
OPTIONAL

2 [..,.=.,..]
3

1 IDENTIFIER

2 IDENTIFIER

3 conversion = numbers characters Characters romannumerals Romannumerals
previousnumber = yes no

By default there are four sectionblocks:

\definesectionblock [bodypart] [headnumber=yes]
\definesectionblock [appendices] [headnumber=yes]
\definesectionblock [introductions] [headnumber=no]
\definesectionblock [extroductions] [headnumber=no]

We see that numbering is set with these commands. When numbering is off local tables of
contents can not be generated. When numbers are generated but they do not have to be
displayed you can use \setupheads[sectionnumber=no].

By default every sectionblock starts at a new (right hand side) page. This prevents markings
from being reset too early. A new page is enforced by page.

In ConTEXt there are seven levels in use but more levels can be made available.

\definesection [section-1]
\definesection [section-2]
..............
\definesection [section-7]

There are a number of titles predefined with the command \definehead. We show here
some of the definitions:

\definehead [part] [section=section-1]
\definehead [chapter] [section=section-2]
\definehead [section] [section=section-3]

The definition of a subsection differs somewhat from the others, since the subs inherit the
characteristics of a section:

189 Text elements

11 Alternative mechanisms

\definehead
[subsection]
[section=section-4,
default=section]

The definitions of unnumbered titles and subjects are different because we don’t want any
numbering:

\definehead
[title]
[coupling=chapter,
default=chapter,
incrementnumber=no]

The unnumbered title is coupled to the numbered chapter. This means that in most situations
the title is handled the same way as a chapter. You can think of the ways new pages are
generated at each new unnumbered title or chapter. Characteristics like the style and color
are also inherited.

There is more to consider. The predefined sectionblocks are used in appendices, because
these have a different numbering system.

\setupsection
[section-2]
[appendixconversion=Character, % Watch the capital
previousnumber=no]

\setuphead
[part]
[placehead=no]

\setuphead
[chapter]
[appendixlabel=appendix,
bodypartlabel=chapter]

This means that within an appendix conversion from number to character takes place, but
only at the level of section 2. Furthermore the titles that are related to section-2 do not
get a prefix in front of the number. The prefix consists of the separate numbers of the
sectionblocks:

<section-1><separator><section-2><separator><section-3> etc.

By default section 2 (appendix) will be prefixed by the partnumber and a separator (.) and
this is not desirable at this instance. At that level we block the prefix mechanism and we
prevent that in lower levels (section 3 ...) the partnumber is included.

In the standard setup of ConTEXt we do not display the part title. You can undo this by
saying:

\setuphead[part][placehead=yes]

Chapters and appendices can be labeled. This means that the titles are preceded with a word
like Chapter or Appendix. This is done with \setuplabeltext, for example:

\setuplabeltext[appendix=Appendix~]

Text elements 190

Alternative mechanisms 11

The look of the titles are defined by \setuphead. ConTEXt has set up the lower level section
headings to inherit their settings from the higher level. The default setups for ConTEXt are
therefore limited to:

\setuphead
[part,chapter]
[align=normal,
continue=no,
page=right,
head=nomarking,
style=\tfc,
before={\blank[2*big]},
after={\blank[2*big]}]

\setuphead
[section]
[align=normal,
style=\tfa,
before={\blank[2*big]},
after=\blank]

With nomarking, we tell ConTEXt to ignore markings in running heads at the page where a
chapter starts. We prefer \tfc, because this enables the title to adapt to the actual bodyfont.
The arg around \blank are essential for we do not want any conflicts with [].

Earlier we saw that new structuring elements could be defined that inherit characteristics of
existing elements. Most of the time this is sufficient:

\definehead[topic] [section][style=bold,before=\blank]
\definehead[category][subject][style=bold,before=\blank]

One of the reasons that the mechanism is rather complex is the fact that we use the names of
the sections as setups in other commands. The marking of category can be compared with
that of subject, but that of subject can not be compared with that section. During the last
few years it appeared that subject is used for all sorts of titles in the running text. We don’t
want to see these in headers and footers.

While setting the parameter criterium in lists and registers and the way of numbering, we
can choose persection or persubject. For indicating the level we can use the parameter
section as well as subject. So we can alter the names of sections in logical ones that relate
to their purpose. For example:

\definehead [handbook] [section=section-1]
\definehead [procedure] [section=section-2]
\definehead [subprocedure] [section=section-3]
\definehead [instruction] [procedure]

After this we can set up the structuring elements (or inherit them) and generate lists of
procedures and instructions. We will discuss this feature in detail in one of the later chapters.

12 Table of contents

12 References

12.1 Table of contents
The table of contents is very common in books and is used to refer to the text that lies ahead.
Tables of content are generated automatically by:
\placecontent

The table of contents shows a list of chapters and sections but this depends also on the
location where the table of contents is summoned. Just in front of a chapter we will obtain
a complete table. But just after the chapter we will only obtain a list of relevant sections or
subsections. The same mechanism also works with sections and subsections.
\chapter{Mammals}
\placecontent
\section{Horses}

A table of contents is an example of a combined list. Before discussing combined lists we go
into single lists. A single list is defined with:

\definelist [...]1 [...]
OPTIONAL

2 [..,.=.,..]
OPTIONAL

3

1 IDENTIFIER

2 IDENTIFIER

3 inherits from \setuplist

An example of such a definition is:
\definelist[firstlevel]

Such a list is recalled with:
\placelist[firstlevel]

Each list may have its own set up:
\setuplist[firstlevel][width=2em]

Lists can be set up simultaneously, for example:
\setuplist[firstlevel,secondlevel][width=2em]

To generate a list you type:

\placelist [...,...]1 [..,.=.,..]
OPTIONAL

2

1 IDENTIFIER

2 inherits from \setuplist

The layout of a list is determined by the values of alternative (see table 12.1), margin,
width and distance. The alternatives a, b and c are line oriented. A line has the following
construct:

References 192

Table of contents 12

\setuplist [...,...]1 [..,.=.,..]
2

1 IDENTIFIER

2 state = start stop
alternative = a b c ... none command
coupling = on off
criterium = SECTION local previous current all
pageboundaries = LIST
style = normal bold slanted boldslanted type cap small... COMMAND
numberstyle = normal bold slanted boldslanted type cap small... COMMAND
textstyle = normal bold slanted boldslanted type cap small... COMMAND
pagestyle = normal bold slanted boldslanted type cap small... COMMAND
color = IDENTIFIER
command = \...#1#2#3
numbercommand = \...#1
textcommand = \...#1
pagecommand = \...#1
interaction = cd:sectionnumber TEXT pagenumber all
before = COMMAND
after = COMMAND
inbetween = COMMAND
left = TEXT
right = TEXT
label = yes no
prefix = yes no none
pagenumber = yes no
headnumber = yes no
cd:sectionnumber = yes no
aligntitle = yes no
margin = DIMENSION
width = DIMENSION fit
height = DIMENSION fit broad
depth = DIMENSION fit broad
distance = DIMENSION
separator = TEXT
stopper = TEXT
symbol = none 1 2 3 ...
expansion = yes no command
maxwidth = DIMENSION
inherits from \setupframed

margin width distance

headnumber
head and pagenumber

In a paper document it is sufficient to set up width. In an interactive document however the
width determines the clickable area.22

In alternative d the titles in the table will be type set as a continuous paragraph. In that case
the before and after have no meaning. The distance, that is 1em at a minimum, relates

This also depends on the value assigned to interaction.22

193 References

12 Table of contents

to the distance to the next element in the list. The next set up generates a compact table of
contents:
\setuplist
[chapter]
[before=\blank,after=\blank,style=bold]

\setuplist
[section]
[alternative=d,left=(,right=),pagestyle=slanted,prefix=no]

Since both lists are defined already when defining the sectioning command, we do not define
them here. The parameter prefix indicates whether the preceding level indicator numbering
is used. In this alternative the prefix is not used. Alternative d looks like this:

(1) Table of contents 191 (2) Synonyms 201 (3) Sorting 203 (4) Marking 205
(5) Cross references 208 (6) Predefined references 213 (7) Registers 214

When alternative is set to d, an element in the list has the following construction:

left headnumber right head page distance

When you define a title you also define a list. This means that there are standard lists for
chapters, sections and subsections, etc. available.
These (sub)sections can be combined into one combined list. The default table of contents is
such a combined list:
\definecombinedlist
[content]
[part,
chapter,section,subsection,subsubsection,
subsubsubsection,subsubsubsubsection]
[level=subsubsubsubsection,
criterium=local]

The alternative setups equals that of the separate lists.

\definecombinedlist [...]1 [...,...]2 [..,.=.,..]
OPTIONAL

3

1 IDENTIFIER

2 LIST

3 inherits from \setupcombinedlist

\setupcombinedlist [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 level = 1 2 3 4 SECTION current
inherits from \setuplist

These commands themselves generate the commands:
unknown setup ‘complete«combinedlist»’

References 194

Table of contents 12

unknown setup ‘place«combinedlist»’
The first command places a title at the top of the list. This title is unnumbered because we
do not want the table of contents as an element in the list. In the next section we will discuss
lists where the numbered title \chapter is used.

alternative display

a number – title – pagenumber
b number – title – spaces – pagenumber
c number – title – dots – pagenumber
d number – title – pagenumber (continuous)
e title (framed)
f title (left, middle or right aligned)
g title (centered)

Table 12.1 Alternatives in combined lists.

Possible alternatives are summed up in table 12.1. There are a number of possible variations
and we advise you to do some experimenting when you have specific wishes. The three
parameters width, margin and style are specified for all levels òr for all five levels separately.
\setupcombinedlist
[content]
[alternative=c,
aligntitle=no,
width=2.5em]

The parameter aligntitle forces entries with no section number (like titles, subjects and
alike) to be typeset onto the left margin. Otherwise the title is aligned to the numbered
counterparts (like chapter, section and alike). Compare:

title
12 chapter
with:
title
12 chapter
You can also pass setup parameters to the \place... commands. For example:
\placecontent[level=part]

In this situation only the parts are used in the displayed list. Instead of an identifier, like part
or chapter, you can also use a number. However this suggests that you have some insight in
the level of the separate sections (part=1, chapter=2 etc.)
A table of contents may cross the page boundaries at an undesired location in the list.
Pagebreaking in tables of content can hardly be automated. Therefore it is possible to adjust
the pagebreaking manually. The next example illustrates this.
\completecontent[pageboundaries={2.2,8.5,12.3.3}]

195 References

12 Table of contents

This kind of ‘fine--tuning’ should be done at the end of the production proces. When the
document is revised you have to evaluate the pagebreaking location. ConTEXt produces
terminal feedback to remind you when these kind of commands are in effect.

Before a list can be generated the text should be processed twice. When a combined list is
not placed after the text is processed twice you probably have asked for a local list.

There are two commands to write something directly to a list. The first command is used to
add an element and the second to add a command:

\writetolist [...]1 {...}2 {...}3

1 SECTION IDENTIFIER

2 TEXT

3 TEXT

\writebetweenlist [...]1 {...}2

1 SECTION IDENTIFIER

2 TEXT

We supply a simple example:

\writebetweenlist [section] {\blank}
\writetolist [section] {–-} {from here temporary}
\writebetweenlist [section] {\blank}

The next command is used in situations where information goes into the title but should not
go into the list.

\nolist {...}*

* TEXT

Consider for example the following example:

\definehead[function][ownnumber=yes]
\function{A-45}{manager logistics \nolist{(outdated)}}
\placelist[function][criterium=all]

When we call for a list of functions, we will get (. . .) instead of (outdated). This can be
handy for long titles. Keep in mind that each head has a corresponding list.

In an interactive document it is common practice to use more lists than in a paper document.
The reason is that the tables of content is also a navigational tool. The user of the interac-
tive document arrives faster at the desired location when many subtables are used, because
clicking is the only way to get to that location.

In designing an interactive document you can consider the following setup (probably in a
different arrangement):

References 196

Table of contents 12

\setuplayout[rightedge=3cm]
\setupinteraction[state=start,menu=on]
\setupinteractionmenu[right][state=start]
\startinteractionmenu[right]
\placecontent
[level=current, criterium=previous,
alternative=f, align=right,
interaction=all,
before=, after=]

\stopinteractionmenu

These definitions make sure that a table of contents is typeset at every page (screen) in the
right edge. The table displays the sections one level deeper than the actual level. So, for each
section we get a list of subsections.

When you produce an interactive document with a table of contents at every level you can
make a (standard) button that refers to [previouscontent]. This reference is generated
automatically.

The list elements that are written to a list are not expanded (that is, commands remain
commands). When expansion is needed you can set the parameter expansion. Expansion is
needed in situations where you write variable data to the list. This is seldom the case.

In a more extensive document there may occur situations where at some levels there are no
deeper levels available. Then the table of contents at that level is not available either. In that
case you need more information on the list so you can act upon it. You can have access to:

\listlength the number of items
\listwidth the maximum width of a list element
\listheight the maximum height of a list element

These values are determined by:

\determinelistcharacteristics [...,...]1 [..,.=.,..]
OPTIONAL

2

1 IDENTIFIER

2 inherits from \setuplist

We end this section with an overview of the available alternatives. The first three alternatives
are primarily meant for paper documents. The criterium parameter determines what lists
are typeset, so in the next example, the sections belonging to the current chapter are typeset.

\placelist
[section]
[criterium=chapter,alternative=a]

12.1 Table of contents 191
12.2 Synonyms 201
12.3 Sorting 203
12.4 Marking 205
12.5 Cross references 208

197 References

12 Table of contents

12.6 Predefined references 213
12.7 Registers 214
\setuplabeltext[en][section={ugh }]
\placelist
[section]
[criterium=chapter,alternative=a,
label=yes,width=2cm]

ugh 12.1 Table of contents 191
ugh 12.2 Synonyms 201
ugh 12.3 Sorting 203
ugh 12.4 Marking 205
ugh 12.5 Cross references 208
ugh 12.6 Predefined references 213
ugh 12.7 Registers 214
\placelist
[section]
[criterium=chapter,alternative=b]

12.1 Table of contents 191
12.2 Synonyms 201
12.3 Sorting 203
12.4 Marking 205
12.5 Cross references 208
12.6 Predefined references 213
12.7 Registers 214
\placelist
[section]
[criterium=chapter,alternative=b,
pagenumber=no,width=fit,distance=1em]

12.1 Table of contents
12.2 Synonyms
12.3 Sorting
12.4 Marking
12.5 Cross references
12.6 Predefined references
12.7 Registers
\placelist
[section]
[criterium=chapter,alternative=c,
chapternumber=yes,margin=1.5cm]

12.1 Table of contents . 12–191
12.2 Synonyms . 12–201
12.3 Sorting . 12–203
12.4 Marking . 12–205
12.5 Cross references . 12–208
12.6 Predefined references . 12–213

References 198

Table of contents 12

12.7 Registers . 12–214
\placelist % note the spaces on each side of the colon
[section]
[criterium=chapter,alternative=c,
chapternumber=yes,separator={ : },width=fit]

12 : 1Table of contents . 12–191
12 : 2Synonyms . 12–201
12 : 3Sorting . 12–203
12 : 4Marking . 12–205
12 : 5Cross references . 12–208
12 : 6Predefined references . 12–213
12 : 7Registers . 12–214
\placelist
[section]
[criterium=chapter,alternative=d]

12.1 Table of contents 191 12.2 Synonyms 201 12.3 Sorting 203 12.4 Marking 205
12.5 Cross references 208 12.6 Predefined references 213 12.7 Registers 214

\placelist
[section]
[criterium=chapter,alternative=d,
distance=2cm]

12.1 Table of contents 191 12.2 Synonyms 201 12.3 Sorting 203
12.4 Marking 205 12.5 Cross references 208 12.6 Predefined
references 213 12.7 Registers 214

\placelist
[section]
[criterium=chapter,alternative=d,
left={(},right={)}]

(12.1) Table of contents 191 (12.2) Synonyms 201 (12.3) Sorting 203 (12.4) Mark-
ing 205 (12.5) Cross references 208 (12.6) Predefined references 213 (12.7) Regis-
ters 214

\placelist
[section]
[criterium=chapter,alternative=e]

Table of contents

Synonyms

Sorting

Marking

Cross references

Predefined references

199 References

12 Table of contents

Registers

\placelist
[section]
[criterium=chapter,alternative=e,
width=\textwidth,background=screen]

Table of contents

Synonyms

Sorting

Marking

Cross references

Predefined references

Registers

\placelist
[section]
[criterium=chapter,alternative=e,
width=4cm]

Table of contents

Synonyms

Sorting

Marking

Cross references

Predefined references

Registers

\placelist
[section]
[criterium=chapter,alternative=f]

Table of contents
Synonyms
Sorting
Marking
Cross references
Predefined references
Registers
\placelist
[section]
[criterium=chapter,alternative=g]

References 200

Table of contents 12

Table of contents
Synonyms
Sorting
Marking

Cross references
Predefined references

Registers

Within a list entry, each element can be made interactive. In most cases, in screen documents,
the option all is the most convenient one. Alternative e is rather well suited for screen
documents and accepts nearly all parameters of \framed. In the next example we use a
symbol instead of a sectionnumber. The parameter depth applies to this symbol.

\placelist
[section]
[criterium=chapter,alternative=a,
pagenumber=no,distance=1em,
symbol=3,height=1.75ex,depth=.25ex,numbercolor=gray]

12.1 Table of contents
12.2 Synonyms
12.3 Sorting
12.4 Marking
12.5 Cross references
12.6 Predefined references
12.7 Registers
When using color, don’t forget to enable it. In the last example, All alternatives provide the
means to hook in commands for the section number, text and pagenumber. Real complete
freedom is provided by alternative none.

\placelist
[section]
[criterium=chapter,alternative=none,
numbercommand=\framed,
textcommand=\framed,pagecommand=\framed]

12.1 Table of contents 191
12.2 Synonyms 201
12.3 Sorting 203
12.4 Marking 205
12.5 Cross references 208
12.6 Predefined references 213
12.7 Registers 214
\def\ListCommand#1#2#3%
{at page {\bf #3} we discuss {\bf #2}}

\placelist
[section]

201 References

12 Synonyms

[criterium=chapter,alternative=none,
command=\ListCommand]

at page 191 we discuss Table of contentsat page 201 we discuss Synonymsat page 203 we discuss Sortingat page 205 we discuss Markingat page 208 we discuss Cross referencesat page 213 we discuss Predefined referencesat page 214 we discuss Registers

This alternative still provides much of the built--in functionality. Alternative command leaves
nearly everything to the macro writer.

\def\ListCommand#1#2#3%
{At p~#3 we discuss {\em #2}; }

\placelist
[section]
[criterium=chapter,alternative=command,
command=\ListCommand]

At p 191 we discuss Table of contents; At p 201 we discuss Synonyms; At p 203 we discuss
Sorting; At p 205 we discuss Marking; At p 208 we discuss Cross references; At p 213 we discuss
Predefined references; At p 214 we discuss Registers;

As an alternative for none, we can use horizontal and vertical. Both commands have their
spacing tuned for typesetting lists in for instance menus.

12.2 Synonyms
In many texts we use abbreviations. An abbreviation has a meaning. The abbreviation and
its meaning have to be used and typeset consistently throughout the text. We do not like to
see ABC and in the next line an ABC. For this reason it is possible to define a list with the
used abbreviations and their meanings. This list can be recalled and placed at the beginning
or end of a book for the convenience of the reader.

The use of abbreviations is an example of the synonym mechanism. A new category of
synonyms is defined with the command:

\definesynonyms [...]1 [...]2 [...]3 [...]
OPTIONAL

4

1 SINGULAR NAME

2 PLURAL NAME

3 COMMAND

4 COMMAND

The way the list is displayed can be influenced by:

References 202

Synonyms 12

\setupsynonyms [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 textstyle = normal bold slanted boldslanted type cap small... COMMAND
synonymstyle = normal bold slanted boldslanted type cap small... COMMAND
location = left right top serried inmargin inleft inright
width = DIMENSION
state = start stop
criterium = all used
conversion = yes no
expansion = yes no command
command = \...#1#2#3

Abbreviations are defined with the command:
\definesynonyms[abbreviation][abbreviations][\infull]

We will explain the optional fourth argument later. After this definition a new command
\abbreviation is available. An example of the use of abbreviations is:
\abbreviation {UN} {United Nations}
\abbreviation {UK} {United Kingdom}
\abbreviation {USA} {United States of America}

The meaning can be used in the text by:
\infull{abbreviation}

It is also possible to add commands in the abbreviation. In that case the command must be
typed literally between the []:
\abbreviation [TEX] {\TeX} {The \TeX\ Typesetting System}

Recalling such an abbreviation is done with \TEX and the meaning can be fetched with
\infull {TEX}. In a running text we type \TEX\ and in front of punctuation \TEX.
A synonym is only added to a list when it is used. When you want to display all defined
synonyms (used and not used) you have to set the parameter criterium at all. By setting
state at stop you will prevent list elements to be the added to the list even when they are
used. This can be a temporary measure:
\setupsynonyms[abbreviation][state=stop]
\abbreviation {NIL} {Not In List}
\setupsynonyms[abbreviation][state=start]

Here we left out the optional first argument, in which case the abbreviation itself becomes
the command (\NIL). So, in this case the next two definitions are equivalent:
\abbreviation [NIL] {NIL} {Not In List}
\abbreviation {NIL} {Not In List}

The formal definition of a synonym looks like this:
unknown setup ‘«synonym»’
A list of synonyms is generated by:
unknown setup ‘placelistof«synonyms»’

203 References

12 Sorting

The next command generates a list with a title (\chapter):

unknown setup ‘completelistof«synonyms»’

Here we see why we typed the plural form during the definition of the synonym. The plural
is also used as the title of the list and the first character is capitalized. The title can be altered
with \setuphead (see section 11.3).

Synonyms are only available after they are used. There are instances when the underlying
mechanism cannot preload the definitions. When you run into such troubles, you can try to
load the meaning of the synonyms with the command:

unknown setup ‘load«synonyms»’

For instance, the meaning of abbreviations can be loaded with \loadabbreviations. In order
to succeed, the text has to be processed at least once. Don’t use this command if things run
smoothly.

Next to the predefined abbreviations we also defined the si--units as synonyms. These must
be loaded as a separate module. We will discuss this in section 19.4.

The attentive reader has seen that the command \definesynonyms has four arguments. The
fourth argument is reserved for a command with which you can recall the synonym. In this
way the synonyms are protected from the rest of the ConTEXt commands and there will be
no conflicts using them.

\definesynonyms[Function][Functions][\FunctionName][\FunctionNumber]

We could define some functions like:

\Function [0001] {0001a} {Lithographer}
\Function [0002] {0002x} {Typesetter}

Than we can recall number and name by \FunctionName (Lithographer and Typesetter) and
\FunctionNumber (0001a and 0002x), so:

The \FunctionName{0001} has functionnumber \FunctionNumber{0001}.

12.3 Sorting
Another instance of lists with synonyms is the sorted list. A sorted list is defined with:

\definesorting [...]1 [...]2 [...]
OPTIONAL

3

1 SINGULAR NAME

2 PLURAL NAME

3 COMMAND

The list is set up with:

References 204

Sorting 12

\setupsorting [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 before = COMMAND
after = COMMAND
command = \...#1
state = start stop
criterium = all used
style = normal bold slanted boldslanted type cap small... COMMAND
expansion = yes no command

After the definition the next command is available. The sort indicates the name for the list
you defined.
unknown setup ‘«sort»’
In accordance to lists there are two other commands available:
unknown setup ‘placelistof«sorts»’
The title can be set up with \setuphead:
unknown setup ‘completelistof«sorts»’
An example of sorting is:
\definesorting[city][cities]
\setupsorting[city][criterium=all]

\city {London}
\city {Berlin}
\city {New York}
\city {Paris}
\city {Hasselt}

\placelistofcities

The definition is typed in the setup area of your file or in an environment file. The cities can
be typed anywhere in your text and the list can be recalled anywhere.
Berlin
Hasselt
London
New York
Paris
Another instance of the sorting command is that where we must type the literal text of
the synonym in order to be able to sort the list. For example if you want a sorted list of
commands you should use that instance. The predefined command \logo is an example of
such a list.
\logo [TEX] {\TeX}
\logo [TABLE] {\TaBlE}

When you use the alternative with the [] ConTEXt automatically defines a command that
is available throughout your document. In the example above we have \TABLE and \TEX for
recalling the logo. For punctuation we use \TABLE.

205 References

12 Marking

We advise you to use capital letters to prevent interference with existing ConTEXt and/or
TEX commands.

Like in synonyms, a sorted list is only available after an entry is used. When sorting leads
to any problems you can load the list yourself:

unknown setup ‘load«sorts»’

When we add a command in the third argument during the definition of the sorted list we
may recall sorted list with this command. In this way the sorted lists can not interfere with
existing commands (see section 12.2).

12.4 Marking
There is a feature to add ‘invisible’ marks to your text that can be used at a later stage. Marks
can be used to place chapter or section titles in page headers or footers.

A mark is defined with:

\definemarking [...]1 [...]
OPTIONAL

2

1 IDENTIFIER

2 IDENTIFIER

The second optional argument will be discussed at the end of this section. After the definition
texts can be marked by:

\marking [...]1 {...}2

1 IDENTIFIER

2 TEXT

and recalled by:

\getmarking [...]1 [...]2

1 IDENTIFIER

2 first last previous both all current

In analogy with the TEX--command \mark, we keep record of three other marks per mark
(see table 12.2).

When you use a combination of marks (both and all) marks are separated by an —. This
separator can be set up with:

References 206

Marking 12

marks location

previous the last of the previous page
first the first of the actual page
last the last of the actual page

both first — last
all previous — first — last

Table 12.2 Recorded marks, completed with some combinations.

\setupmarking [...]1 [.=.]
2

1 IDENTIFIER

2 state = start stop
separator = COMMAND
expansion = yes no

The use of marks can be blocked with the parameter state. The parameter expansion relates
to the expansion mechanism. By default expansion is inactive. This means that a command
is stored as a command. This suits most situations and is memory effective. When you use
altering commands in the mark you should activate the expansion mechanism.

Marks are initialised by:

\resetmarking [...]*

* IDENTIFIER

At the beginning of a chapter the marks of sections, subsections, etc. are reset. If we do not
reset those marks would be active upto the next section or subsection.

Assume that a word list is defined as follows (we enforce some pagebreaks on purpose):

\definemarking[words]

\marking[words]{first}first word ...
\marking[words]{second}second word ...
\page
\marking[words]{third}third word ...
\marking[words]{fourth}fourth word ...
\page
\marking[words]{fifth}fifth word ...
\page

The results are shown in table 12.3.

While generating the title of chapters and sections first is used. The content of the marks
can be checked easily by placing the mark in a footer:

207 References

12 Marking

page previous first last

1 — first second
2 second third fourth
3 fourth fifth fifth

Table 12.3 The reordering of marks.

\setupfootertexts
[{\getmarking[words][first]}]
[]

or all at once:
\setupfootertexts
[{\getmarking[words][previous]} –
{\getmarking[words][first]} –
{\getmarking[words][last]}]
[]

A more convenient way of achieving this goal, is the following command. The next method
also takes care of empty markings.
\setupfootertexts[{\getmarking[words][all]}][]

Commands like \chapter generate marks automatically. When the title is too long you can
use the command \nomarking (see section 11.2) or pose limits to the length. In ConTEXt the
standard method to place marks in footers is:
\setupfootertexts[chapter][sectionnumber]

In case you defined your own title with \definehead, the new title inherits the mark from
the existing title. For example when we define \category as follows:
\definehead[category][subsection]

After this command it does not matter whether we recall the mark by category or subsec-
tion. In this way we can also set up the footer:
\setupfootertexts[chapter][category]

There are situations where you really want a separate mark mechanism category. We could
define such a mark with:
\definemarking[category]

However, we do want to reset marks so we have to have some information on the level at
which the mark is active. The complete series of commands would look something like this:
\definehead[category][subsection]
\definemarking[category]
\couplemarking[category][subsection]

Note that we do this only when we both use category and subsection! After these commands
it is possible to say:
\setupfootertexts[subsection][category]

References 208

Cross references 12

The command \couplemarking is formally defined as:

\couplemarking [...]1 [...]2

1 IDENTIFIER

2 IDENTIFIER

Its counterpart is:

\decouplemarking [...]*

* IDENTIFIER

It is obvious that you can couple marks any way you want, but it does require some insight
in the ways ConTEXt works.

12.5 Cross references
We can add reference points to our text for cross referencing. For example we can add
reference points at chapter titles, section titles, figures and tables. These reference points are
typed between []. It is even allowed to type a list of reference points separated by a comma.
We refer to these reference points with the commands:

\in {...}1 {...}2 [...]3

1 TEXT

2 TEXT

3 REFERENCE

\at {...}1 {...}2 [...]3

1 TEXT

2 TEXT

3 REFERENCE

\about {...}1 [...]2

1 TEXT

2 REFERENCE

A cross reference to a page, text (number) or both can be made with:

209 References

12 Cross references

\pagereference [...]*

* REFERENCE

\textreference [...]1 {...}2

1 REFERENCE

2 TEXT

\reference [...]1 {...}2

1 REFERENCE

2 TEXT

The command \in provides the number of a chapter, section, figure, table, etc. The command
\at produces a pagenumber and \about produces a complete title. In the first two calls, the
second argument is optional, and when given, is put after the number or title.
In the example below we refer to sections and pages that possess reference points:
In section~\in[cross references], titled \about[cross references], we
describe how a cross reference can be defined. This section starts
at page~\at[cross references] and is part of chapter~\in[references].

This becomes:
In section 12.5, titled “Cross references”, we describe how a cross reference can be defined.
This section starts at page 208 and is part of chapter 12.
Here is another variation of the same idea:
In \in{section}[cross references], titled \about[cross references], we
describe how a cross reference can be defined. This section starts
at \at{page}[cross references] and is part of \in{chapter}[references].

We prefer this way of typing the cross references, especially in interactive documents. The
clickable area is in this case not limited to the number, but also includes the preceding word,
which is more convenient, especially when the numbering is disabled. In the first example
you would have obtained a symbol like� that is clickable. This symbol indicates the direction
of the cross reference: forward� or backward�.
The direction of a hyperlink can also be summoned by the command \somewhere. In this way
we find chapters or other text elements after and discuss somewhere later the descriptions.

\somewhere {...}1 {...}2 [...]3

1 TEXT

2 TEXT

3 REFERENCE

References 210

Cross references 12

This command gets two texts. The paragraph will be typed like this:

The direction of a hyperlink can also be summoned by the command
\type {\somewhere}. In this way we find chapters or other text elements
\somewhere {before} {after} [text elements] and discuss somewhere
\somewhere {previous} {later} [descriptions] the descriptions.

The next command does not need any text but will generate it itself. The generated texts can
be defined with \setuplabeltext (see page 168).

\atpage [...]*

* REFERENCE

At the locations where we make reference points we can also type a complete list of reference
points in a comma delimited list:

\chapter[first,second,third]{First, second and third}

Now you can cross reference to this chapter with \in[first], \in[second] or \in[third].
In a large document it is difficult to avoid the duplication of labels. Therefore it is advisable
to bring some order to your reference point definitions. For example, in this manual we use:
[fig:first], [int:first], [tab:first] etc. for figures, intermezzos and tables respectively.

ConTEXt can do this for you automatically. Using the command \setupreferencing, you
can set for instance prefix=alfa, in which case all references will be preceded by the word
alfa. A more memory efficient approach would be to let ConTEXt generate a prefix itself:
prefix=+. Prefixing can be stopped with prefix=-.

In many cases, changing the prefix in many places in the document is not an example of
clearness and beauty. For that reason, ConTEXt is able to set the prefix automatically for each
section. When for instance you want a new prefix at the start of each new chapter, you can
use the command \setuphead to set the parameter prefix to +. The chapter reference itself
is not prefixed, so you can refer to them in a natural way. The references within that chapter
are automatically prefixed, and thereby local. When a chapter reference if given, this one is
used as prefix, otherwise a number is used. Say that we have defined:

\setuphead[chapter][prefix=+]

\chapter[texworld]{The world of \TeX}

In this chapter, we can safely use references, without the danger of clashing with references
in other chapters. If we have a figure:

\placefigure[here][fig:worldmap]{A map of the \TeX\ world}{...}

In the chapter itself we can refer to this figure with:

\in {figure} [fig:worldmap]

but from another chapter, we should use:

\in {figure} [texworld:fig:worldmap]

In general, when ConTEXt tries to resolve a reference in \in, \at etc., it first looks to see
whether it is a local reference (with prefix). If such a reference is not available, ConTEXt

211 References

12 Cross references

will look for a global reference (without prefix). If you have some trouble understanding the
mechanism during document production you can visualize the reference with the command
\version[temporary].

There are situations where you want to make a global reference in the middle of document.
For example when you want to refer to a table of contents or a register. In that case you
can type -: in the reference point label that no prefix is needed: you type [-:content].
Especially in interactive documents the prefix--mechanism is of use, since it enables you to
have documents with thousands of references, with little danger for clashes. In the previous
example, we would have got a global reference by saying:

\placefigure[here][-:fig:worldmap]{A map of the \TeX\ world}{...}

The generation of references can be started, stopped and influenced with the command:

\setupreferencing [..,.=.,..]
*

* state = start stop
cd:sectionnumber = yes no
prefix = + - TEXT
interaction = label TEXT all symbol
width = DIMENSION
left = COMMAND
right = COMMAND
convertfile = yes no small big
separator = TEXT
autofile = yes no page
global = yes no

In this command the parameter \sectionnumber relates to the way the page numbers must
be displayed. In interactive documents, we can refer to other documents. In that case, when
the parameter convertfile is set to yes, external filenames are automatically converted to
uppercase, which is sometimes needed for cdrom distributions. We will go into details later.

References from another document can be loaded with the command:

\usereferences [...,...]*

* FILE

With left and right you can define what is written around a reference generated by \about.
Default these are quotes. The parameter interaction indicates whether you want references
to be displayed like section 1.2, section, 1.2 or as a symbol, like ��.

What exactly is a cross reference? Earlier we saw that we can define a reference point by
typing a logical label at the titles of chapters, sections, figures, etc. Then we can summon
the numbers of chapters, sections, figures, etc. or even complete titles at another location
in the document. For some internal purposes the real pagenumber is also available. In the
background real pagenumbers play an important role in the reference mechanism.

In the examples below we discuss in detail how the reference point definitions and cross
referencing works in ConTEXt.

References 212

Cross references 12

\reference[my reference]{{Look}{at}{this}}

The separate elements can be recalled by \ref:
p the typeset pagenumber \ref [p][my reference] 212
t the text reference \ref [t][my reference] Look
r the real pagenumber \ref [r][my reference] 217
s the subtext reference \ref [s][my reference] at
e the extra text reference \ref [e][my reference] this
In a paper document the reference is static: a number or a text. In an interactive document
a reference may carry functionality like hyperlinks. In addition to the commands \in and
\at that we discussed earlier we have the command \goto, which allows us to jump. This
command does not generate a number or a text because this has no meaning in a paper
version.
ConTEXt supports interactivity which is integrated into the reference mechanism. This inte-
gration saved us the trouble of programming a complete new set of interactivity commands
and the user learns how to cope with these non--paper features in a natural way. In fact there
is no fundamental difference in referring to chapter 3, the activation of a JavaScript, referring
to another document or the submitting of a completed form.
A direct advantage of this integration is the fact that we are not bound to one reference, but
we can define complete lists of references. This next reference is legal:
... see \in{section}[flywheel,StartVideo{flywheel 1}] ...

As expected this command generates a section number. And in an interactive document
you can click on section nr and jump to the correct location. At the moment that location
is reached a video titled flywheel 1 is started. In order to reach this kind of comfortable
referencing we cannot escape a fully integrated reference mechanism.
Assume that you want to make a cross reference for a general purpose. The name of the
reference point is not known yet. In the next example we want to start a video from a general
purpose menu:
\startinteractionmenu[right]
\but [previouspage] previous \\
\but [nextpage] next \\
\but [ShowAVideo] video \\
\but [CloseDocument] stop \\

\stopinteractionmenu

Now we can activate a video at any given moment by defining ShowAVideo:
\definerreference[ShowAVideo][StartVideo{a real nice video reel}]

This reference can be redefined or erased at any moment:
\definereference[ShowAVideo][]

\definereference [...]1 [...,...]2

1 IDENTIFIER

2 REFERENCE

213 References

12 Predefined references

\startlinenumbering
A special case of referencing is that of referring to linenumbers.
\startline [line:a] Different line numbering mechanism can be used
interchangeably. \startline [line:b] This leads to confusing input.
\stopline [line:a] \startline [line:c] Doesn’t it? \stopline [line:c]
\stopline [line:b] A cross reference to a line can result in one line
number or a range of lines. \someline[line:d] {A cross reference is
specified by \type {\inline} where the word {\em line(s)} is
automatically added.} Here we have three cross references: \inline
[line:a], \inline [line:b], \inline[line:c] and \inline {as the last
reference} [line:d].
\stoplinenumbering

With \startlines..\stoplines you will obtain the range of lines in a cross reference and
in case of \someline you will get the first line number. In this example we see that we can
either let ConTEXt generate a label automatically, or privide our own text between braces.

1 A special case of referencing is that of referring to linenumbers. Different line numbering
2 mechanism can be used interchangeably. This leads to confusing input. Doesn’t it? A cross
3 reference to a line can result in one line number or a range of lines.
4 [line:d] A cross reference is specified by \inline where the word line(s) is
5 automatically added. Here we have three cross references: line 1–2, line 2, line 2 and as the
6 last reference ??.

\startlines

\someline [...]*

* REFERENCE

\inline [...]*

* REFERENCE

12.6 Predefined references
One can imagine that it can be cumbersome and even dangerous for consistency when one has
many references which the same label, like figure in \in{figure}[somefig]. For example,
you may want to change each figure into Figure afterwards. The next command can both
save time and force consistency:

References 214

Registers 12

\definereferenceformat [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 left = TEXT
right = TEXT
text = TEXT
label = IDENTIFIER

Given the following definitions:

\definereferenceformat [indemo] [left=(,right=),text=demo]
\definereferenceformat [indemos] [left=(,right=),text=demos]
\definereferenceformat [anddemo] [left=(,right=),text=and]

we will have three new commands:

\indemo [demo:b]
\indemo {some text} [demo:b]
\indemos {some text} [demo:b] \indemo {and more text} [demo:c]
\indemos [demo:b] \anddemo [demo:c]

These will show up as:

demo (BB)
some text (BB)
some text (BB) and more text (CC)
demos (BB) and (CC)

Instead of using the text parameter, one can use label and recall a predefined label. The
parameter command can be used to specify the command to use (\in by default).

12.7 Registers
A book without a register is not likely to be taken seriously. Therefore we can define and
generate one or more registers in ConTEXt. The index entries are written to a separate file.
The Perl script TEXutil converts this file into a format TEX can typeset.

A register is defined with the command:

\defineregister [...]1 [...]2

1 SINGULAR NAME

2 PLURAL NAME

There are a number of commands to create register entries and to place registers. One register
is available by default:

\defineregister[index][indices]

An entry is created by:

unknown setup ‘«register»’

215 References

12 Registers

An entry has a maximum of three levels. The subentries are separated by a + or &. We
illustrate this with an example.

\index{car}
\index{car+wheel}
\index{car+engine}

When index entries require special typesetting, for example \sl and \kap we have to take
some measures, because these kind of commands are ignored during list generation and
sorting. In those cases we can use the extended version. Between [] we type the literal
ascii--string which will determine the alphabetical order.

For example we have defined logos or abbreviations like UN, UK and USA (see section 12.2),
then an index entry must look like this:

\index[UN]{\UN}
\index[UK]{\UK}
\index[USA]{\USA}

If we do not do it this way UN, UK and USA will be placed under the \.

A cross reference within a register is created with:

unknown setup ‘see«register»’

This command has an extended version also with which we can input a ‘pure’ literal ascii
string.

A register is generated and placed in your document with:

unknown setup ‘place«register»’

The next command results in register with title:

unknown setup ‘complete«register»’

The register can be set up with the command \setupregister. When you use the command
\version[temporary] during processing, the entries and their locations will appear in the
margin (see section ??).

References 216

Registers 12

\setupregister [...]1 [...]
OPTIONAL

2 [..,.=.,..]
3

1 SINGULAR NAME

2 IDENTIFIER

3 n = NUMBER
balance = yes no
align = inner outer left right flushleft flushright middle center

normal no yes
style = normal bold slanted boldslanted type cap small... COMMAND
pagestyle = normal bold slanted boldslanted type cap small... COMMAND
textstyle = normal bold slanted boldslanted type cap small... COMMAND
indicator = yes no
coupling = yes no
cd:sectionnumber = yes no
criterium = SECTION local all
distance = DIMENSION
symbol = 1 2 ... n a ... none
interaction = pagenumber TEXT
expansion = yes no command
referencing = on off
command = \...#1
location = left middle right
maxwidth = DIMENSION
unknownreference = empty none
alternative = a b A B
prefix = both first none
compress = no yes
deeptextcommand = \...#1

By default a complete register is generated. However it is possible te generate partial registers.
In that case the parameter criterium must be set. With indicator we indicate that we want
a letter in the alphabetical ordering of the entries. When referencing=on is a pagereference
is generated for every letter indicator, for example index:a or index:w. We can use these
automatically generated references to refer to the page where for instance the a--entries start.

The commands we have mentioned thus far allow us to use a spacious layout in our source
file. This means we can type the entries like this:

\chapter{Here we are}

\section{Where we are}
\index{here}
\index{where}

Wherever you are ...

Between \chapter and \section we should not type any text because the vertical spacing
might be disturbed by the index entries. The empty line after the entry has no consequences.
In case there are problems we always have the option to write index entries to the list by the
more direct command:

unknown setup ‘writeto«register»’

There the expansion mechanism can be activated. Default expansion is inactive (see
page 206).

217 References

12 Registers

In this reference manual there is a register with commands. This register is defined and
initialised with:

\defineregister [macro] [macros]
\setupregister [macro] [indicator=no]

And we can find entries like:

\macro{\tex{chapter}}
\macro{\tex{section}}

In case we want a register per chapter we can summon the accompanying register with the
command below (the command \tex will place a \ in front of a word, but is ignored during
sorting):23

\placeregister[macro]
[criterium=chapter,n=2,before=,after=]

and we will obtain:

TODO: next example was borked

\start % dit moet, anders krijgen we dubbele letter-referenties
\setupregister[macro][referencing=off,align=]
\getbuffer
\stop % register macro wordt immers ook aan het eind opgeroepen

A warning is due. The quality of the content of a register is completely in your hands. A
bad selection of index entries leads to an inadequate register that is of no use to the reader.

Every entry shows one or more pagenumbers. With symbol we can define some alternatives.
With distance the horizontal spacing between word and number or symbol is set.

symbol display

a a b c d
n 1 2 3 4
1 • • • •

2

Table 12.4 Alternatives for pagenumbers in registers.

Most of the time the layout of a register is rather simple. Some manuals may need some
form of differentiating between entries. The definition of several registers may be a solution.
However the layout can contribute to a better use of the register:

\index {entry}
\index[key] {entry}
\index[form::] {entry}
\index[form::key]{entry}
\index {form::entry}

Of course, \placemacro and \completemacros are also available.23

References 218

Registers 12

\index[key] {form::entry}
\index[form::] {form::entry}
\index[form::key]{form::entry}

The first two alternatives are known, but the rest is new and offers some control over the
way the entry itself is typeset. The specification between [] relates to the pagenumber, the
specification in front of the entry relates to the entry itself.
\setupregister[index][form][pagestyle=bold,textstyle=slanted]

Without any problems we can use different appearances for pagenumber and entry.
\setupregister[index][nb][pagestyle=bold]
\setupregister[index][hm][pagestyle=slanted]

With for example:
\index[nb::]{squareroot}
\index[hm::root]{$\srqt{2}$}

The index entries we have discussed so far indicate the one page where the entry is made,
but we can also indicate complete ranges of pages using:
unknown setup ‘«start»register’
The entries in between, which are of the same order, are not placed in the register.
\startregister[endless]{endless}
...... an endless story
\stopregister[endless]

An extensive index entry, i.e. an entry with a large number of appearances, may have an
uncomfortably long list of pagenumbers. Especially in interactive documents this leads to
endless back and forth clicking. For this purpose we designed the feature of linked index
entries. This means that you can couple identical entries into a list that enables the user
to jump from entry to (identical) entry without returning to the register. The coupling
mechanism is activated by:
\setupregister[index][coupling=yes]

In this way a mechanism is activated that places references in the register (� �� �) as well as
in the text (� word �) depending on the availability of alternatives. A jump from the register
will bring you to the first, the middle or the last appearance of the entry.
This mechanism is only working at the first level; subentries are ignored. Clicking on the
word itself will bring you back to the register. Because we need the clickable word in the
text we use the following command for the index entry itself:
unknown setup ‘coupled«register»’
For example \coupledindex{where}. The couplings must be loaded with the command:

\coupleregister [...]*

* IDENTIFIER

Normally this command is executed automatically when needed, so it’s only needed in emer-
gencies.

13 Introduction

13 Descriptions

13.1 Introduction
In a document we can find text elements that bring structure to a document. We have
already seen the numbered chapter and section titles, but there are more elements with a
recognizable layout. We can think of numbered and non--numbered definitions, itemizations
and citations. One of the advantages of TEX and therefore of ConTEXt is that coding these
elements enables us to guarantee a consistent design in our document, which in turn allows
us to concentrate on the content of our writing.

In this chapter we will discuss some of the elements that will bring structure to your text.
We advise you to experiment with the commands and their setups. When applied correctly
you will notice that layout commands in your text are seldom necessary.

13.2 Definitions
Definitions of concepts and/or ideas, that are to be typeset in a distinctive way, can be defined
by \definedescription.

\definedescription [...]1 [..,.=.,..]
OPTIONAL

2

1 IDENTIFIER

2 inherits from \setupdescriptions

The first argument of this command contains the name. After the definition a new command
is available.

unknown setup ‘«description»’

An example of the definition is:

\definedescription[definition][location=top,headstyle=bold]

\definition{icon}

An icon is a representation of an action or the name of a computer
program. Icons are frequently used in operating systems on several
computer platforms. \par

Several alternatives are displayed below:

icon

An icon is a representation of an action or the name of a computer program. Icons are
frequently used in operating systems on several computer platforms.

icon

Some users of those computer platforms are using these icons with an almost religious
fanaticism. This brings the word icon almost back to its original meaning.

Descriptions 220

Definitions 13

icon

An icon should be recognizable for every user but they are designed within a cultural and
historical setting. In this fast and ever changing era the recognizability of icons is relative.

icon

The 8--bit principle of computers was the reason that non--Latin scriptures were hardly sup-
ported by the operating systems. Not long ago this changed.

icon

What for some languages looked like a handicap has now become a feature. Thousands of
words and concepts are already layed down in characters. These characters therefore can be
considered icons.

icon

It is to be expected that people with expressive languages overtake us in computer usage
because they are used to thinking in concepts.

icon

The not--so--young generation remembers the trashcan in the earlier operating systems used
to delete files. We in Holland were lucky that the text beneath it said: trashcan. A specific
character for the trashcan would have been less sensitive misinterpretation, than the rather
American--looking garbage receptacle unknown to many young people.

In the fifth example the definition is placed serried and defined as:

\definedescription
[definition]
[location=serried,headstyle=bold,width=broad,sample={icon}]

\definition{icon}

What for some languages looked like a handicap has now become a feature.
Thousands of words and concepts are already layed down in characters.
These characters therefore can be considered icons. \par

In the seventh example we have set hang at broad. This parameter makes only sense when we
set the label at the right or left. When we set width at fit or broad instead of a number, the
width of the sample is used. With fit, no space is added, with broad, a space of distance
is inserted. When no sample is given the with of the defined word is used. The parameter
align specifies in what way the text is aligned. When the definition is placed in the margin
or typeset in a serried format, the parameter margin is of importance. When set to standard
or ja, the marging follows the document setting. Alternatively you can pass a dimension.

Some characteristics of the description can be specified with:

221 Descriptions

13 Enumeration

\setupdescriptions [...,...]
OPTIONAL

1 [..,.=.,..]
2

1 IDENTIFIER

2 style = normal bold slanted boldslanted type cap small... COMMAND
color = IDENTIFIER
width = fit broad DIMENSION
distance = DIMENSION
sample = TEXT
text = TEXT
closesymbol = TEXT
closecommand = \...#1
closesymbol = TEXT
titleleft = TEXT
titleright = TEXT
titledistance = DIMENSION
titlestyle = normal bold slanted boldslanted type cap small... COMMAND
titlecolor = IDENTIFIER
align = inner outer left right flushleft flushright middle center

normal no yes
margin = standard yes no DIMENSION
location = left right top serried inmargin inleft inright hanging
headstyle = normal bold slanted boldslanted type cap small... COMMAND
headcolor = IDENTIFIER
headcommand = COMMAND
hang = fit broad NUMBER
before = COMMAND
inbetween = COMMAND
after = COMMAND
indentnext = yes no
indenting = never none not no yes always first next small medium big

normal odd even DIMENSION
command = COMMAND

The setup of a description can be changed with the command below. This has the same
construct as \definedescription:

\setupdescriptions[name][setups]

When a description consists of more than one paragraph, use:

unknown setup ‘start«description»’

\startdefinition{icon}

An icon is a painting of Jesus Christ, Mother Mary or other holy figures.
These paintings may have a special meaning for some religious people.

For one reason or the other the description icon found its way to the
computer world where it leads its own life.

\stopdefinition

These commands will handle empty lines adequately.

13.3 Enumeration

Descriptions 222

Enumeration 13

Sometimes you will encounter text elements you would like to number, but they do not fit
into the category of figures, tables, etc. Therefore ConTEXt has a numbering mechanism
that we use for numbering text elements like questions, remarks, examples, etc. Such a text
element is defined with:

\defineenumeration [...,...]1 [...,...]
OPTIONAL

2 [..,.=.,..]
OPTIONAL

3

1 IDENTIFIER

2 IDENTIFIER

3 inherits from \setupenumerations

After such a definition, the following commands are available:
\name
\subname
\subsubname
\subsubsubname

Where name stands for any chosen name.
unknown setup ‘«enumeration»’
The numbering can take place at four levels. Conversion is related to the last level. If you
specify a text, then this will be a label that preceeds every generated number. A number can
be set and reset with the command:
\setenumeration{value}
\resetenumeration

You can use the start parameter in the setup command to explictly state a startnumber.
Keep in mind that the enumeration commands increase the number, so to start at 4, one
must set the number at 3. Numbers and subnumbers and be explictly increased with the
commands:
\nextenumeration
\nextsubenumeration
\nextsubsubenumeration

The example below illustrates the use of \enumeration. After the shown commands the
content of a remark can be typed after \remark.
\defineenumeration
[remark]
[location=top,
text=Remark,
between=\blank,
before=\blank,
after=\blank]

Some examples of remarks are:
Remark 1
After definition the ‘remark’ is available at four levels: \remark, \subremark, \subsubremark
and \subsubsubremark.

223 Descriptions

13 Enumeration

Remark 2
This command looks much like the command \definedescription.
The characteristics of numbering are specified with \setupenumerations. Many parameters
are like that of the descriptions because numbering is a special case of descriptions.
\setupenumerations[name][setups]

\setupenumerations [...,...]
OPTIONAL

1 [..,.=.,..]
2

1 IDENTIFIER

2 inherits from \setupdescriptions

The characteristics of sub and subsub enumerations can be set too. For example:
\setupenumerations[example][headstyle=bold]
\setupenumerations[subexample][headstyle=slanted]

Just like the description command there is a \start--\stop construction for multi paragraph
typesetting.
unknown setup ‘start«enumeration»’
Sometimes the number is obsolete. For example when we number per chapter and we have
only one example in a specific chapter. In that case you can indicate with a [-] that you want
no number to be displayed.
Remark
Because this remark was recalled by \remark[-] there is no number. Just as with other com-
mands, we can also pass a reference label between []. Also, we can setup the enumeration
to stop numbering by setting number to no.
The numbering command can be combined usefully with the feature to move textblocks. An
example is given in section 15.4. In that example we also demonstrate how to couple one
numbered text to another. These couplings only have a meaning in interactive documents
where cross references (hyperlinks) can be useful.
The numbering of text elements can appear in different forms. In that case we can let one
numbered text element inherit its characteristic from another. We illustrate this in an example.
\defineenumeration[first]

\first The numbering \type {first} is unique. We see that one
argument is sufficient. By default label and number are placed at the left
hand side.

\defineenumeration[second][first][location=right]

\second The \type {second} inherits its counters from \type {first},
but is placed at the right hand side. In case of three arguments the first
one is the copy and the second the original.

\defineenumeration[third,fourth][location=inright]

\third The numbered elements \type {third} and \type {fourth} are both
unique and are placed in right margin.

Descriptions 224

Indenting 13

\fourth Both are defined in one command but they do have own
counters that are in no way coupled.

\defineenumeration[fifth,sixth][first]

\fifth The elements \type {fifth} and \type {sixth} inherit the properties
and counters of \type {first}.

\sixth Note: inheriting of \type{second} is not allowed because \type
{second} is not an original! \par

It may seem very complex but the text below may shed some light on this issue:

first 1

The numbering first is unique. We see that one argument is sufficient. By default label
and number are placed at the left hand side.

second 2The second inherits its counters from first, but is placed at the right hand
side. In case of three arguments the first one is the copy and the second
the original.

The numbered elements third and fourth are both unique and are placed in right margin. third 1

Both are defined in one command but they do have own counters that are in no way coupled. fourth 1

fifth 3

The elements fifth and sixth inherit the properties and counters of first.

sixth 4

Note: inheriting of second is not allowed because second is not an original!

It is possible to couple a numbered text element to another. For example we may couple
questions and answers. In an interactive document we can click on a question which will
result in a jump to the answer. And vice versa. The counters must be synchronised. Be aware
of the fact that the counters need some resetting now and then. For example at the beginning
of each new chapter. This can be automated by setting the parameter way to bychapter.

\definedescription [question] [coupling=answer]
\definedescription [answer] [coupling=question]

13.4 Indenting
Indented itemizations, like dialogues, can be typeset with the command defined by

\defineindenting [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 inherits from \setupindentations

After this command \name, \subname and \subsubname are available.

unknown setup ‘«indentation»’

The parameters can be set up with the command:

225 Descriptions

13 Numbered labels

\setupindentations [...,...]
OPTIONAL

1 [..,.=.,..]
2

1 IDENTIFIER

2 style = normal bold slanted boldslanted type cap small... COMMAND
headstyle = normal bold slanted boldslanted type cap small... COMMAND
width = fit DIMENSION
text = TEXT
sample = TEXT
before = COMMAND
after = COMMAND
distance = DIMENSION
separator = TEXT

It is possible to change the setup of \indentation with the command:

\setupindentations[name][setups]

An example of how you can use the indentation mechanism is given below:

\setupindentations
[sample={rime m},
separator={:},
distance=.5em]

\defineindenting[ra][text=rime a]
\defineindenting[rb][text=rime b]
\defineindenting[rc][text=rime c]

\startpacked
\ra pretty litte girl \par
\ra pretty litte girl in a blue dress \par
\rb pretty little girl in a blue dress \par
\rc playing in the sand \par
\rb make my day \par
\rc smile for me \par
\stoppacked

This results in:

rime a : pretty litte girl
rime a : pretty litte girl in a blue dress
rime b : pretty little girl in a blue dress
rime c : playing in the sand
rime b : make my day
rime c : smile for me

A series of indenting commands can be enclosed with the commands:

\startindentation
\stopindentation

13.5 Numbered labels

Descriptions 226

Itemize 13

There is another numbering mechanism that is used for numbering specific text labels that
also enables you to refer to these labels. For example, when you want to refer in your text
to a number of transparencies that you use in presentations the next command can be used:

\definelabel [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 text = TEXT
location = inmargin intext
way = bytext bycd:section
blockway = yes no
headstyle = normal bold slanted boldslanted type cap small... COMMAND
headcolor = IDENTIFIER
before = COMMAND
after = COMMAND

Where the parameter location is set at intext and inmargin. After this definition the
following commands are available:

\resetname
\incrementname
\nextname
\currentname[reference]

The [reference] after currentname is optional. After

\definelabel[video][text=video,location=inmargin]

This defines \video, that results in a numbered label video in the margin. The command video 13.1
\currentvideo would have resulted in the number 0. The label can also be recalled with:

unknown setup ‘«labeling»’

In our case, saying \video results in the marginal note concerning a video. The values of
before and after are executed around the label (which only makes sense for in--text labels.

13.6 Itemize
Items in an itemization are automatically preceded by symbols or by enumerated numbers
or characters. The symbols and the enumeration can be set up (see table 13.1). The layout
can also be influenced. Itemization has a maximum of four levels.

The command to itemize is:

\startitemize[setups]
\item
\item
\stopitemize

So you can do things like this:

Which of these theses are true?

227 Descriptions

13 Itemize

setup result

n 1, 2, 3, 4
a a, b, c, d
A A, B, C, D
KA A, B, C, D
r i, ii, iii, iv
R I, II, III, IV
KR I, II, III, IV
m 1, 2, 3, 4
g α, β, γ
G A, B, Γ

setup result

1 dot (•)
2 dash (−)
3 star (?)
4 triangle (.)
5 circle (◦)
6 big circle (©)
7 bigger circle (©)
8 square (�)

Table 13.1 Item separator identifications in itemizations.

\startitemize[A]
\item The difference between a village and a city is the existence of

a townhall.
\item The difference between a village and a city is the existence of

a courthouse.
\stopitemize

This will lead to:
Which of these theses are true?
A. The difference between a village and a city is the existence of a townhall.
B. The difference between a village and a city is the existence of a courthouse.
The symbols used under 1 to 8 can be defined with the command \definesymbol (see
section ??) and the conversion of the numbering with \defineconversion (see section ??).
For example:
Do the following propositions hold some truth?

\definesymbol[1][\diamond]

\startitemize[1]
\item The city of Amsterdam is built on wooden poles.
\item The city of Rome was built in one day.
\stopitemize

results in:
Do the following propositions hold some truth?
� The city of Amsterdam is built on wooden poles.
� The city of Rome was built in one day.
The keys n, a, etc. are related to the conversions. This means that all conversions are accepted.
Take for example:
α. a g for Greek characters

Descriptions 228

Itemize 13

β. a G for Greek capitals

When the setup and the [] are left out then the default symbol is typeset.

The indentation and horizontal whitespace is set up locally or globally with:

unknown setup ‘setupitemize’

These arguments may appear in different combinations, like:

What proposition is true?

\startitemize[a,packed][stopper=:]
\item 2000 is a leap-year
\item 2001 is a leap-year
\item 2002 is a leap-year
\item 2003 is a leap-year
\stopitemize

this will become:

What proposition is true?

a: 2000 is a leap-year
b: 2001 is a leap-year
c: 2002 is a leap-year
d: 2003 is a leap-year

Both argument are optional. The key packed is one of the most commonly used:

What proposition is true?

\startitemize[n,packed,inmargin]
\item[ok] 2000 is a leap-year
\item 2001 is a leap-year
\item 2002 is a leap-year
\item 2003 is a leap-year
\stopitemize

will result in:

What proposition is true?

1. 2000 is a leap-year
2. 2001 is a leap-year
3. 2002 is a leap-year
4. 2003 is a leap-year

It happens very often that an itemization is preceded by a sentence like “ . . . can be seen below:”.
In that case we add the key intro and the introduction sentence will be ‘connected’ to the
itemization. After this setup a pagebreak between sentence and itemization is discouraged.

\startitemize[n,packed,inmargin,intro]

The setup of the itemization commands are presented in table 13.2.

229 Descriptions

13 Itemize

setup result

standard default setup
packed no white space between items
joinedup no white space before and after itemization
paragraph no white space before an itemization
n*serried little horizontal white space after symbol
n*broad extra horizontal white space after symbol
inmargin item separator in margin
atmargin item separator at the margin
stopper punctuation after item separator
intro no pagebreak
columns two columns

Table 13.2 Setup of \setupitemize.

In the last example we saw a reference point behind the command \item for future cross
referencing. In this case we could make a cross reference to answer 1 with the command
\in[ok].
The enumeration may be continued by adding the key continue, for example:
\startitemize[continue]
\item 2005 is a leap-year
\stopitemize

This would result in a rather useless addition:
5. 2005 is a leap-year

Another example illustrates that continue even works at other levels of itemizations:
• supported image formats in pdfTEX

a. png
b. eps
c. pdf

• non supported image formats in pdfTEX
d. jpg
e. gif
f. tif

This was typed as (in this document we have set headstyle=bold):
\startitemize[1,packed]
\head supported image formats in \PDFTEX \par

\startitemize[a]
\item png \item eps \item pdf
\stopitemize

\head non supported image formats in \PDFTEX \par
\startitemize[continue]
\item jpg \item gif \item tif

Descriptions 230

Itemize 13

\stopitemize
\stopitemize

When we use the key columns the items are typeset in two columns. The number of columns
can be set by the keys one, two (default), three or four.

\startitemize[n,columns,four]
\item png \item tif \item jpg \item eps \item pdf
\item gif \item pic \item bmp \item bsd \item jpe
\stopitemize

We can see that we can type the items at our own preference.

1. png
2. tif
3. jpg

4. eps
5. pdf
6. gif

7. pic
8. bmp
9. bsd

10. jpe

In such a long enumerated list the horizontal space between itemseparator and text may be
too small. In that case we use the key broad, here 2*broad:

I. png
II. tif
III. jpg

IV. eps
V. pdf
VI. gif

VII. pic
VIII. bmp
IX. bsd

X. jpe

The counterpart of broad is serried. We can also add a factor. Here we used 2*serried.

•What format is this?

We can abuse the key broad for very simple tables. It takes some guessing to reach the right
spacing.

This results in a rather strange example:

\startitemize[4*broad,packed]
\sym {yes} this is a nice format
\sym {no} this is very ugly
\stopitemize

yes this is a nice format
no this is very ugly

The parameter stopper expects a character of your own choice. By default it is set at a
period. When no level is specified and the [] are empty the actual level is activated. In
section ?? we will discuss this in more detail. Stoppers only apply to ordered (numbered)
list.

There are itemizations where a one line head is followed by a text block. In that case
you use \head instead of \item. You can specify the layout of \head with the command
\setupitemize. For example:

\setupitemize[each][headstyle=bold]

\startitemize[n]

\head A title head in an itemization

After the command \type{\head} an empty line is mandatory. If you
leave that out you will get a very long header.

231 Descriptions

13 Itemize

\stopitemize

This becomes:

1. A title head in an itemization

After the command \head an empty line is mandatory. If you leave that out you will get
a very long header.

If we would have used \item the head would have been typeset in a normal font. Furthermore
a pagebreak could have been introduced between head and textblock. This is not permitted
when you use \head.

\head [...,...]
OPTIONAL

*

* REFERENCE

When an itemization consists of only one item we can leave out the commands \startitemize
and \stopitemize and the level 1 symbol is used.

\item The itemization commands force the user into a consistent layout
of the itemizations. \par

Instead of the \par you could have used an empty line. In each case, we get the following
output:

• The itemization commands force the user into a consistent layout of the itemizations.

Only the text directly following the command and ended by an empty line or \par is indented.

When you want to re-use the last number instead of increasing the next item you can use
\sub. This feature is used in discussion documents where earlier versions should not be
altered too much for reference purposes.

1. This itemization is preceded by \startitemize[n,packed].
+1. This item is preceded by \sub, the other items by \item.
2. The itemization is ended by \stopitemize.

The most important commands are:

unknown setup ‘startitemize’

\item [...,...]
OPTIONAL

*

* REFERENCE

\sub [...,...]
OPTIONAL

*

* REFERENCE

In addition to \item there is \sym. This command enables us to type an indented text with
our own symbol.

Descriptions 232

Itemize 13

\sym {...}*

* TEXT

Another alternative to \item is \mar. The specified argument is set in the margin (by default
a typeletter) and enables us to comment on an item.

\mar [...,...]
OPTIONAL

1 {...}2

1 REFERENCE

2 TEXT

Some at first sight rather strange alternatives are:

\its [...,...]
OPTIONAL

*

* REFERENCE

\ran {...}*

* TEXT

These acronyms are placeholders for items and range. We illustrate most of these commands
with an example that stems from a ntg questionnaire:

no yes
◦ ◦ ◦ ◦ ◦ I can not do without TEX.
◦ ◦ ◦ ◦ ◦ I will use TEX forever.
◦ ◦ ◦ ◦ ◦ I expect an alternative to TEX in the next few years.
◦ ◦ ◦ ◦ ◦ I use TEX and other packages.
◦ ◦ ◦ ◦ ◦ I hardly use TEX.
◦ ◦ ◦ ◦ ◦ I am looking for another system.

The source is typed below. Look at the setup, it is local.

\startitemize[5,packed][width=8em,distance=2em,items=5]

\ran {no\hss yes}

\its I can not do without \TeX.
\its I will use \TeX\ forever.
\its I expect an alternative to \TeX\ in the next few years.
\its I use \TeX\ and other packages.
\its I hardly use \TeX.
\its I am looking for another system.

\stopitemize

For the interactive version there is:

233 Descriptions

13 Items

\but [...]*

* REFERENCE

This command resembles \item but produces an interactive symbol that executes the refer-
ence sequence specified.

The example below shows a combination of the mentioned commands. We also see the
alternative \nop.

• he got a head ache

1. of all the items
he had to learn at school

2.++ because the marginal explanation
+2. of the substantial content
turned out to be mostly symbolic

This list was typed like this:

\startitemize
\head he got a head ache

\startitemize[n,packed]
\item of all the items
\nop he had to learn at school
\mar{++} because the marginal explanation
\sub of the substantial content
\sym{\#} turned out to be mostly symbolic
\stopitemize

\stopitemize

With the no--operation command:

\nop

During the processing of itemizations the number of items is counted. This is the case with
all versions. The next pass this information is used to determine the optimal location to start
a new page. So do not despair when at the first parse your itemizations do not look the way
you expected. When using TEXexec this is all taken care of.

We have two last pieces of advises. When items consist of two or more paragraphs always
use \head instead of \item, especially when the first paragraph consists only one line. The
command \head takes care of adequate pagebreaking between two paragraphs. Also, al-
ways use the key [intro] when a one line sentence preceeds the itemization. This can be
automated by:

\setupitemize[each][autointro]

13.7 Items

Descriptions 234

Items 13

A rarely used variant of producing lists is the command \items. It is used to produce simple,
one level, vertical or horizontal lists. The command in its simplest form looks like this:

\items{alternative 1,alternative 2,...,alternative N}

Instead of an alternative you can also type -. In that case space is reserved but the item is
not set. The layout of such a list is set with the command:

\setupitems [..,.=.,..]
*

* location = left right inmargin top bottom
symbol = 1 2 ... n a ... TEXT none
width = DIMENSION
n = NUMBER unknown
before = COMMAND
inbetween = COMMAND
align = inner outer left right flushleft flushright middle center normal

no yes
after = COMMAND

The number (n) as well as the width are calculated automatically. When you want to do this
yourself you can use the previous command or you pass the options directly. We show some
examples.

\items[location=left]{png,eps,pdf}

◦

◦

◦

png
eps
pdf

\items[location=bottom]{png,eps,pdf}

png eps pdf

◦ ◦ ◦

\items[location=right,width=2cm]{png,eps,pdf}

png
eps
pdf

◦

◦

◦

\items[location=top,width=6cm,align=left]{png,eps,pdf}

◦ ◦ ◦

png eps pdf

\items[location=inmargin]{png,eps,pdf}

◦

◦

◦

png
eps
pdf

\items[location=left,n=2,symbol=5]{jpg,tif}

◦

◦

jpg
tif

235 Descriptions

13 Citations

\items[symbol=3,n=6,width=\hsize,location=top]{png,eps,pdf,jpg,tif}

? ? ? ? ? ?

png eps pdf jpg tif

The setup just after \items have the same effect as those of \setupitems:

\items [..,.=.,..]
OPTIONAL

1 {..}2

1 inherits from \setupitems

2 TEXT

13.8 Citations
The use of quotes depends on the language of a country: ‚Nederlands’, ‘English’, ‚Deutsch‘,
« Français ». The consistent use of single and double quotes is supported by a number of
commands. A citation in the running text is typeset by:

\startquotation [...,...]* ... \stopquotation

* left middle right

This command can be compared with \startnarrower and has the same setup parameters.
The quotes are placed around the text and they fall outside the textblock:

“In commercial advertising ‘experts’ are quoted. Not too long ago I saw a commercial
where a washing powder was recommended by the Dutch Society of Housewives.
The remarkable thing was that there was a spokesman and not a spokeswoman. He
was introduced as the “director”. It can’t be true that the director of the Society of
Housewives is a man. Can it?”

In this example we see two other commands:

\startquotation
In commercial advertising \quote {experts} are quoted. Not too
long ago I saw a commercial where a washing powder was recommended
by the Dutch Society of Housewives. The remarkable thing was that
there was a spokesman and not a spokeswoman. He was introduced as
the \quotation {director}. It can’t be true that the director of the
Society of Housewives is a man. Can it?
\stopquotation

The command \quotation produces double quotes and \quote single quotes.

\quote {...}*

* TEXT

Descriptions 236

Citations 13

\quotation {...}*

* TEXT

These commands adapt to the language. In Dutch, English, German and French texts other
quotes are activated. The body font is set with:

\setupquote [..,.=.,..]
*

* before = COMMAND
after = COMMAND
style = normal bold slanted boldslanted type cap small... COMMAND
color = IDENTIFIER
location = TEXT margin

The location of a period, inside or outside a citation is somewhat arbitrary. The opinions on
this issue differ considerately.

He said: “That is a bike” to which she replied: “Take a hike”.

The quotes are language dependent. Therefore it is of some importance that language switch-
ing is done correctly.

\quotation {He answered: \fr \quotation {Je ne parle pas fran\c cais}.}
\quotation {He answered: \quotation {\fr Je ne parle pas fran\c cais}.}
\quotation {\fr Il r\’epondait: \quotation{Je ne parle pas fran\c cais}.}
\fr \quotation {Il r\’epondait: \quotation{Je ne parle pas fran\c cais}.}

Watch the subtle difference.

“He answered: « Je ne parle pas français ».”
“He answered: “Je ne parle pas français”.”
“Il répondait: « Je ne parle pas français ».”
« Il répondait: « Je ne parle pas français ». »

When we want different quotes, we can change them. This is a language related setting.

\setuplanguage
[en]
[leftquote=\upperleftsinglesixquote,
leftquotation=\upperleftdoublesixquote]

Fo rconsistency, such a setting can best be put into the local system file cont-sys.tex, together
with other local settings. The following quotes are available:

\lowerleftsingleninequote ‚ \lowerrightsingleninequote ‚
\lowerleftdoubleninequote „ \lowerrightdoubleninequote „
\upperleftsingleninequote ’ \upperrightsingleninequote ’
\upperleftdoubleninequote ” \upperrightdoubleninequote ”
\upperleftsinglesixquote ‘ \upperrightsinglesixquote ‘
\upperleftdoublesixquote “ \upperrightdoublesixquote “

14 Introduction

14 Lines and frames

14.1 Introduction
TEX has an enormous capacity in handling text, but is very weak at handling graphical
information. Lines can be handled adequately as long as you use vertical or horizontal lines.
However, you can do graphical work with TEX by combining TEX and MetaPost.

In this chapter we introduce a number of commands that relate to drawing straight lines
in your text. We will see a very sophisticated command \framed that can be used in many
ways. The parameters of this command are also available in other commands.

14.2 Single lines
The simplest way to draw a line in ConTEXt is:

\hairline

For example:

\hairline
In what fairy tale is the wolf cut open and filled with stones? Was it in
{Little Red Riding-hood} or in \quote {The wolf and the seven goats}.
\hairline

This will become:

In what fairy tale is the wolf cut open and filled with stones? Was it in Little Red Riding-hood
or in ‘The wolf and the seven goats’.

It does not look good at all. This is caused by the fact that a drawn line gets its own vertical
whitespace. In section 14.4 we will show how to alter this.

The effects of the command \hairline is best illustrated when we visualize \strut’s. We
did so by saying \showstruts first.

Lines and frames 238

Single lines 14

A strut is a character with a maximum height and depth, but no width. The text in this
example is surrounded by two strutted lines.

It is also possible to draw a line over the width of the actual paragraph:

\thinrule

Or more than one lines by:

\thinrules [.=.]
OPTIONAL

*

* inherits from \setupthinrules

For example:

\startitemize
\item question 1 \par \thinrules[n=2]
\item question 2 \par \thinrules[n=2]
\stopitemize

If you leave out a \par (or empty line), the thin rules come after the text. Compare

• question 1

• question 2

with

• question 1

• question 2

The last example was keyed in as:

\startitemize
\item question 1 \thinrules[n=2]
\item question 2 \thinrules[n=2]
\stopitemize

The parameters are set with:

239 Lines and frames

14 Fill in rules

\setupthinrules [.=.]
*

* interlinespace = small medium big
n = NUMBER
before = COMMAND
inbetween = COMMAND
after = COMMAND
color = IDENTIFIER
backgroundcolor = IDENTIFIER
height = DIMENSION max
depth = DIMENSION max
alternative = a b c d
rulethickness = DIMENSION
color = IDENTIFIER
background = color
backgroundcolor = IDENTIFIER

You can draw thin vertical or horizontal lines with the commands:

\vl [...]*

* NUMBER

\hl [...]*

* NUMBER

The argument is optional. To \vl () you may pass a factor that relates to the actual height
of a line and to \hl () a width that relates to the width of an em. So \vl[2] produces a
rule with a height of two lines.

14.3 Fill in rules
On behalf of questionnaires there is the command:

\fillinline [..,.=.,..]
OPTIONAL

1 ...2

1 inherits from \setupfillinlines

2 EMPTY

With the accompanying setup command:

\setupfillinlines [..,.=.,..]
*

* width = DIMENSION
margin = DIMENSION
distance = DIMENSION
before = COMMAND
after = COMMAND

Lines and frames 240

Fill in rules 14

The example:

\fillinline[n=2,width=2cm]{name} \par
\fillinline[n=2,width=2cm]{address} \par

Leads to the next list:

name

address

An alternative is wanting the fill--in rule at the end of a paragraph. Then you use the
commands:

\fillinrules [..,.=.,..]
OPTIONAL

1 {...}2 {...}
OPTIONAL

3

1 inherits from \setupfillinrules

2 TEXT

3 TEXT

\setupfillinrules [..,.=.,..]
*

* width = fit broad DIMENSION
distance = DIMENSION
before = COMMAND
after = COMMAND
style = normal bold slanted boldslanted type cap small... COMMAND
n = NUMBER
interlinespace = small medium big
separator = TEXT

The next example will show the implications:

\fillinline[width=3cm] Consumers in this shopping mall are frequently
confronted with questionnaires. Our hypothesis is that consumers rather
shop somewhere else than answer these kind of questionnaires. Do you
agree with this?

In this example we could of course have offered some alternatives for answering this question.
By setting the width to broad, we get

Consumers in this shopping mall are frequently confronted with question-
naires. Our hypothesis is that consumers rather shop somewhere else than
answer these kind of questionnaires. Do you agree with this?

The next set of examples demonstrate how we can influence the layout.

\fillinrules[n=2,width=fit]{first}
\fillinrules[n=2,width=broad]{first}
\fillinrules[n=2,width=3cm]{first}
\fillinrules[n=2,width=fit,distance=.5em,separator=:]{first}
\fillinrules[n=2,width=broad,distance=.5em]{first}{last}

first

241 Lines and frames

14 Text lines

first

first

first:

first
last

14.4 Text lines
A text line is drawn just before and/or after a paragraph. The upper line may also contain
text. The command is:

\textrule [...]
OPTIONAL

1 {...}
OPTIONAL

2

1 top bottom

2 TEXT

An example:

\textrule[top]{Instruments}
Some artists mention the instruments that they use during the production
of their \kap{CD}. In Peter Gabriel’s \quote {Digging in the dust} he used
the {\em diembe}, {\em tama} and {\em surdu}. The information on another
song mentions the {\em doudouk}. Other \quote {unknown} instruments are
used on his \kap{cd} \quote {Passion}.
\textrule

This will result in:

Instruments
Some artists mention the instruments that they use during the production of their CD. In
Peter Gabriel’s ‘Digging in the dust’ he used the diembe, tama and surdu. The information
on another song mentions the doudouk. Other ‘unknown’ instruments are used on his CD
‘Passion’.

The behaviour of textlines is set up with the command below. With the parameter width
you set the length of the line in front of the text.

Lines and frames 242

Underline 14

\setuptextrules [..,.=.,..]
*

* location = left inmargin
before = COMMAND
after = COMMAND
inbetween = COMMAND
width = DIMENSION
distance = DIMENSION
bodyfont = 5pt ... 12pt small big
color = IDENTIFIER
style = normal bold slanted boldslanted type cap small... COMMAND
rulecolor = IDENTIFIER

These is also a \start--\stop alternative. This one also honors the bodyfont parameter.

\starttextrule [...]
OPTIONAL

1 {...}
OPTIONAL

2 ... \stoptextrule

1 top bottom

2 TEXT

14.5 Underline
Underlining text is not such an ideal method to banner your text. Nevertheless we introduced
this feature in ConTEXt. Here is how it works. We use:

\underbar {...}*

* TEXT

A disadvantage of this command is that words can no longer be hyphenated. This is a nasty
side-- effect. But we do support nested underlining.
The spaces in the last paragraph were also underlined. If we do not want that in this
paragraph we use:

\underbars {..}*

* WORD

From the input we can see that the hyphen results from the compound word.

\underbar {A disadvantage of this command is that words can \underbar
{no} longer be hyphenated. This is a nasty side||effect. But we do
support \underbar {nested} underlining.}

\underbars {The spaces in the last paragraph were also underlined. If
we do not want that in this paragraph we use:}

The counterpart of these commands are:

243 Lines and frames

14 Underline

\overbar {...}*

* TEXT

\overbars {..}*

* WORD

You may wonder for what reasons we introduced these commands. The reasons are mainly
financial:

product 1 1.420
product 2 3.182
total 4.602

This financial overview is made with:

\starttabulate[|l|r|]
\NC product 1 \NC 1.420 \NC \NR
\NC product 2 \NC 3.182 \NC \NR
\NC total \NC \overbar{4.602} \NC \NR
\stoptabulate

The number of parameters in these commands is limited:

\setupunderbar [..,.=.,..]
*

* alternative = a b c
rulethickness = DIMENSION
bottomoffset = DIMENSION
topoffset = DIMENSION
rulecolor = IDENTIFIER

The alternatives are: alternative a, alternative b, alternative c. while another line thickness
results in: 1pt line, 2pt line.

A part of the text can be striked with the command:

\overstrike {...}*

* TEXT

This command supports no nesting. Single words are striked with:

\overstrikes {..}*

* WORD

Lines and frames 244

Framing 14

14.6 Framing
Texts can be framed with the command: \framed. In its most simple form the command
looks like this:

\framed{A button in an interactive document is a framed text
with specific characteristics.}

The becomes:

A button in an interactive document is a framed text with specific characteristics.

The complete definition of this command is:

\framed [..,.=.,..]
OPTIONAL

1 {...}2

1 inherits from \setupframed

2 TEXT

You may notice that all arguments are optional.

\framed
[height=broad]
{A framed text always needs special attention as far as the spacing
is concerned.}

Here is the output of the previous source code:

A framed text always needs special attention as far as the spacing is concerned.

For the height, the values fit and broad have the same results. So:

\hbox
{\framed[height=broad]{Is this the spacing we want?}
\hskip1em
\framed[height=fit] {Or isn’t it?}}

will give us:

Is this the spacing we want? Or isn’t it?

To obtain a comparable layout between framed and non--framed framing can be set on and
off.

yes no yes
no yes no

The rulethickness is set with the command \setuprulethickness (see section ??).

A framed text is typeset ‘on top of’ the baseline. When you want real alignment you can use
the command \inframed.

to \framed{frame} or to be \inframed{framed}

or:

245 Lines and frames

14 Framing

to frame or to be framed

It is possible to draw parts of the frame. In that case you have to specify the separate sides
of the frame with leftframe=on and the alike.

We will now show some alternatives of the command \framed. Please notice the influence
of offset. When no value is given, the offset is determined by the height and depth of
the \strut, that virtual character with a maximum height and depth with no width. When
exact positioning is needed within a frame you set offset at none (see also tables 14.1, 14.2
and 14.3). Setting the offset to none or overlay, will also disable the strut.

width=fit

width=broad

width=8cm,height=1.5em

offset=5pt

offset=0pt

offset=none
offset=overlay

width=8cm,height=1.5em,offset=0pt

width=8cm,height=1.5em,offset=none

The commands \lbox (ragged left), \cbox (ragged center) and \rbox (ragged right) can be
combined with \framed:

left
of the

middle

just
in the
middle

right
of the
middle

\lbox \cbox \rbox

The second text is typed as follows:

\framed
[width=.2\hsize,height=3cm]
{\cbox to 2.5cm{\hsize2.5cm just\\in the\\middle}}

There is a more convenient way to align a text, since we have the parameters align and top
and bottom. In the next one shows the influence of top and bottom (the second case is the
default).

\setupframed[width=.2\hsize,height=3cm,align=middle]
\startcombination[4]
{\framed[bottom=\vss,top=\vss]{just\\in the\\middle}}
{\type{top=\vss}\crlf\type{bottom=\vss}}
{\framed[bottom=\vss,top=] {just\\in the\\middle}}
{\type{top=} \crlf\type{bottom=\vss}}

Lines and frames 246

Framing 14

{\framed[bottom=,top=\vss] {just\\in the\\middle}}
{\type{top=\vss}\crlf\type{top=}}
{\framed[bottom=,top=] {just\\in the\\middle}}
{\type{top=} \crlf\type{bottom=}}

\stopcombination

just
in the
middle

just
in the
middle

just
in the
middle

just
in the
middle

top=\vss
bottom=\vss

top=
bottom=\vss

top=\vss
top=

top=
bottom=

In the background of a framed text you can place a screen or a coloured background by
setting background at color or screen. Don’t forget to activate the the colour mechanism by
saying (\setupcolors[state=start]).

In the dark
background=screen background=screen

backgroundscreen=0.7

all cats are grey.
background=color background=color

backgroundcolor=red

There is also an option to enlarge a frame or the background by setting the frameoffset
and/or backgroundoffset. These do not influence the dimensions. Next to screens and
colours you can also use your own kind of backgrounds. This mechanism is described in
section 9.3.

The command \framed itself can be an argument of \framed. We will obtain a framed frame.

\framed
[width=3cm,height=3cm]
{\framed[width=2.5cm,height=2.5cm]{hello world}}

In that case the second frame is somewhat larger than expected. This is caused by the fact
that the first framed has a strut. This strut is placed automatically to enable typesetting one
framed text next to another. We suppress \strut with:

\framed
[width=3cm,height=3cm,strut=no]
{\framed[width=2.5cm,height=2.5cm]{hello world}}

When both examples are placed close to one another we see the difference:

247 Lines and frames

14 Framing

hello world hello world

strut=yes strut=no

A \hairline is normally draw over the complete width of a text (\hsize). Within a frame
the line is drawn from the left to the right of framed box.

Consequently the code:

\framed[width=8cm,align=middle]
{when you read between the lines \hairline
you may see what effort it takes \hairline
to write a macropackage}

produces the following output:

when you read between the lines
you may see what effort it takes

to write a macropackage

When no width is specified only the vertical lines are displayed.

their opinions differ considerately

Which was obtained with:

\framed
{their opinions \hairline differ \hairline considerately}

The default setup of \framed can be changed with the command:

Lines and frames 248

Framing 14

\setupframed [...]
OPTIONAL

1 [..,.=.,..]
2

1 IDENTIFIER

2 height = fit broad DIMENSION
width = fit broad fixed local DIMENSION
autowidth = yes no force
offset = none overlay default DIMENSION
location = depth hanging high lohi low top middle bottom keep
option = none empty
strut = yes no global local
align = inner outer left right flushleft flushright middle center

normal no yes
bottom = COMMAND
top = COMMAND
frame = on off none overlay
topframe = on off
bottomframe = on off
leftframe = on off
rightframe = on off
frameoffset = DIMENSION
framedepth = DIMENSION
framecorner = round rectangular
frameradius = DIMENSION
framecolor = IDENTIFIER
background = screen color none foreground IDENTIFIER
backgroundscreen = NUMBER
backgroundcolor = IDENTIFIER
backgroundoffset = frame DIMENSION
backgrounddepth = DIMENSION
backgroundcorner = round rectangular
backgroundradius = DIMENSION
depth = DIMENSION
corner = round rectangular
radius = DIMENSION
empty = yes no
foregroundcolor = IDENTIFIER
foregroundstyle = normal bold slanted boldslanted type cap small... COMMAND
rulethickness = DIMENSION

The command \framed is used within many other commands. The combined use of offset
and strut may be very confusing. It really pays off to spend some time playing with these
macros and parameters, since you will meet \framed in many other commands. Also, the
parameters width and height are very important for the framing texts. For that reason we
summarize the consequences of their settings in table 14.1, 14.2 and 14.3.

offset

.25ex 0pt none overlay

strut
yes

no

Table 14.1 The influence of strut and offset in \framed (1).

249 Lines and frames

14 Framing

offset

.25ex 0pt none overlay

strut
yes TEX TEX TEX TEX

no TEX TEX TEX TEX

Table 14.2 The influence of strut and offset in \framed (2).

width

fit broad (\hsize=4cm)

height
fit xxxx xxxx

broad xxxx xxxx

Table 14.3 The influence of height and width in \framed.

happy
birthday
to you

At first sight it is not so obvious that \framed can determine the width of a
paragraph by itself. When we set the parameter align the paragraph is first
typeset and then framed. This feature valuable when typesetting titlepages. In
the example left of this text, linebreaks are forced by \\, but this is not mandatory.
This example was coded as follows:

\placefigure
[left]
{none}
{\framed[align=middle]{happy\\birthday\\to you}}

The parameter offset needs some special attention. By default it is set at .25ex, based on
the cureently selected font. The next examples will illustrate this:

\hbox{\bf \framed{test} \sl \framed{test} \tfa \framed{test}}
\hbox{\framed{\bf test} \framed{\sl test} \framed{\tfa test}}

The value of 1ex outside \framed determines the offset. This suits our purpose well.

test test test
test test test
The differences are very subtle. The distance between the framed boxes depends on the
actual font size, the dimensions of the frame, the offset, and the strut.

TEX can only draw straight lines. Curves are drawn with small line pieces and effects the
size of dvi--files considerately and will cause long processing times. Curves in ConTEXt are
implemented by means of PostScript. There are two parameters that affect curves: corner
and radius. When corner is set at round, round curves are drawn.

Don’t be to edgy.

Lines and frames 250

Framed texts 14

It is also possible to draw circles by setting radius at half the width or height. But do not
use this command for drawing, it is meant for framing text. Use MetaPost instead.

Technically speaking the background, the frame and the text are separate components of a
framed text. First the background is set, then the text and at the last instance the frame. The
curved corner of a frame belongs to the frame and is not influenced by the text. As long as
the radius is smaller than the offset no problems will occur.

14.7 Framed texts
When you feel the urge to put a frame around or a backgroud behind a paragraph there is
the command:

unknown setup ‘startframedtext’

An application may look like this:

\startframedtext[left]
From an experiment that was conducted by C. van Noort (1993) it was
shown that the use of intermezzos as an attention enhancer is not very
effective.
\stopframedtext

From an experiment that was conducted by C.
van Noort (1993) it was shown that the use of

intermezzos as an attention enhancer is not very effective.

This can be set up with:

\setupframedtexts [...]
OPTIONAL

1 [..,.=.,..]
2

1 IDENTIFIER

2 bodyfont = 5pt ... 12pt small big
style = normal bold slanted boldslanted type cap small... COMMAND
left = COMMAND
right = COMMAND
before = COMMAND
after = COMMAND
inner = COMMAND
linecorrection = on off
depthcorrection = on off
margin = standard yes no
location = left right middle none
indenting = never none not no yes always first next small medium big

normal odd even DIMENSION
inherits from \setupframed

Framed texts can be combined with the place block mechanism, as can be seen in inter-
mezzo 14.1.

251 Lines and frames

14 Framed texts

\placeintermezzo
[here][int:demo 1]
{An example of an intermezzo.}
\startframedtext
For millions of years mankind lived just like animals. Then
something happened, which unleashed the power of our imagination.
We learned to talk.
\blank
\rightaligned{--- The Division Bell / Pink Floyd}

\stopframedtext

In this case the location of the framed text (between []) is left out.

For millions of years mankind lived just like animals.
Then something happened, which unleashed the
power of our imagination. We learned to talk.

— The Division Bell / Pink Floyd

Intermezzo 14.1 An example of an intermezzo.

You can also draw a partial frame. The following setup produces intermezzo 14.2.

\setupframedtexts[frame=off,topframe=on,leftframe=on]

Why are the world leaders not moved by songs
like Wozu sind Kriege da? by Udo Lindenberg. I
was, and now I wonder why wars go on and on.

Intermezzo 14.2 An example of an intermezzo.

You can also use a background. When the background is active it looks better to omit the
frame.

An intermezzo like this will draw more attention,
but the readability is far from optimal. However,
you read can it. This inermezzo was set up with :

\setupframedtexts[frame=off,background=screen]

Intermezzo 14.3 An example of an intermezzo with background.

Intermezzo 14.4 demonstrate how to use some color:

\setupframedtexts
[background=screen,
frame=off,
rightframe=on,

Lines and frames 252

Framed texts 14

framecolor=darkgreen,
rulethickness=3pt]

\placeintermezzo
[here][int:color]
{An example of an intermezzo with a trick.}
\startframedtext
The trick is really very simple. But the fun is gone when Tom, Dick
and Harry would use it too.

\stopframedtext

The trick is really very simple. But the fun is gone
when Tom, Dick and Harry would use it too.

Intermezzo 14.4 An example of an intermezzo with a trick.

So, in order to get a partial frame, we have to set the whole frame to off. This is an example
of a situation where we can get a bit more readable source when we say:

\startbuffer
\startframedtext ... \stopframedtext
\stopbuffer

\placeintermezzo
[here][int:color]
{An example of an intermezzo with a trick.}{\getbuffer}

You do not want to set up a framed text every time you need it, so there is the following
command:

\defineframedtext [...]1 [..,.=.,..]
OPTIONAL

2

1 IDENTIFIER

2 inherits from \setupframedtexts

The definition:

\defineframedtext
[musicfragment]
[frame=off, rightframe=on, leftframe=on]

\placeintermezzo
[here][]
{An example of a predefined framed text.}

\startmusicfragment
Imagine that there are fragments of music in your interactive document.
You will not be able to read undisturbed.
\stopmusicfragment

results in:

253 Lines and frames

14 Margin rules

Imagine that there are fragments of music in your interactive
document. You will not be able to read undisturbed.

Intermezzo 14.5 An example of a predefined framed text.

14.8 Margin rules
To add some sort of flags to paragraphs you can draw vertical lines in the margin. This can
be used to indicate that the paragraph was altered since the last version. The commands are:

\startmarginrule [...]* ... \stopmarginrule

* NUMBER

\marginrule [...]1 {...}2

1 NUMBER

2 TEXT

The first command is used around paragraphs, the second within a paragraph.

By specifying a level you can suppress a margin rule. This is done by setting the ‘global’
level higher than the ‘local’ level.

\setupmarginrules [.=.]
*

* level = NUMBER
rulethickness = DIMENSION

In the example below we show an application of the use of margin rules.

\startmarginrule
The sound of a duck is a good demonstration of how different people
listen to a sound. Everywhere in Europe the sound is equal. But in
every country it is described differently: kwaak||kwaak (Netherlands),
couin||couin (French), gick||gack (German), rap||rap (Danish) and
mech||mech (Spanish). If you speak these words aloud you will notice
that \marginrule[4]{in spite of the} consonants the sound is really very
well described. And what about a cow, does it say boe, mboe or mmmmmm?
\stopmarginrule

Or:24

The sound of a duck is a good demonstration of how different people listen to a sound.
Everywhere in Europe the sound is equal. But in every country it is described differently:
kwaak--kwaak (Netherlands), couin--couin (French), gick--gack (German), rap--rap (Danish)

G.C. Molewijk, Spellingsverandering van zin naar onzin (1992).24

Lines and frames 254

Black rules 14

and mech--mech (Spanish). If you speak these words aloud you will notice that in spite of
the consonants the sound is really very well described. And what about a cow, does it say
boe, mboe or mmmmmm?
If we would have set \setupmarginrules[level=2] we would have obtained a margin rule
in the middle of the paragraph. In this example we also see that the thickness of the line is
adapted to the level. You can undo this feature with \setupmarginrules[thickness=1].

14.9 Black rules
Little black boxes —we call them black rules— () can be drawn by \blackrule:

\blackrule [..,.=.,..]
OPTIONAL

*

* inherits from \setupblackrules

When the setup is left out, the default setup is used.

\setupblackrules [..,.=.,..]
*

* width = DIMENSION max
height = DIMENSION max
depth = DIMENSION max
alternative = a b
distance = DIMENSION
n = NUMBER
color = IDENTIFIER

The height, depth and width of a black rule are in accordance with the usual height, depth
and width of TEX. When we use the key max instead of a real value the dimensions of TEX’s
\strutbox are used. When we set all three dimensions to max we get: .
Black rules may have different purposes. You can use them as identifiers of sections or
subsections. This paragraph is tagged by a black rule with default dimensions: \in-
left{\blackrule}.
A series of black rules can be typeset by \blackrules:

\blackrules [..,.=.,..]
*

* inherits from \setupblackrules

There are two versions. Version a sets n black rules next to each other with an equal specified
width. Version b divides the specified width over the number of rules. This paragraph
is tagged with \inleft{\blackrules}. The setup after \blackrule and \blackrules are
optional.

14.10 Grids
We can make squared paper (a sort of grid) with the command:

255 Lines and frames

14 Grids

\grid [..,.=.,..]
*

* x = NUMBER
y = NUMBER
nx = NUMBER
ny = NUMBER
dx = NUMBER
dy = NUMBER
xstep = NUMBER
ystep = NUMBER
offset = yes no
factor = NUMBER
scale = NUMBER
unit = cm pt em mm ex es in
location = left middle

The default setup produces:

It is used in the background when defining interactive areas in a figure. And for the sake of
completeness it is described in this chapter.

Introduction 15

15 Blocks

15.1 Introduction
A block in ConTEXt is defined as typographical unit that needs specific handling. We distin-
guish the following block types:

• floats

Examples of floats are figures, tables, graphics, intermezzos etc. The locations of these
blocks are determined by TEX and depends on the available space on a page.

• textblocks

Examples of textblocks are questions and answers in a studybook, summaries, definitions
or derivatives of formulas. The location of these kind of blocks in the final document
cannot be determined beforehand. And the information may be used repeatedly in several
settings.

• opposite blocks

Opposite (or spread) blocks are typeset on the left--hand page when a single sided output
is generated. The layout of the right--hand side page is influenced by the blocks on the
left.

• margin blocks

Margin blocks are more extensive than single margin words. Text and figures can be
placed in the margin with this feature.

There are a number of commands that support the use of these block types. These are
discussed in this chapter. Furthermore we will discuss other forms of text manipulation.
Formulas can also be seen as blocks. Since formulas are covered in a separate chapter we
don’t go into details here.

This chapter is typeset with the option \version [temporary]. This does not refer to the
content but to the typesetting. With this option, design information is placed in the margin.

15.2 Floats
Floats are composed of very specific commands. For example a table in ConTEXt is typeset
using a shell around TABLE. Drawings and graphics are made with external packages, as TEX
is only capable of reserving space for graphics.

Most floats are numbered and may have a caption. A float is defined with the command:

\definefloat [...]1 [...]2

1 SINGULAR NAME

2 PLURAL NAME

In ConTEXt, figures, graphics, tables, and intermezzos are predefined with:

References

> floats

Registers

> i figures+placing
> i tables+placing
> i figures+numbering
> i tables+numbering
> i figures+listing
> i tables+listing
> i placing+figures
> i placing+tables
> i numbering+figures
> i numbering+tables
> i listing+figures
> i listing+tables
> t definefloat
> t place«float»
> t placelistof«floats»
> t completelistof<<f..
> t reserve«float»
> t setup«floats»
> t start«float»text
> t setupfloats
> t setupcaptions

Version: August 23, 2009 product: contextref component: co-en-13 261

257 Blocks

15 Floats

\definefloat [figure] [figures]
\definefloat [table] [tables]
\definefloat [graphic] [graphics]
\definefloat [intermezzo] [intermezzos]

As a result of these definitions you can always use \placefigure, \placetable, \place-
graphic and \placeintermezzo. Of course, you can define your own floats with \define-
float. You place your newly defined floats with the command:
unknown setup ‘place«float»’
When a float cannot be placed at a specific location on a page, ConTEXt will search for the
most optimal alternative. ConTEXt provides a number of placement options for floats. These
are listed in table 15.1.

89

preference result

left left of text
right right of text
here preferably here
top at top of page
bottom at bottom of page
inleft in left margin
inright in right margin
inmargin in the margin (left or right)
margin in the margin (margin float)
page on a new (empty) page
opposite on the left page
always precedence over stored floats
force per se here

Table 15.1 Preferences for float placement.

The commands can be used without the left and right brackets. For example:
\place...{caption}{content}

When the caption is left out, the float number is generated anyway. When the number is not
needed you type none, like in:
\placefigure{none}{.....}

It is mandatory to end this command by an empty line or a \par. You don’t have to embed
a table in braces, since the \start and \stop commands have them built in:
\placetable
[here][tab:example]
{A very simple example of a table.}
\starttable[|c|c|]
\HL
\VL this \VL is \VL\FR

Floatblocks

< – placed

References

< tab:floats
> tab:floats

Version: August 23, 2009 product: contextref component: co-en-13 262

Blocks 258

Floats 15

\VL a \VL table \VL\LR
\HL
\stoptable

90

this is
a table

Table 15.2 A very simple example of a table.

The vertical whitespace for a float can be reserved with:

unknown setup ‘reserve«float»’

This command can be used without the left and right bracket. An example of a reservation
is:

\reservefigure
[height=4cm,width=10cm,frame=on][here][fig:reservation]
{An example of a reservation.}

Which results in figure 15.1.

91

figure

Figure 15.1 An example of a reservation.

When the content of a float is not yet available, you can type \empty... instead of \place....
In this way you can also reserve vertical whitespace. When no option is added, so arg is
typed, the default empty float is used. However, whether the figure or table is available is
not that important. You can always type:

\placefigure{This is a figure caption.}{}

As a first argument you can specify a key left or right that will cause ConTEXt to let the
text flow around the float. The second optional parameter can be a cross reference, to be
used later, like \at {page} [fig:schematic process].

\placefigure[here][fig:demo]{This a figure caption.}{}

As we will later see, you can also use the next command:

unknown setup ‘start«float»text’

Preferences are left, right or middle. Furthermore you can specify offset in case the text
should align with the float. Both setups can be combined: [left,offset].

A list of used floats is generated with the command:

Floatblocks

< – placed
< – placed

References

> tab:example
< fig:reservation
> fig:reservation
< numbering

Version: August 23, 2009 product: contextref component: co-en-13 263

259 Blocks

15 Floats

unknown setup ‘placelistof«floats»’

For example, the command \placelistoffigures would typeset a list of figures. The list
follows the numbering convention that is set with the command \setupnumbering, which
was discussed at page ??.numbering->

The next command generates a list of floats on a separate page.

unknown setup ‘completelistof«floats»’

Pagebreaks that occur at unwanted locations can be enforced in the same way that is done
with a table of contents (see section 12.1):

\completelistoffloats[pageboundaries={8.2,20.4}]

As with tables of content the default local lists are generated. Recalling a list within a chapter
produces a list for that specific chapter. So, if you want a list of all figures, you need to specify
criterium as all.

15.1 An example of a reservation. 258
15.2 261
15.3 An example of \startcombination.... 263
15.4 The spacing within combinations (1). 264
15.5 The spacing within combinations (2). 265
15.6 Combinations without captions. 265
The previous list was produced by saying:

\placelistoffigures[criterium=chapter]

The characteristics of a specific class of floats are specified with the command:

\setupfloat [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 height = DIMENSION
width = DIMENSION
maxheight = DIMENSION
maxwidth = DIMENSION
minwidth = DIMENSION
default = IDENTIFIER
pageboundaries = LIST
leftmargindistance = DIMENSION
rightmargindistance = DIMENSION
location = left middle right
inherits from \setupframed

The (predefined) floats can also be set up with the more meaningful commands \setupfig-
ures, \setuptables etc.

The height and width relate to the vertical whitespace that should be reserved for an empty
float. All settings of \framed can be used, so when frame is set to on, we get a framed float.

The next two commands relate to all floats. The first command is used for setting the layout
including the caption:

References

< toc

Version: August 23, 2009 product: contextref component: co-en-13 264

Blocks 260

Floats 15

\setupfloats [..,.=.,..]
*

* location = left right middle
width = fit DIMENSION
before = COMMAND
after = COMMAND
margin = DIMENSION
spacebefore = small medium big none
spaceafter = small medium big none
sidespacebefore = small medium big none
sidespaceafter = small medium big none
indentnext = yes no
ntop = NUMBER
nbottom = NUMBER
nlines = NUMBER
default = IDENTIFIER
tolerance = 0 1 2
leftmargindistance = DIMENSION
rightmargindistance = DIMENSION
sidealign = normal line
numbering = yes nocheck
inherits from \setupframed

The second command is used for setting the enumerated captions of figures, tables, inter-
mezzos, etc.

\setupcaptions [..,.=.,..]
*

* location = top bottom none high low middle left middle right lefthanging
righthanging leftmargin rightmargin innermargin outermargin

width = fit broad max DIMENSION
minwidth = fit DIMENSION
headstyle = normal bold slanted boldslanted type cap small... COMMAND
style = normal bold slanted boldslanted type cap small... COMMAND
number = yes no none
inbetween = COMMAND
align = inner outer left right flushleft flushright middle center normal

no yes
conversion = numbers characters Characters romannumerals Romannumerals
way = bytext bycd:section
separator = TEXT
stopper = TEXT
command = COMMAND
distance = DIMENSION

You can also set up captions for a specific class of floats, like figures. The first argument of
the next command is the name of that class of floats.

\setupcaption [...]1 [..,.=.,..]
2

1 IDENTIFIER

2 inherits from \setupcaptions

Version: August 23, 2009 product: contextref component: co-en-13 265

261 Blocks

15 Floats

The commands assigned to before, after are are executed before and after placing the float.
The parameter inbetween is executed between the float and the caption. All three normally
have a \blank command assigned.
The parameter style is used for numbering (Figure x.y) and width for the width of the
caption label. The parameter margin specifies the margin space around a float when it is
surrounded by text. The float macros optimize the width of the caption (at top or bottom)
related to the width of the figure or table.

92

Figure 15.2
\setupcaptions[location=high]
\setupfloats[location=left]

With the three variables ntop, nbottom and nlines the float storage mechanism can be
influenced. The first two variables specify the maximum number of floats that are saved per
page at the top or the bottom of a page.
By default these variables have the values 2 and 0. Assume that ten figures, tables and/or
other floats are stored, then by default two floats will be placed at each new page (if possible).
For example, at a forced pagebreak or at the beginning of a new chapter, all stored floats are
placed.
The parameter nlines has the default value 4. This means that never less than four lines
will be typeset on the page where the floats are placed.
We continue with a few examples of floats (figures) placed next to the running text. This
looks like:
\placefigure[right]{none}{}

... here is where the text starts

For illustrating the mechanism we do need some text. Therefore the examples are used to
explain some issues on the float mechanism.
Floats are placed automatically. The order of appearance follows the order you have keyed in
the source. This means that larger floats are placed somewhere else in your document. When
\version[temporary] is set, you can get information on the float mechanism. By consulting
that information you get some insight into the process.

93

name: rb00006

file: rb00006a

state: unknown

Floats can be surrounded by text. The float at the right
was set with \placefigureright[right]{none}{...}.
The float mechanism works automatically. Should it
occur that pages are left blank as a result of poor float
placement, you will need to make some adaptations
manually. You can downsize your figure or table or
alter your text. It is also a good practice to define your
float some paragraphs up in your source. However, all
of this should be done at the final production stage.
With the key force you can force a float to be placed at
that exact location. Tables or figures that are preceded
by text like: ‘as we can see in the figure below’ may be defined with this option.

Floatblocks

< – placed
< – placed

Version: August 23, 2009 product: contextref component: co-en-13 266

Blocks 262

Floats 15

94

name: rb00008

file: rb00008a

state: unknown

In manuals and study books we encounter many illus-
trations. It is almost unavoidable to manually adapt
these for optimal display. However, the float com-
mands in ConTEXt are optimized in such a way that
you can produce books with hundreds of floats effort-
lessly. The worst case is that some floats are stored
and placed at the end of the chapter. But this can
be influenced with the command \startpostponing.
Postponing is done with the keys always which can
be combined with the location, like [left,always]
or [here,always]. Because the order of the floats is
changed several parses are necessary for the document.

These processes can be traced via messages on the terminal.

This brings us to a figure that is placed at the left side of a page. The side float mechanism in
inspired and based on a mechanism of D. Comenetz. In the background three mechanisms
are active. A mechanism to typeset a figure on top, inbetween, of under existing text. There
is a mechanism to place figures on the right or left of a page. And there is a third mechanism
to typeset text next to a figure.

We see an example of the last mechanism. The text is
enclosed by the commands:

\startfiguretext
[right]{none}{\externalfigure[rb00015]}

....
\stopfiguretext

95

name: rb00015

file: rb00015a

state: unknown

96

name: vos1082

file: vos1082a

state: unknown

It is obvious that we can also place the figure at the
left. With \start...text we can add the key offset.
Here we used [left,offset].
When the text is longer than expected, then it will not
flow around the float. By default the floats are handled
in the same order they are typed in the source file. This
means that the stored figures are placed first. If this is
not desired you can type the key always. The actual
float will get priority.

Floatblocks

< – placed
< – placed
< – placed
< – placed

Version: August 23, 2009 product: contextref component: co-en-13 267

263 Blocks

15 Combining figures

There are more options. In this case the setup
[right,middle] is given. In the same way we place
text high and low.
When the key long is used the rest of the text is filled
out with empty lines, as here.

97

name: vos1083

file: vos1083a

state: unknown

When several figures are set under each other, making them the same width makes for a
nice presentation on the page. This looks better.

15.3 Combining figures
For reasons of convenience we now discuss a command that enables us to combine floats
into one.

\startcombination [...]* ... \stopcombination

* N*M

This command is used to place the figures under or next to each other.

98

name: lb00220

file: lb00220a

state: unknown

name: lb00221

file: lb00221a

state: unknown

name: lb00222

file: lb00222a

state: unknown

a b c

name: lb00223

file: lb00223a

state: unknown

name: lb00225

file: lb00225a

state: unknown

name: lb00226

file: lb00226a

state: unknown

d e f

Figure 15.3 An example of \startcombination....

The example in figure 15.3 is typeset with the commands:

\placefigure
[here]
[fig:combinations]
{An example of \type{\startcombination...}.}
{\startcombination[3*2]

{\externalfigure[lb00220]} {a} {\externalfigure[lb00221]} {b}
{\externalfigure[lb00222]} {c} {\externalfigure[lb00223]} {d}
{\externalfigure[lb00225]} {e} {\externalfigure[lb00226]} {f}

\stopcombination}

Floatblocks

< – placed

References

> fig:combinations
< fig:combinations

Registers

> i figures+combining
> i combining
> t startcombination
> t setupcombinations
> t placesidebyside
> t placeontopofeacho..

Version: August 23, 2009 product: contextref component: co-en-13 268

Blocks 264

Combining figures 15

Between [] we specify how the combination is combined: [3*2], [4*2] etc. When we put
two floats next to each other it is sufficient to specify [2], [4] etc.

The floats, mostly figures or tables, are specified within two arguments. The first content is
placed over the second content: {xxx}{yyy}. The second argument can be empty: {xxx}{}.
The general construct looks like this:

\startcombination[n*m]
{text 1} {subcaption 1}
{text 2} {subcaption 2}
........

\stopcombination

The combination can be set up with:

\setupcombinations [..,.=.,..]
*

* before = COMMAND
inbetween = COMMAND
after = COMMAND
distance = DIMENSION
height = DIMENSION fit
width = DIMENSION fit
location = top middle bottom left right
align = inner outer left right flushleft flushright middle center normal

no yes
style = normal bold slanted boldslanted type cap small... COMMAND
color = IDENTIFIER

With distance you specify the horizontal distance between objects. The parameters align
relates to the subcaption. By default the text and objects are centered. The width is the total
width of the combination.

The three parameters before, after and between are processed in the order of specification
in figure 15.5. There are some examples in figure 15.4. We can see in figure 15.6 that when
the title in the second argument is empty the spacing adapted.

99

test test test test

a b c d

test test test test

a b c d

test test test test

a b c d

arg arg arg

Figure 15.4 The spacing within combinations (1).

Using combinations require figures that have the correct dimensions or equal proportions.
Unequally proportioned figures are hard to combine.

The simple version of combining is this:

Floatblocks

< – placed
> – saved
> – saved

References

< fig:order of combin..
< fig:spacing in comb..
< fig:no subcaptions
> fig:spacing in comb..
> fig:order of combin..
> fig:no subcaptions

Version: August 23, 2009 product: contextref component: co-en-13 269

265 Blocks

15 Text blocks

100

figure

<inbetween>

subtitle

<after>

<before>

Figure 15.5 The spacing within combinations (2).

101

name: vew1095

file: vew1095a

state: unknown

name: vew1096

file: vew1096a

state: unknown

name: vew1097

file: vew1097a

state: unknown

Figure 15.6 Combinations without captions.

\placesidebyside {...}1 {...}2

1 TEXT

2 TEXT

\placeontopofeachother {...}1 {...}2

1 TEXT

2 TEXT

We use them in this way:

\placesidebyside {\framed{\Logo[ADE]}} {\framed{\Logo[BUR]}}
\placeontopofeachother {\framed{\Logo[ADE]}} {\framed{\Logo[BUR]}}

15.4 Text blocks
For practical reasons we sometimes want to key text somewhere in the source that should
be typeset at a completely different location in the typeset document. It is also useful to be
able to use text more than once. The commands described below are among the eldest of
ConTEXt. They were one of the reasons to start writing the macropackage.

Blocks 266

Text blocks 15

You can mark text (a text block) and hide or move that block, but first you have to define it
using:

\defineblock [...]*

* IDENTIFIER

If necessary you can pass several names in a comma--delimited list. After the definition you
can mark text with:
\beginname
....................
....................
\endname

Between the begin-- and end command you can use any command you want.
The commands below tell ConTEXt to hide or recall text blocks:

\hideblocks [...,...]1 [...,...]
OPTIONAL

2

1 IDENTIFIER

2 IDENTIFIER

\useblocks [...,...]1 [...,...]
OPTIONAL

2

1 IDENTIFIER

2 IDENTIFIER

\keepblocks [...,...]1 [...,...]
OPTIONAL

2

1 IDENTIFIER

2 all IDENTIFIER

\selectblocks [...,...]1 [...,...]
OPTIONAL

2 [.=.]
OPTIONAL

3

1 IDENTIFIER

2 IDENTIFIER

3 criterium = all SECTION

\processblocks [...,...]1 [...,...]
OPTIONAL

2

1 IDENTIFIER

2 IDENTIFIER

267 Blocks

15 Text blocks

These commands make it necessary to process your text at least twice. You can also recall
more than one text block, for example [question,answer].

In hidden and re--used blocks commands for numbering can be used. Assume that you use
questions and answers in your document. By defining the questions as text blocks you can:

1. at that location typeset the questions
2. only use the questions and use the answers in a separate chapter
3. use questions and answers in a separate chapter
4. hide the answers
5. etc.

When we choose option 2 the definitions look like this:

\defineenumeration[question][location=top,text=Question]
\defineenumeration[answer][location=top,text=Answer]

\defineblock[question,answer]

\hideblocks[answer]

A question and answer in the source look like this:

\beginquestion
\question Why do we use blocks? \par
\endquestion

\beginanswer
\answer I really don’t know. \par
\endanswer

The questions are only used in the text. Questions and answers are both numbered. Answers
are summoned by:

\chapter{Answers}

\reset[answer]
\useblocks[answer]

The command \reset... is necessary for resetting the numbering mechanism. When the
answers are used in the same chapter you can use the following commands:

\section{Answers}

\reset[answer]
\selectblocks[answer][criterium=chapter]

You must be aware of the fact that it may be necessary to (temporarily) disable the reference
mechanism also:

\setupreferencing[state=stop]

A more complex situation is this one. Assume that you have several mathematical formulas
in your document, and that you want to recapitulate the more complex ones in a separate
chapter at the end of the document. You have to specify an [-] at formulas you do not want
repeated.

\defineblock[formula]

Blocks 268

Text blocks 15

\beginformula
\placeformula[newton 1]$$f=ma$$
\endformula

This can also be written as:

\beginformula[-]
\placeformula[newton 2]$$m=f/a$$
\endformula

When you re--use the formulas only the first one is typeset. The rest of the formulas is
processed, so the numbering will not falter.

The opposite is also possible. By default all local specifications are undone automatically. This
means for example that the enumeration of text elements like questions, answers, definitions,
etc. can be temporarily stopped. When numbering should continue you specify: [+].25

Among the parameters of the number mechanism we (in some cases) use the parameter
blockwise. This parameter relates to numbering within a set of blocks, for example per
chapter.

You may have a document in which the questions and answers are collected in text blocks.
The questions are typeset in the document and the answers in a separate appendix. Answers
and question are put at the same location in the source file. When we number the questions
and answers per chapter, then question 4.12 is the 12th question in chapter 4. The correct
number is used in the appendix. In this example answer 4.12 refers to question 4.12 and not
the appendix number.

In case we do want the appendix number to be the prefix of the blocknumber we set the
parameter blockwise at no. This is a rather complex situation and will seldom occur.

Earlier we discussed the initializing and resetting of counters. For reasons of uniformity we
also have:

\reset [...,...]*

* IDENTIFIER

In future there will be an option to sort blocks. For that purpose a second set of optional
[] in and \selectblocks is available. The first argument is used for ‘tags’. These tags are
logical labels that enable us to recall the blocks.

\beginremark[important]
This is an important message!
\endremark

Now we can recall the ‘important’ messages by:

\useblocks[remark][important]

or:

\selectblocks[remark][important][criterium=chapter]

When you use enumerations within text blocks you can best use the \start...stop alternative (see page ??).25

269 Blocks

15 Text blocks

Here, criterium has the same function as in lists (like tables of content) and registers: it
limits the search. In this case, only the blocks belonging to this chapter will be typeset.
More than one ‘tag’ is allowed in a comma delimited list. Text blocks may be nested:
\beginpractice
\beginquestion
\question Is that clear? \par
\endquestion
\beginanswer
\answer Yes it is! \par
\endanswer
\endpractice

In this case we use three blocks. Such blocks are stored in a file. This file must be available
when the blocks are re--used. This means that the document must be processed at least
twice. When blocks are summoned at the end of your source file only one processing step
is sufficient but then you have to type the command nomoreblocks before the blocks are
recalled:

\nomoreblocks

After this command no blocks should be specified. In the future commands will be developed
for local adaptations of the layout of text blocks. Until that moment the following command
is all there is:

\setupblock [...,...]1 [..,.=.,..]
2

1 IDENTIFIER

2 before = COMMAND
after = COMMAND
inner = COMMAND
style = normal bold slanted boldslanted type cap small... COMMAND
file = FILE

A block is being processed within a group, in other words: within arg . The setup of before
and after are used outside this group, and the setup of inner is used within the group. For
example if we mark a re--used text block in the margin we can use the following setup:
\defineblock[exampletext]

\beginexampletext
If you wonder why this mechanism was implemented consider an educational
document with hundreds of \quote {nice to know} and \quote {need to know}
text blocks at several ability levels.
\endexampletext

\setupblock[exampletext][inner=\margintitle{reused}]
\useblocks[exampletext]

The first text is set without an indicator in the margin and the second is. If we would have
used before instead of inner some grouping problems had occurred.

Blocks 270

Text blocks 15

If you wonder why this mechanism was implemented consider an educational document
with hundreds of ‘nice to know’ and ‘need to know’ text blocks at several ability levels.

If you wonder why this mechanism was implemented consider an educational document reused
with hundreds of ‘nice to know’ and ‘need to know’ text blocks at several ability levels.

You can import text blocks from other source files. For example if you want to use text blocks
from a manual for students in a manual for teachers, you can specify:

\setupblock
[homework]
[file=student,
before=\startbackground,
after=\stopbackground]

In that case the blocks are imported from the file student.tex. In this example these blocks
are typeset differently, with a background. When the student material is specified with:

\beginhomework[meeting 1]
..........
\endhomework

we can summon the blocks in the teacher’s manual with:

\useblocks[homework][meeting 1]

In extensive documents it will take some time to generate these products. But this mechanism
garantees we use the same homework descriptions in the students and teachers manual.
Furthermore it saves typing and prevents errors.

Questions and answers are good examples of text blocks that can be hidden and moved. The
example below will illustrate this. Because commands like \question have a paragraph as
an argument the \par’s and/or empty lines are essential.

In the setup we see that questions and answers are coupled. A coupling has a meaning in
interactive documents.

\defineblock[question]
\defineblock[answer]

\defineenumeration[question][location=inmargin,coupling=answer]
\defineenumeration[answer][location=top,coupling=question]

\hideblocks[answer]

\starttext

\chapter{\CONTEXT}

\CONTEXT\ is a macropackage that is based on \TEX. \TEX\ is a typesetting
system and a programm. This unique combination is used extensively in
\CONTEXT.

\beginquestion
\startquestion
To date, the fact that \TEX\ is a programming language enables \CONTEXT\
to do text manipulations that cannot be done with any other known package.

271 Blocks

15 Opposite blocks

Can you mention one or two features of \CONTEXT\ that are based on the
fact that \TEX\ is programming language?
\stopquestion

\endquestion

\beginanswer
\answer You can think of features like floating blocks and text block
manipulation. \par

\endanswer

\beginquestion
\question Are there any limitations in \TEX ? \par

\endquestion

\beginanswer
\answer Yes and no. The implementation of \TEXEXEC\ is done in
\PERL\ rather than in \TEX.

\endanswer

\TEX\ is a very powerful tool, but much of its power is yet to be
unleashed. \CONTEXT\ tries to make a contribution with its user||friendly
interface and its support of many features, like interactivety.

\chapter{Answers}

\useblocks[question,answer]

\stoptext

With \processblocks blocks are processed but not typeset. Assume that we have two types
of questions:

\defineblock[easyquestion,hardquestion]

When both types of questions use the same numbering mechanism, we can recall the hard
questions in their original order by hiding the easy questions.

\processblocks[easyquestion]
\useblocks[hardquestion]

15.5 Opposite blocks
In future versions of ConTEXt there will be support of spread based typesetting. For the
moment the only command available is:

\startopposite

Everything between start and stop is typeset at the left page in such a way that it is aligned
with the last paragraph that is typeset on the right page.

Blocks 272

Margin blocks 15

\setupoppositeplacing [.=.]
*

* state = start stop
before = COMMAND
inbetween = COMMAND
after = COMMAND

15.6 Margin blocks
Within limits you can place text and figures in the margin. In this case the margin is handled
as a separate (very narrow) page next to the actual page.

\startmarginblock

This can be setup with:

\setupmarginblocks [..,.=.,..]
*

* location = inmargin left middle right
style = normal bold slanted boldslanted type cap small... COMMAND
width = DIMENSION
align = inner outer left right flushleft flushright middle center normal

no yes
top = COMMAND
inbetween = COMMAND
bottom = COMMAND
left = COMMAND
right = COMMAND
before = COMMAND
after = COMMAND

The mechanism to place blocks is still under construction.

15.7 Hiding text
It is possible to hide text (skip during processing) by:

\starthiding

15.8 Postponing text
Text elements can be postponed (stored) and placed at the next empty page. This option
is needed in case ConTEXt encounters large figures or tables. The postponed textelement is
placed at the next page generated by TEX or forced by the user with a manual page break.

\startpostponing

273 Blocks

15 Buffers

Several text blocks can be postponed and stored. This proces can be followed on screen
during document generation.

\startpostponing
\placefigure{A rather large figure.}{...}
\stoppostponing

When a lot of text elements are postponed or when a figure uses a complete page we advise
you to add \page after the postponing. Otherwise there is the possibility that a blank page is
inserted. This is caused by the fact that the postponing mechanism and the float mechanism
are completely independent.

\startpostponing
\placefigure{A very large figure.}{...}
\page
\stoppostponing

15.9 Buffers
Buffers simplify the moving of text blocks. They are stored in a file with the extension tmp
and are used to bring readability to your source. Furthermore they can be recalled at any
location without retyping them.

\startbuffer [...]
OPTIONAL

* ... \stopbuffer

* IDENTIFIER

\getbuffer [...]
OPTIONAL

*

* IDENTIFIER

\typebuffer [...]*

* IDENTIFIER

The example below shows the use of these commands.

\startbuffer
We see that a {\em buffer} works something like a {\em block}.\par
\stopbuffer

\startlines
{\tf \getbuffer}
{\bf \getbuffer}
{\sl \getbuffer}
\stoplines

This results in:

Blocks 274

Buffers 15

We see that a buffer works something like a block.
We see that a buffer works something like a block.
We see that a buffer works something like a block.

The name is optional. A name makes sense only when several buffers are used. Most of the
time the default buffer will do. Most examples in this manual are typed in buffers.

In chapter 17 we can see that the last argument of a \placeblock can be rather extensive. A
buffer can be useful when such large tables are defined.

\startbuffer
... many lines ...
\stopbuffer

\placetable{A table.}{\getbuffer}

The buffer is set up with:

\setupbuffer [...]
OPTIONAL

1 [..,.=.,..]
2

1 IDENTIFIER

2 paragraph = NUMBER
before = COMMAND
after = COMMAND

The first argument is optional and relates to the buffers you defined yourself. You can define
your own buffer with:

\definebuffer [...]*

* IDENTIFIER

Be aware of possible conflicting names and use capital letters. After this command
/getbuffer and /typebuffer are available where buffer is the name of the buffer.

16 Introduction

16 Figures

16.1 Introduction
In this chapter we discuss how to place figures in your document. In section 15.2 we intro-
duced the float mechanism. In this chapter the placement of figures is discussed. Most of
the time these figures are created with external applications.
After processing a document the result is a dvi file or, when we use pdfTEX, a pdf file. The
dvi document reserves space for the figure, but the figure itself will be put in the document
during postprocessing of the dvi file. pdfTEX needs no postprocessing and the external
figures are automatically included in the pdf file.
External figures may have different formats like the vector formats eps and pdf, or the bitmap
formats tif, png and jpg. Note that we refer to figures but we could also refer to movies.
ConTEXt has special mechsnisms to handle figures generated by MetaPost. We have to take
care that fonts used in MetaPost figures are recognized by pdfTEX. Finally, we’ll see that
MetaPost code can be embedded in ConTEXt documents.
Normally, users need not concern themselves with the internal mechanisms used by ConTEXt
for figure processing. However some insight may be useful.

16.2 Defining figures
A figure is designed within specific dimensions. These dimensions may of may not be known
by the document designer.

name:

dummy

file:

cow

state:

unknown

name:

dummy

file:

cow

state:

un-

known

name: dummy

file: cow

state: unknown

name: dummy

file: cow

state: unknown

nat-
ural
di-

men-
sion

scaled
to
25%

a height
of 2 cm

a height of
2 cm and a
width 3 cm

If the original dimensions are unknown, then scaling the figure to 40% can have some as-
tonishing results. A figure with width and height of 1 cm becomes almost invisible, but a
figure width width and height of 50 cm will still be very large when scaled to 40% of its
original size. A better strategy is to perform the scaling based on the current bodyfont size,
the width of text on the page, or to set absolute dimensions, such as 3 cm by 2 cm.
To give TEX the opportunity to scale the figure adequately the file format must be known.
Table 16.1 shows the file formats supported by dvips, dvipsone, and pdfTEX respectively.
pdfTEX has the unique capability to determine the file format during processing.
When we use dvi, TEX can determine the dimensions of an eps illustration by searching for
the so called bounding box. However, with other formats such as tif, the user is responsible
for the determination of the figure dimensions.

Figures 276

Defining figures 16

eps pdf MetaPost tif png jpg mov

dvips + – + - - - +
dvipsone + – + + - - +
pdfTEX - + + + + + +

Table 16.1 Some examples of supported file formats.

Now, let us assume that the dimensions of a figure are found. When we want to place the
same figure many times, it would be obvious to search for these dimensions only once. That
is exactly what happens. When a figure is found it is stored as an object. Such an object is
re--used in TEX and in pdf but not in dvi, since reuse of information is not supported by the
dvi format. To compensate for this shortcoming, when producing dvi output, ConTEXt will
internally reuse figures, and put duplicates in the dvi file.

\useexternalfigure[some logo][logo][width=3cm]

\placeexternalfigure{first logo}{\externalfigure[some logo]}

\placeexternalfigure{second logo}{\externalfigure[some logo]}

So, when the second logo is placed, the information collected while placing the first one is
used. In pdfTEX even the content is reused, if requested, at a different scale.

A number of characteristics of external figures are specified by:

\setupexternalfigures [.=.]
*

* scale = NUMBER
yscale = NUMBER
yscale = NUMBER
factor = max fit broad
wfactor = NUMBER max broad fit
hfactor = NUMBER max broad fit
width = DIMENSION
height = DIMENSION
frame = on off
preset = yes no
display = FILE
preview = yes no
repeat = yes no
object = yes no
type = eps mps pdf tif png jpg mov cd:tex
method = eps mps pdf tif png jpg mov cd:tex
option = frame empty test
frames = on off
ymax = NUMBER
xmax = NUMBER
directory = TEXT
location = local global default none
maxwidth = DIMENSION
maxheight = DIMENSION
conversion = TEXT
prefix = TEXT

277 Figures

16 Defining figures

This command affect all figures that follow. Three options are available: frame, empty and
test. With empty no figures are placed, but the necessary space is reserved. This can save
you some time when ‘testing’ a document.26 Furthermore the figure characteristics are printed
in that space. When frame is set at on a frame is generated around the figure. The option
test relates to testing hyperactive areas in figures.

When ConTEXt is not able to determine the dimensions of an external figure directly, it will
fall back on a simple database that can be generated by the Perl script TEXutil. You can
generate such a database by calling this script as follows:

texutil –figures *.tif

This will generate the texutil.tuf file, which contains the dimensions of the tif figures
found. You need to repeat this procedure every time you change a graphic. Therefore, it can
be more convenient to let ConTEXt communicate with TEXutil directly. You can enable that
by adding \runutilityfiletrue to your local cont-sys.tex file.

When a figure itself is not available but it is listed in the texutil.tuf file then ConTEXt
presumes that the figure does exist. This means that the graphics do not need to be physically
present on the system.

Although ConTEXt very hard tries to locate a figure, it may fail due to missing or invalid
figure, or invalid path specifications (more on that later). The actual search depends on the
setup of directories and the formats supported. In most cases, it it best not to specify a suffix
or type.

\externalfigure[hownice]
\externalfigure[hownice.pdf]
\externalfigure[hownice][type=pdf]

In the first case, ConTEXt will use the graphic that has the highest quality, while in both other
cases, a pdf graphic will be used. In most cases, the next four calls are equivalent, given that
hownice is available in MetaPost output format with a suffix eps or mps:

\externalfigure[hownice]
\externalfigure[hownice][type=eps]
\externalfigure[hownice][type=eps,method=mps]
\externalfigure[hownice][type=mps]

In most cases, a MetaPost graphic will have a number as suffix, so the next call makes the
most sense:

\externalfigure[hownice.1]

Let us summarize the process. Depending on the formats supported by the currently se-
lected driver (dvi, pdfTEX, etc.), ConTEXt tries to locate the graphics file, starting with the
best quality. When found, ConTEXt first tries to determine the dimensions itself. If this is
impossible, ConTEXt will look into texutil.tuf. The graphic as well as the file texutil.tuf
are searched on the current directory (local) and/or dedicated graphics directories (global),
as defined by \setupexternalfugures. By default the location is set at {local,global},
so both the local and global directories are searched. You can set up several directories for
your search by providing a comma--delimited list:

A similar effect can be obtained with the –fast switch in TEXexec.26

Figures 278

Defining figures 16

\setupexternalfigures[directory={c:/fig/eps,c:/fig/pdf}]

Even if your operating uses a \ as separator, you should use a /. The figure directory may
be system dependent and is either set in the file cont-sys, in the document preamble, or in
a style.

An external figure is summoned by the command \externalfigure. The cow is recalled
with:

\externalfigure[cow][width=2cm]

For reasons of maintenance it is better to specify all figures at the top of your source file or
in a separate file. The figure definition is done with:

\useexternalfigure [...]
OPTIONAL

1 [...]2 [...]
OPTIONAL

3 [..,.=.,..]
OPTIONAL

4

1 IDENTIFIER

2 FILE

3 IDENTIFIER

4 inherits from \setupexternalfigures

Valid definitions are:

\useexternalfigure [cow]
\useexternalfigure [some cow] [cow230]
\useexternalfigure [big cow] [cow230] [width=4cm]

In the first definition, the figure can be recalled as cow and the graphics file is also cow. In the
second and third definition, the symbolic name is some cow, while the filename is cow230.
The last example also specifies the dimensions.

The scale is given in percentages. A scale of 800 (80%) reduces the figure, while a value
of 1200 (120%) enlarges the figure. Instead of using percentages you can also scale with a
factor that is related to the actual bodyfont. A setup of hfactor=20 supplies a figure with
2 times the height of the bodyfont size, and hfactor=120 will result in a width of 12 times
the bodyfont size (so 144pt when using a 12pt bodyfont size). When we want to place two
figures next to one another we can set the height of both figures with hfactor at the same
value:

\useexternalfigure[alfa][file0001][hfactor=50]
\useexternalfigure[beta][file0002][hfactor=50]

\placefigure
{Two figures close to one another.}
\startcombination[2]
{\externalfigure[alfa]} {this is alfa}
{\externalfigure[beta]} {this is beta}

\stopcombination

We can see that \externalfigure is capable of using a predefined figure. The typographical
consistency of a figure may be enhanced by consistently scaling the figures. Also, figures can
inherit characteristics of previously defined figures:

279 Figures

16 Recalling figures

\useexternalfigure [alfa] [file0001] [hfactor=50]
\useexternalfigure [beta] [file0002] [alfa]
\useexternalfigure [gamma] [file0003] [alfa]
\useexternalfigure [delta] [file0004] [alfa]

Normalizing a figure’s width must also be advised when figures are placed with \start-
figuretext below one another.
In most cases you will encounter isolated figures of which you want to specify width or
height. In that case there is no relation with the bodyfont except when the units em or ex are
used.
In figure 16.1 we drew a pattern with squares of a factor 10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1
2
3
4
5
6
7
8
9
10
11

Figure 16.1 Factors at the actual bodyfont.

16.3 Recalling figures
A figure is recalled with the command:

\externalfigure [...]1 [..,.=.,..]
OPTIONAL

2

1 FILE

2 inherits from \setupexternalfigures

For reasons of downward compatibility a figure can also be recalled with a command that
equals the figure name. In the example below we also could have used \acow and \bcow,
unless they are already defined. Using \externalfigure instead is more safe, since it has
its own namespace.
\useexternalfigure[acow][cow][factor=10]
\useexternalfigure[bcow][cow][factor=20]

\placefigure[left]{none}{\externalfigure[bcow]}

The \hbox {\externalfigure[acow]} is a very well known animal in the Dutch
landscape. But for environmental reasons the \hbox {\externalfigure[acow]}
is slowly disappearing. In the near future the cow will fulfil a marginal
\inleft {\externalfigure[bcow]} role in the Netherlands. That is the
reason why we would like to write the word \hbox {\externalfigure[bcow]}
in big print.

Figures 280

Automatic scaling 16

Here we see how acow and bcow are reused. This code will result in:name:

bcow

file:

cow

state:

unknown

The

name:

acow

file:

cow

state:

un-

known

is a very well known animal in the Dutch landscape. But for environmental
reasons the

name:

acow

file:

cow

state:

un-

known

is slowly disappearing. In the near future the cow will fulfil a
marginal role in the Netherlands. That is the reason why we would like to write the

name:

bcow

file:

cow

state:

unknown

word

name:

bcow

file:

cow

state:

unknown

in big print.

Normalized figures adapt to the actual bodyfont at least when the font is set with \setup-
bodyfont or \switchtobodyfont. When a text is used for different media and is generated
with different fontsizes the use of normalized figures is a good practice. The example above
looks different in a smaller fontsize.name:

bcow

file:

cow

state:

unknown

The

name:

acow

file:

cow

state:

un-

known

is a very well known animal in the Dutch landscape. But for environmental reasons the

name:

acow

file:

cow

state:

un-

known

is
slowly disappearing. In the near future the cow will fulfil a marginal role in the Netherlands. That is

name:

bcow

file:

cow

state:

unknown

the reason why we would like to write the word

name:

bcow

file:

cow

state:

unknown

in big print.

16.4 Automatic scaling
In cases where you want the figure displayed as big as possible you can set the parameter
factor at max, fit or broad. In most situations the value broad will suffice, because then
the caption still fits on a page.

setup result

max maximum width or height
fit remaining width or height
broad more remaining width or height
number scaling factor (times 10)

Table 16.2 Normalized figures.

So, one can use max to scale a figure to the full page, or fit to let it take up all the remaining
space. With broad some space is reserved for a caption.

Sometimes it is not clear whether the height or the width of a figure determines the opti-
mal display. In that case you can set factor at max, so that the maximal dimensions are
determined automatically.

\externalfigure[cow][factor=max]

This figure of a cow will scale to the width or height of the text, whichever fits best. Even
combinations of settings are possible:

\externalfigure[cow][factor=max,height=.4\textheight]

In this case, the cow will scale to either the width o fthe text or 40% of the height of the text,
depending on what fits best.

As already said, the figures and their characteristics are stored in the file texutil.tuf and
can be displayed with:

281 Figures

16 TEX--figures

\showexternalfigures [..,.=.,..]
OPTIONAL

*

* alternative = a b c

There are two alternatives: a, b and c. The first alternative leaves room for figure corrections
and annotations, the second alternative is somewhat more efficient and places more figures
on one page. The third alternative puts each figure on its own page. Of course one needs to
provide the file texutil.tuf by saying:
texutil –figures *.mps *.jpg *.png

Even more straightforward is running TEXexec, for instance:
texexec –figures=c –pdf *.mps *.jpg *.png

This will give you a pdf file of the figures requested, with one figure per page.

16.5 TEX--figures
Figures can be scaled. This mechanism can also be used for other text elements. These
elements are then stored in separate files or in a buffer. The next example shows how a table
is scaled to the pagewidth. The result is typeset in figure 16.2.
\startbuffer[table]
\starttable[||||||]
\HL
\VL \bf factor \VL \bf width \VL

\bf height \VL \bf width and height \VL
\bf nothing \VL \SR

\HL
\VL \type{max} \VL automatically \VL

automatically \VL automatically \VL
width or height \VL \FR

\VL \type{fit} \VL automatically \VL
automatically \VL automatically \VL
width or height \VL \MR

\VL \type{broad} \VL automatically \VL
automatically \VL automatically \VL
width or height \VL \MR

\VL \type{...} \VL width \VL
height \VL isometric \VL
original dimensions \VL \LR

\HL
\stoptable

\stopbuffer

\placefigure
[here][fig:table]
{An example of a \TEX\ figure.}
{\externalfigure[table.tmp][width=\textwidth]}

Figures 282

Extensions of figures 16

\placefigure
{An example of a \TEX\ figure.}
{\externalfigure[table.tmp][width=.5\textwidth]}

factor width height width and height nothing

max automatically automatically automatically width or height
fit automatically automatically automatically width or height
broad automatically automatically automatically width or height
... width height isometric original dimensions

Figure 16.2 An example of a TEX figure.

factor width height width and height nothing

max automatically automatically automatically width or height
fit automatically automatically automatically width or height
broad automatically automatically automatically width or height
... width height isometric original dimensions

Figure 16.3 An example of a TEX figure.

Buffers are written to a file with the extension tmp, so we recall the table with table.tmp.
Other types of figures are searched on the directories automatically. With TEX figures this is
not the case. This might lead to conflicting situations when an eps figure is meant and not
found, but a TEX file of that name is.

16.6 Extensions of figures
In the introduction we mentioned different figure formats like eps and png. In most situations
the format does not have to be specified. On the contrary, format specification would mean
that we would have to re--specify when we switch from dvi to pdf output. The figure format
that ConTEXt will use depends on the special driver. First preference is an outline, second a
bitmap.

MetaPost figures, that can have a number as suffix, are recognized automatically. ConTEXt
will take care of the font management when it encounters MetaPost figures. When color is
disabled, or rgb is to be converted to cmyk, ConTEXt will determine what color specifications
have to be converted in the MetaPost file. If needed, colors are converted to weighted grey
scales, that print acceptable on black and white printers. In the next step the fonts are
smuggled into the file.27 In case of pdf output the MetaPost code is converted into pdf by
TEX.

If necessary the code needed to insert the graphic is stored as a so called object for future
re--use. This saves processing time, as well as bytes when producing pdf. You can prevent
this by setting object=no.

When eps and mps (MetaPost) figures are processed ConTEXt searches for the high resolution
bounding box. By default the PostScript bounding box may have a deviation of half a point,

Fonts are a problem in MetaPost files, since it it up to the postprocessor to take care of them. In this respect,27

MetaPost output is not self contained.

283 Figures

16 Movies

which is within the accuracy of our eyes. Especially when aligning graphics, such deviations
will not go unnoticed.
ConTEXt determines the file format automatically, as is the case when you use:
\externalfigure[cow]

Sometimes however, as we already explained, the user may want to force the format for some
reason. This can be done by:
\externalfigure[cow.eps]
\externalfigure[cow][type=eps]

In special cases you can specify in which way figure processing takes place. In the next
example ConTEXt determines dimensions asif the file were in eps format, that is, it has a
bounding box, but processes the files as if it were a MetaPost file. This kind of detailed
specification is seldom needed.
\externalfigure[graphic.xyz][type=eps,method=mps]

The automatic searching for dimensions can be blocked by preset=no.

16.7 Movies
In ConTEXt moving images or ‘movies’ are handled just like figures. The file format type is
not determined automatically yet. This means the user has to specify the file format.
\externalfigure[demo.mov][label=demo,width=4cm,height=4cm,preview=yes]

With this setup a preview is shown (the first image of the movie). If necessary an ordinary
(static) figure can be layed over the first movie image with the overlay mechanism.
Movies can be controlled either by clicking on them, or by providing navigational tools, like:
... \goto {start me} [StartMovie{demo}] ...

A more detailed discussion on controlling widgets is beyond this chapter. Keep in mind that
you need to distribute the movies along with your document, since they are not included.
This makes sense, since movies can be pretty large.

16.8 Some remarks on figures
Figures, and photos in particular, have to be produced with consistent proportions. The
proportions specified in figure 16.4 can be used as a guideline. Scaling of photos may cause
quality loss.

4 : 5 3 : 4 2 : 3

5 : 4 4 : 3 3 : 2

Figure 16.4 Some preferred image proportions.

Figures 284

Some remarks on figures 16

In the background of a figure you typeset a background (see figure ??). In this example the
external figures get a background (for a black and white reader: a green screen).

name: dummy

file: cow

state: unknown

name: dummy

file: cow

state: unknown

name: dummy

file: cow

state: unknown

raster=0.70 raster=0.75 raster=0.80

name: dummy

file: cow

state: unknown

name: dummy

file: cow

state: unknown

name: dummy

file: cow

state: unknown

raster=0.85 raster=0.90 raster=0.95

Figure 16.5 Some examples of backgrounds in figures.

\setupfloats
[background=color,
backgroundcolor=green,
backgroundoffset=3pt]

\useexternalfigure [cow]
[hfactor=80,
background=screen,
backgroundscreen=0.75]

Note that we use only one float and that there are six external figures. The background of
the float is used for the complete combination and the background of the external figure
only for the figure itself.

17 Introduction

17 Tables

17.1 Introduction
In ConTEXt there are two methods of making tables. The method chosen depends on the
fact if the table is a component of the running text or the complexity of the table.

Originally ConTEXt had only one table alternative based on the flexible, robust and complete
macropackage TABLE. We added some functionality to that macropackages on behalf of spac-
ing, color and table splitting. This alternative is very powerful with table cells with little
text.

As soon as you want to typeset complete paragraphs in a table cell the alternative is in-
adequate because the width of the cells have to be set manually. Therefore we added the
tabulation alternative. Tabulation is not that advanced yet but it is able to automatically
divide the available width of the cells. Cells can be filled with complete paragraphs and the
tabulation environment has no problems with pagebreaks.

Both the table and the tabulation environment are discussed in this chapter. Because the
definition of tables and tabulations differ not much they can be converted easily into each
other. Many examples apply to both environments.

17.2 Tables
In (plain) TEX there are a few options to construct tables, for example:

\settabs 5\columns
\+ The & quick & brown & fox & jumps \cr
\+ over & the & lazy & dog & ! \cr

or:

The quick brown fox jumps
over the lazy dog !

These kind of commands are based on the \halign mechanism. In most macropackages
tables are developed around this mechanism. In ConTEXt we use the functionality of TABLE
by M. Wichura. Although this macropackage is complete we decided to write a shell around
this package. The most important reason was that we wanted to force users to work with a
consistent spacing within tables without loss of the TABLE functionality.28

In due time we will develop a more flexible mechanism that is compatible with TABLE and
in which MetaPost functionality is integrated.

We begin with an example of a very simple table in normal TABLE coding. The table identified
as als table 17.1 was defined as follows:

\BeginTable
\BeginFormat | l | l | \EndFormat
_

TABLE commands are described in a seperate manual.28

Tables 286

Tables 17

year population

1500 0.90 à 1.00 million
1550 1.20 à 1.30 million
1600 1.40 à 1.60 million
1650 1.85 à 1.90 million
1670 0.95 million
1700 1.85 à 1.95 million
1730 2.12 million
1750 1.90 à 1.95 million
1770 2.11 million
1800 2.08 million
1820 2.20 million

Table 17.1 Growth of population.

| \bf year | \bf population | \\+22
_
| 1500 | 0.90 \‘a 1.00 million | \\+20
| 1550 | 1.20 \‘a 1.30 million | \\+00
.
| 1800 | 2.08 million | \\+00
| 1820 | 2.20 million | \\+02
_
\EndTable

We don’t consider this as a transparent way of coding a table. Furthermore consistent spacing
is far off since the user can alter every interline space at will. As most commands in ConTEXt
we enclose a table with \start--\stop--commands. These commands are used in stead of
the TABLE commands \BeginTable, \EndTable, \BeginFormat and \EndFormat.

\starttable [...]* ... \stoptable

* TEXT IDENTIFIER

Between [] the column format is defined. Because [] may be used within the table
definition [] other variations are possible:

\starttable[|l|l|]
\starttable[{|l|l|}]
\starttable{|l|l|}

In section ?? we saw that the command \placetable gets a table as a last argument. When
the command is used the way it is defined above, you will not need the curly braces around
the table.

Spacing deserves somewhat more attention. Below the definition of the table 17.1 is given.29
More advanced examples can be found in the TABLE manual.

287 Tables

17 Tables

\placetable
[here][tab:population]
{Growth of population.}
\starttable[|l|l|]
\HL
\VL \bf year \VL \bf population \VL\SR
\HL
\VL 1500 \VL 0.90 \‘a 1.00 million \VL\FR
\VL 1550 \VL 1.20 \‘a 1.30 million \VL\MR
...
\VL 1800 \VL 2.08 million \VL\MR
\VL 1820 \VL 2.20 million \VL\LR
\HL

\stoptable

In the ConTEXt interface for table definition \HL and \VL stand for Horizontal Line and
Vertical Line. The other commands stand for Separate Row, First Row, Mid Row and Last
Row.

These commands can be compared with the active TABLE characters | and ", the spacing
command \\ and the line command \-.

When keys like s0 are used in the table specification we have to use spaces in the specification.
For example:

\starttable[s0 |l|l|]

In that case we use a space to end the number. We give some more examples below. When a
table is not framed by (\VL), we may have to suppress undesired whitespace. The background
of the tables illustrates the effect of the different location of s0.

first second

alfa beta
one two

\starttable[|l|l|]
\NC first \NC second \NC \SR
\HL
\NC alfa \NC beta \NC \FR
\NC one \NC two \NC \LR
\stoptable

first second

alfa beta
one two

\starttable[s0 | c s1 | c s0 |]
\NC first \NC second \NC \SR
\HL
\NC alfa \NC beta \NC \FR
\NC one \NC two \NC \LR
\stoptable

Source: Delta 2, Nederlands verleden in vogelvlucht, de nieuwe tijd: 1500 tot 1813, S. Groenveld and G.J. Schutte,29

Martinus Nijhoff Uitgevers, Leiden, 1992.

Tables 288

Tables 17

first second

alfa beta
one two

\starttable[o0 | c | c o0 |]
\NC first \NC second \NC \SR
\HL
\NC alfa \NC beta \NC \FR
\NC one \NC two \NC \LR
\stoptable

We may want to typeset tables like these:

first weight (full can) 151,2 g
second weight (empty can) 35,6 g

–
filled weighed t 115,6 g

This table is defined by:

\starttable[s0 | l w(6cm) | r s0 | l |]
\NC first weight (full can) \NC 151,2 g \NC \NC\FR
\NC second weight (empty can) \NC 35,6 g \NC \NC\LR
\NC \NC \- \NC~\Smash{--} \NC\NR
\NC filled weighed t \NC 115,6 g \NC \NC\SR
\stoptable

One or more table characteristics can be set up with:

\setuptables [..,.=.,..]
*

* distance = small medium big
bodyfont = 5pt ... 12pt small big
HL = NUMBER small medium big none
VL = NUMBER small medium big none
depth = NUMBER strut
height = NUMBER strut
rulethickness = DIMENSION
rulecolor = IDENTIFIER
align = inner outer left right flushleft flushright middle center

normal no yes
commands = COMMAND
align = inner outer left right flushleft flushright middle center

normal no yes
background = screen color none
backgroundscreen = NUMBER
backgroundcolor = IDENTIFIER
bodyfont = 5pt ... 12pt small big

The keys HL and VL refer to the line thickness. The tables in this manual are set with VL=none
en HL=medium.

By means of commands specific parameters of TABLE itself can be defined, for example:

\setuptables[commands=\Expand]

This results in a table with a width \hsize.

289 Tables

17 Tables

first second

first second
first second

first second

first second
first second

first second

first second
first second

HL=small HL=medium HL=big

Figure 17.1 The available line thicknesses in tables.

The parameters distance and bodyfont relate to the commands mentioned earlier \SR, \FR,
\MR and \LR.

10pt - big

TEX TEX
TEX TEX
TEX TEX

10pt - medium

TEX TEX
TEX TEX
TEX TEX

10pt - small

TEX TEX
TEX TEX
TEX TEX

10pt - none
TEX TEX
TEX TEX
TEX TEX

9pt - big

TEX TEX
TEX TEX
TEX TEX

9pt - medium

TEX TEX
TEX TEX
TEX TEX

9pt - small

TEX TEX
TEX TEX
TEX TEX

9pt - none
TEX TEX
TEX TEX
TEX TEX

8pt - big

TEX TEX
TEX TEX
TEX TEX

8pt - medium

TEX TEX
TEX TEX
TEX TEX

8pt - small

TEX TEX
TEX TEX
TEX TEX

8pt - none
TEX TEX
TEX TEX
TEX TEX

Next to these commands we have \DL that stands for Division Line, \DC stands for Division
Column and \DR stands for Division Row, while \NC is used to jump to the Next Column.
We also use the command \NR that stands for Next Row.

alfa beta gamma

beta gamma alfa

gamma alfa beta

\starttable[|c|c|c|]
\HL
\VL alfa \NC beta \NC gamma \VL\SR
\DC \DL \DC \DR
\VL beta \VL gamma \VL alfa \VL\SR
\DC \DL \DC \DR
\VL gamma \NC alfa \NC beta \VL\SR
\HL
\stoptable

The command \DC applies default to only one column and is equal to the TABLE command
\=. When we want to draw a multi column line we define that in the way that is shown in
the example below.

Tables 290

Tables 17

low
n/m

n m

alfa 1 a
alfa 2 b
alfa 3 c

\starttable[|c|c|c|]
\HL
\VL \LOW{low} \VL \TWO{n/m} \VL\SR
\DC \DL[2] \DR
\VL \VL n \VL m \VL\SR
\HL
\VL alfa \VL 1 \VL a \VL\FR
\VL alfa \VL 2 \VL b \VL\MR
\VL alfa \VL 3 \VL c \VL\LR
\HL
\stoptable

In stead of \TWOwe also could have used the TABLE--command \use2. Because of our criterium
of consistent spacing we can not replace \LOW by \lower in every situation.

We show here another example of the use of \DL:

Mickey Goofy

Donald ?

Pluto ?

\starttable[|l|c|c|]
\DC \DL[2] \DR
\NC \VL Mickey \VL Goofy \VL\SR \HL
\VL Donald \VL \star \VL \VL\SR \HL
\VL Pluto \VL \VL \star \VL\SR \HL
\stoptable

In table 17.2 the commands are summarized.

command meaning

\FR First Row
\LR Last Row
\MR Mid Row
\SR Separate Row
\NR No Row

\AR Auto Row

command meaning

\NC Next Column
\FC First Column
\MC Mid Column
\LC Last Column

\LOWargtext Low Text

command meaning

\HL Horizontal Line
\VL Vertical Line

\DL Division Line
\DL[n] Division Line n
\DC Division Column
\DR Division Row

Table 17.2 Table--commands.

You could ask yourself whether determining inter line spacing within a table should be done
manually or automatically. We would say automatically. In the first place this reduces the
chance for errors. And in the second place TEX can do the job for us. The commands \SR,
\FR etc. are a consequence of TABLE mechanism that was not strict enough for us. Instead
of providing these spacing commands yourself, you can use \AR and rely on ConTEXt to sort
out the spacing as good as possible.

In table 17.3 we used \AR. The definition of this table looks likes this.

\starttable[|l|c|c|]
\DC \DL[2] \DR

291 Tables

17 Tables

name: dummy

file: registers-buffer

state: unknown

Table 17.3 Registration (valves) at the base--side of the Schnitke organ in
Zwolle.

\NC \VL Mickey \VL Goofy \VL\SR \HL
\VL Donald \VL \star \VL \VL\SR \HL
\VL Pluto \VL \VL \star \VL\SR \HL
\stoptable

This mechanism works with rules too, as is demonstrated in table 17.3.
\starttable[|||||||||B|]
\HL
\NC\bf8\NC\bf7\NC\bf6\NC\bf5\NC\bf4\NC\bf3\NC\bf2\NC\bf1\NC \NC\AR
\HL
\NC \NC 8 \NC \NC 2 \NC 4 \NC 3 \NC 8 \NC \NC A \NC\AR
\NC 8 \NC 1+\NC 2 \NC 4 \NC 4 \NC 6 \NC 8 \NC HZ \NC B \NC\AR
\NC \NC 2 \NC 8 \NC 32 \NC 2 \NC 8 \NC 16 \NC HB \NC C \NC\AR
\NC 8 \NC 16 \NC \NC 2 \NC 4 \NC 8 \NC 16 \NC HR \NC D \NC\AR
\NC \NC 8 \NC \NC \NC 4 \NC 4 \NC 8 \NC PH \NC E \NC\AR
\HL
\stoptable

At the moment the commands \FC, \MC and \LC are equivalent to \NC, but in the future they
may show additional functionality.

Tables 292

Color in tables 17

8 7 6 5 4 3 2 1

8 2 4 3 8 A
8 1+ 2 4 4 6 8 HZ B

2 8 32 2 8 16 HB C
8 16 2 4 8 16 HR D

8 4 4 8 PH E

Table 17.4 The pitch of the registrations (valves) at the base--side of the
Schnitke organ in Zwolle.

17.3 Color in tables
The macros that work in the background are rather complicated but the mechanism for color
in tables is this:

1. draw a thick horizontal line
2. jump back vertically
3. set the textline

The height and depth of the drawn line have to be equal to that of the textline which accurately
defined. We do not have to bother ourselves with the width because TEX does that for us.
The necessary commands fall back on the command \noalign.

The commands to make the cell backgrounds grey or colored look like the commands to
draw Division Lines (see table 17.5).

command meaning

\BL Background Line
\BL[n,type,specification] Background Line n
\BC Background Column
\BR Background Row
\CL[specification] Color Line
\RL[specification] Raster Line

Table 17.5 The table--commands to color cells.

The examples below illustrate the use of these commands. The lines where the backgrounds
are specified precede those with the text. Note that just as with \DL the command automatically
goes to the next column. So do not use more \BC’s than necessary.

With \BR you recall the last specification. This command is followed by commands like \SR
and \FR that give the height of the (yet to follow) textline.

Optional backgrounds are color and screen. When no column is specified the commands
are in effect over only one column. We start with some simple examples.

293 Tables

17 Color in tables

test test

test test
test test
test test

\starttable[|c|c|]
\BC \BL \SR
\HL
\VL test \VL test \VL\SR
\HL
\VL test \VL test \VL\FR
\VL test \VL test \VL\MR
\VL test \VL test \VL\LR
\HL
\stoptable

With \BC we go to column 1. With \BL we go to column 2 where a background is intended.
At last we specify by \SR that the background should be used in a (still to follow) Separate
Row. The space between the table columns is taken into account during the background
generation.

The reverse alternative is defined below. Keep in mind that we use \BL for skipping to the
next column.

test test

test test
test test
test test

\starttable[|c|c|]
\BL \SR
\HL
\VL test \VL test \VL\SR
\HL
\VL test \VL test \VL\FR
\VL test \VL test \VL\MR
\VL test \VL test \VL\LR
\HL
\stoptable

Two or more adjourning cells get a background when the number of columns is specified:

test test

test test
test test
test test

\starttable[|c|c|]
\BL[2] \SR
\HL
\VL test \VL test \VL\SR
\HL
\VL test \VL test \VL\FR
\VL test \VL test \VL\MR
\VL test \VL test \VL\LR
\HL
\stoptable

And here is another example.

Tables 294

Color in tables 17

test test test

test test test
test test test
test test test

\starttable[|c|c|c|]
\BL[3] \SR
\HL
\VL test \VL test \VL test \VL\SR
\HL
\VL test \VL test \VL test \VL\FR
\VL test \VL test \VL test \VL\MR
\VL test \VL test \VL test \VL\LR
\HL
\stoptable

test test test

test test test
test test test
test test test

\starttable[|c|c|c|]
\BC \BL[2] \SR
\HL
\VL test \VL test \VL test \VL\SR
\HL
\VL test \VL test \VL test \VL\FR
\VL test \VL test \VL test \VL\MR
\VL test \VL test \VL test \VL\LR
\HL
\stoptable

test test test

test test test
test test test
test test test

\starttable[|c|c|c|]
\BC \BC \BL \SR
\HL
\VL test \VL test \VL test \VL\SR
\HL
\VL test \VL test \VL test \VL\FR
\VL test \VL test \VL test \VL\MR
\VL test \VL test \VL test \VL\LR
\HL
\stoptable

test test test

test test test
test test test
test test test

\starttable[|c|c|c|]
\BC \BL \SR
\HL
\VL test \VL test \VL test \VL\SR
\HL
\VL test \VL test \VL test \VL\FR
\VL test \VL test \VL test \VL\MR
\VL test \VL test \VL test \VL\LR
\HL
\stoptable

In the example below there seems to be a missing \BC. Note that there is \BL to jump to the
next column.

295 Tables

17 Color in tables

test test test

test test test
test test test
test test test

\starttable[|c|c|c|]
\BL \BL \SR
\HL
\VL test \VL test \VL test \VL\SR
\HL
\VL test \VL test \VL test \VL\FR
\VL test \VL test \VL test \VL\MR
\VL test \VL test \VL test \VL\LR
\HL
\stoptable

test test test

test test test
test test test
test test test

\starttable[|c|c|c|]
\BC \BL \SR
\HL
\VL test \VL test \VL test \VL\SR
\HL

\BR\FR
\VL test \VL test \VL test \VL\FR

\BR\MR
\VL test \VL test \VL test \VL\MR

\BR\LR
\VL test \VL test \VL test \VL\LR
\HL
\stoptable

Because \SR closes a line we do not have to specify \BC’s in the other columns.

We complete these series of examples with a few wider tables.

aa bb cc dd

aa bb cc dd
aa bb cc dd
aa bb cc dd

\starttable[|c|c|c|c|]
\BC \BL[r,0.7] \BL[r,0.9] \SR
\HL
\VL aa \VL bb \VL cc \VL dd \VL\SR
\HL

\BR\FR
\VL aa \VL bb \VL cc \VL dd \VL\FR

\BR\MR
\VL aa \VL bb \VL cc \VL dd \VL\MR

\BR\LR
\VL aa \VL bb \VL cc \VL dd \VL\LR
\HL
\stoptable

With \BRwe recall the most recent specification so we do not have to specify each background
separately. The spacing however should be specified.

The first line in the example above could have been shorter:

\BC \RL[0.7] \RL[0.9] \SR

Tables 296

Color in tables 17

You can use screens and colors in one table. Screens may also be specified in terms of
colors. A screen with a greyshade Gr = .9 can be compared with a color with RGB--values
r = g = b = .9. Most of the time you can use color and some greyshades.

TODO: above table doesnt compile

aa bb cc ddaa bb cc ddaa bb cc ddaa bb cc dd \starttable[|c|c|c|c|]
%\BC \BL[r,0.8] \BL[c,red] \SR
\HL
\VL aa \VL bb \VL cc \VL dd \VL\SR
\HL

\BR\FR
\VL aa \VL bb \VL cc \VL dd \VL\FR

\BR\MR
\VL aa \VL bb \VL cc \VL dd \VL\MR

\BR\LR
\VL aa \VL bb \VL cc \VL dd \VL\LR
\HL
\stoptable

We can see that with \BL another background specification r or c is used. The same result
is obtained with screen or color. Colors and screens can be used interchangeably.

A row can be typeset with a background by means of \RL and \CL, without adding rownum-
bers.

aa bb cc dd
aa bb cc dd
aa bb cc dd
aa bb cc dd

\starttable[|c|c|c|c|]
\RL\FR

\VL aa \VL bb \VL cc \VL dd \VL\FR
\VL aa \VL bb \VL cc \VL dd \VL\MR

\RL\MR
\VL aa \VL bb \VL cc \VL dd \VL\MR
\VL aa \VL bb \VL cc \VL dd \VL\LR
\stoptable

aa bb cc dd
aa bb cc dd
aa bb cc dd
aa bb cc dd

\starttable[|c|c|c|c|]
%\CL[green]\FR
\VL aa \VL bb \VL cc \VL dd \VL\FR
\VL aa \VL bb \VL cc \VL dd \VL\MR
\VL aa \VL bb \VL cc \VL dd \VL\MR
\VL aa \VL bb \VL cc \VL dd \VL\LR
\stoptable

The next (specifications of) commands are equivalent:

\BL[c,...] \BL[color,...] \COLOR[...]
\BL[r,...] \BL[screen,...] \SCREEN[...]

The reader will have noticed that cells get a background even when no background is spec-
ified. These default backgrounds can be set up with:

297 Tables

17 Color in tables

\setuptables
[backgroundcolor=,
backgroundscreen=,
background=]

The key background can get the value color or screen. The default value is screen. As
a backgroundcolor you can specify the name of a color or as a backgroundscreen with a
number between 0 and 1.

Unfortunately the line mechanism is not that accurate. Whether the cause lies with ConTEXt,
TEX or with the DVI--drivers is unclear stil. It is important that the Horizontal Rules (\HL) are
placed after the background is set otherwise the background becomes foreground and part
of the line will disappear. The earlier examples show how to specify correct; the example
below shows how it is not done.

aa bb cc ddaa bb cc ddaa bb cc ddaa bb cc dd
\starttable[|c|c|c|c|]
%\BC \BL[c,green] \BL[c,red] \SR
\HL
\VL aa \VL bb \VL cc \VL dd \VL\SR

\BR\FR
\HL
\VL aa \VL bb \VL cc \VL dd \VL\FR

\BR\MR
\VL aa \VL bb \VL cc \VL dd \VL\MR

\BR\LR
\VL aa \VL bb \VL cc \VL dd \VL\LR
\HL
\stoptable

In none of the examples thusfar we see two adjacent colored columns. The reason is that
this is not possible without complex constructions. One solution is using dummy--columns:

aa bb ccaa bb ccaa bb cc \starttable[|c||c||c|]
%\BL[c,green] \BL[c,red] \FR
\NC aa \NC\NC bb \NC\NC cc \NC\FR

\BR\MR
\NC aa \NC\NC bb \NC\NC cc \NC\MR

\BR\LR
\NC aa \NC\NC bb \NC\NC cc \NC\LR
\stoptable

We see that the distance between columns is somewhat too big. We solve that by adapting
the TABLE--variables \InterColumn.... The alternative of using \- in stead of \= is rejected,
because the results are rather poor.

You are free to experiment on this issue. The example shows that we can fool the mechanism.
In this case all textlines must end with \SR.

Tables 298

Tables with identical layouts 17

aa bb ccaa bb ccaa bb cc
\starttable[|c|c|c|]
%\BL[c,green] \BL[c,red] \MR
\NC aa \NC bb \NC cc \NC\SR

\BR\MR
\NC aa \NC bb \NC cc \NC\SR

\BR\MR
\NC aa \NC bb \NC cc \NC\SR
\stoptable

We also see some extra text in this table. We can avoid extra spaces with the command
\tracetablesfalse. Default interline inconsistencies are reported during document genera-
tion.

Next to the Format Keys from TABLE the Format Key K is available that results in typesetting
the text in that column in capitals (\kap). In addition to n and N there are q and Q. This
command is meant for aligning numbers and it works with commas in stead of dots.

\starttable[{| l k | q[3,4] | Q[2,1] | c |}]
.......
\stoptable

In this situation we use an extra set of arg to prevent any problems. The use of those are
explained in the TABLE manual.

17.4 Tables with identical layouts
Integrating hundreds of tables is for TEX hardly a problem. Definition of these tables is
a formidable job. When tables have comparable formats its obvious to specify common
elements only once. The next example will show how it works. First we define the table
layout:

\definetabletemplate[demo][|r|l|]

The template, with the name demo, can be used in the table definition:

left right
over under

\starttable[demo]
\VL left \VL right \VL\AR
\VL over \VL under \VL\AR
\stoptable

and

left right
over under

\starttable[demo]
\VL left \VL right \VL\AR
\VL over \VL under \VL\AR
\stoptable

We can redefine such a table layout. Next to the layout we can specify the table head and
tail.

\definetabletemplate[demo][|r|l|][demo head][demo tail]

299 Tables

17 Splitting tables

The head and tail are defined separately:

\starttablehead[demo head]
\HL \VL this \VL that \VL\AR \HL
\stoptablehead

\starttabletail[demo tail]
\HL
\stoptabletail

The table we defined earlier looks like this:

this that

left right
over under

\starttable[demo]
\VL left \VL right \VL\AR
\VL over \VL under \VL\AR
\stoptable

The core of this mechanism is the command:

\definetabletemplate [...]1 [...]2 [...]
OPTIONAL

3 [...]
OPTIONAL

4

1 IDENTIFIER

2 TEXT

3 TEXT

4 TEXT

17.5 Splitting tables
Like the title of this section says: tables can be split. Results of splitting tables is satisfactory
but the mechanism is not 100% waterproof. A table will be split at a pagebreak when you
use \starttables in stead of \starttable

\starttables [...]* ... \stoptables

* TEXT IDENTIFIER

The table head and tail are defined in the way described in the last section.

\starttablehead
...

\stoptablehead

\starttabletail
...

\stoptabletail

Off course you can also use head and tail definitions that are defined globally in combination
with a specified table layout. It may be necessary to number a split table. The next command
will do that.

Tables 300

Buffers and scaling 17

\splitfloat [..,.=.,..]
OPTIONAL

1 {...}2 {...}3

1 inherits from \setupfloatsplitting

2 TEXT

3 TEXT

We may have specified the next splitable table:

\startbuffer
\starttablehead
\HL \VL Greec \VL Latin \VL\AR \HL
\stoptablehead

\starttabletail
\HL
\stoptabletail

\starttables[|mc|c|]
\VL \alpha \VL a \VL\AR
\VL \beta \VL b \VL\AR

... .
\VL \zeta \VL z \VL\AR
\stoptables
\stopbuffer

Because we stored the table in a buffer we specify the table in the following way:

\splitfloat
{\placetable[here][tab:demo]{A demo table.}}
{\getbuffer}

And the result will be:

there is nothing to split

Set ups can be added as a first optional argument. One of the parameters is lines, with
which you reserve space for the caption and vertical spacing. Default the value is 3.

\setupfloatsplitting [..,.=.,..]
*

* conversion = numbers characters Characters romannumerals Romannumerals
lines = NUMBER

The parameter conversion is used for the subnumbering of the subtables. Every subtable
automatically gets a subnumber. The parameter conversion takes care of its representation
(1, 2, 3 – a, b, c – I, II, III – etc.).

17.6 Buffers and scaling
Very big tables combined with the floating block mechanism can be a confusing sight in the
source file. The following alternative is recommended.

301 Tables

17 Remarks

\startbuffer
... table ...

\stopbuffer

\placetable{A title.}{\getbuffer}

In this way we can keep track of what happens. Another advantage is the fact that we can
manipulate tables in this way (see section ??). A table that is too wide for the page width
can be downscaled to that width. Here is an example:

\placetable
{Fits exactly.}
{\externalfigure[buffer][width=\textwidth]}

Default a figure buffer is defined as the standard buffer. Table 17.3 is type set in that way.

17.7 Remarks
Within TABLE the bar has a special meaning just like the double quote. Within ConTEXt
we use || for combined words and other word related tricks. Furthermore German users
want to use " as an umlaut trigger. Conflicts within the TABLE mechanism are at hand and
therefore both characters keep their original meaning. If you can not live without the | and
" you can use the next command to make them behave the way that was meant in TABLE.
We do not recommend that.

\ObeyTableBarAndQuote

(unfinished)

18

18 Tabulation
The second mechanism for generating tabular information is tabulation. We will see that the
specification of tabulations does not differ much from that of tables.

Tabular information can be found in the running text and the location of that information is
fixed (i.e. it is not allowed to float like tables and figures).

The tabulation mechanism is meant for that tabular information in which cells may contain
information with more that one paragraph. However the table and tabular mechanism can
be used indifferently we advise you to use them consistently because the spacing within the
both mechanisms differ.

The table commands form a layer around TABLE, but the tabulation commands are written
for ConTEXt. The tabulation mechanism uses the same interface when possible. As we do in
the table mechanism we use \NC as column separator and \NR as row separator.

\starttabulate[|l|c|r|]
\NC this and that \NC left and right \NC here and there \NC \NR
\NC low and high \NC up and down \NC back and forth \NC \NR
\stoptabulate

this and that left and right here and there
low and high up and down back and forth

The three commands l, c and r stand for:

l left align
c center
r right align

There are spacing commands. These relate to one--line as well as multi--line (paragraphs)
cells.

in spacing left
jn spacing right
kn spacing around

The factor n is applied to the unit of spacing which is default set at .5em (see \setuptabulate).

\starttabulate[|l|k2c|r|]
\NC this and that \NC left and right \NC here and there \NC \NR
\NC low and high \NC up and down \NC back and forth \NC \NR
\stoptabulate

this and that left and right here and there
low and high up and down back and forth

The width of a column is set with:

\starttabulate[|lw(4cm)|w(4cm)l|r|]
\NC this and that \NC left and right \NC here and there \NC \NR
\NC low and high \NC up and down \NC back and forth \NC \NR
\stoptabulate

303 Tabulation

18

this and that left and right here and there
low and high up and down back and forth

The most important reason for developing the tabulation mechanism lies in the fast that we
wanted to be able to type set multi paragraph columns. A prerequisite was that we should
be able to use the full width of the text body. This option is supported by:

w(d) 1 line, fixed width
p(d) paragraph, fixed width
p paragraph, maximum width

In the next example the first column has an unknown width. The second column contains
a left aligned paragraph with a width of 4 cm. The third column has a width of 2 cm and
consists of one line. The last column contains a paragraph that occupies the remaining width.

\starttabulate[|l|p(4cm)l|w(2cm)|p|]
...
\stoptabulate

A four column table with four paragraphs is specified with:

\starttabulate[|p|p|p|p|]
...
\stoptabulate

In stead of specifying a body font in each cell we can specify them per column. In the next
tabulation the definition is [|lT|p|].

B boldface
I italic
R roman
S slanted
T teletype

Math is possible with:

m in--line math
M display math

With the letter f we can specify a body font, like f\bs. There are also the following com-
mands:

f\command font specification
barg.. place .. before the entry
aarg.. place .. after the entry
h\command apply \command on the entry

The h--command (hook) allows some tricks like:

\starttabulate[|w(2cm)h\inframed|b{(}a{)}|p|]
\HC {Uggly} \NC isn’t it? \NC he says. \NC \NR
\HC {Beautiful} \NC but meaningless \NC I would say. \NC \NR
\stoptabulate

Because we use \inframed the frame remains within the line. The command applies only to
the cells that are preceded by \HC. The arg are important because \inframed expects these.

Tabulation 304

18

Uggly (isn’t it?) he says.
Beautiful (but meaningless) I would say.
We can use h for alternative situations, like:

item number
figures
tables
formulas

All three cells are adapted. Do not forget the arg in the column with the numbers!
\unexpanded\def\SmallDash#1{\blackrule[width=#1em]}
\starttabulate[|l|lh\SmallDash|]
\HL
\NC \bf item \NC \bf number \NC \NR
\HL
\NC figures \HC {5} \NC \NR
\NC tables \HC {8} \NC \NR
\NC formulas \HC {12} \NC \NR
\HL
\stoptabulate

We used \NC as a column separator but an alternative is \EQ that places a specified character.
\starttabulate
\NC =||sign \EQ a separator can be specified by altering the

variable \type {EQ} \NC \NR
\NC :||character \EQ default a colon is used but an equal sign

is a reasonable alternative \NC \NR
\stoptabulate

This results in:
=--sign : a separator can be specified by altering the variable EQ
:--character : default a colon is used but an equal sign is a reasonable alternative
We saw \NC for normal cell entries, \EQ for entries separated by a character and \HC for
entries that are influenced by a command. There is also \HQ for a cell entry with a separator
and a command. When no formatting is needed there are the commands: \RC and \RQ.
separator normal raw command
yes \EQ \RQ \HQ
no \NC \RC \HC

This small tabulation shows all three alternatives. Here we have a tabulation with four
centered columns, boldface or verbatim, of which two cells have a different alignment. The
table is coded as:
\starttabulate[|*{4}{cBh\type|}]
\NC separator \NC normal \NC raw \NC command \NC \NR
\RC \bf yes \HC {\EQ} \HC {\RQ} \HC {\HQ} \NC \NR
\RC \bf no \HC {\NC} \HC {\RC} \HC {\HC} \NC \NR
\stoptabulate

305 Tabulation

18

The equal sign or any other character can be forced with the e command in the definition.

e sets a symbol in front of the next column

When several columns have an equal specification we can combine those specifications. Note
that the number of | must be correct.

\starttabulate[|*{3}{k1pc|}]
\NC this and that \NC left and right \NC here and there \NC \NR
\NC low and high \NC up and down \NC back and forth \NC \NR
\stoptabulate

Here we typed 1 + 3 × 1 = 4 times a |.

this and that left and right here and there
low and high up and down back and forth

A better example of the automatic cell width determination is the next one.

tables We use \starttable when we typeset tables but the exact location is not fixed
and the information is allowed to float in the running text.

tabulation The command \starttabulate is meant for tabular information that is part of
the running text. The automatic calculation of the cell width is a feature in this
mechanism.

This tabulation was typed as:

\starttabulate[|l|p|]
\NC tables \NC We use \type {\starttable} when we typeset tables

but the exact location is not fixed and the
information is allowed to float in the running
text. \NC \NR

\NC tabulation \NC The command \type {\starttabulate} is meant for
tabular information that is part of the running text.
The automatic calculation of the cell width
is a feature in this mechanism. \NC \NR

\stoptabulate

When no tabulation is specified it is assumed that [|l|p|] is wanted. To prevent typing the
same specification all over again you can use the tabulation format definition command:

\definetabulate[Three][|lB|lS|p|]

\startThree
\NC one \NC two \NC three four five six seven eight nine ten eleven

twelve thirteen fourteen fifteen and so on \NC \NR
\stopThree

one two three four five six seven eight nine ten eleven twelve thirteen fourteen fifteen and
so on

The tabulation commands can be summarized with:

Tabulation 306

18

\definetabulate [...]1 [...]
OPTIONAL

2 [...]3

1 IDENTIFIER

2 IDENTIFIER

3 TEXT

The first argument gives the tabulation a logical name. The second argument is optional
and specifies the associated tabulations; later on we will give an example. The last argument
specifies the cells.
Then we have:
unknown setup ‘starttabulate’
In this command the first argument specifies the cells, the second and optional argument the
set up.

\setuptabulate [...]
OPTIONAL

1 [..,.=.,..]
2

1 IDENTIFIER

2 unit = DIMENSION
indenting = never none not no yes always first next small medium big

normal odd even DIMENSION
before = COMMAND
after = COMMAND
inner = COMMAND
EQ = TEXT
rulecolor = IDENTIFIER
align = inner outer left right flushleft flushright middle center

normal no yes
rulethickness = DIMENSION
distance = blank grid depth DIMENSION small medium big none
bodyfont = 5pt ... 12pt small big
rule = normal line
split = yes no

The optional argument specifies the associated tabulations. When the parameter indenting
is set at yes, the width of the tabulations will adapt to the actual indent. In case of a
\start ... \stopnarrower environment the left and right indent are taken into account.
The parameter unit is used for the spacing commands i, j and k. The commands specified
after the parameter inner are applied just in front of the first row and are effective in the
whole tabulation.
The possibilities for framing tabulations are limited. You can add horizontal lines with \HL.
This command takes care of the vertical spacing as the next example illustrates:
\starttabulate[|l|p|]
\HL
\NC small \NC They say, small is beautiful. \NC \NR
\HL
\NC medium \NC It seems that medium is the message. \NC \NR
\HL

307 Tabulation

18

\NC large \NC Large T||shirts are always sold out. \NC \NR
\HL
\stoptabulate

When a pagebreak occurs in the middle of a tabulation the horizontal line is repeated auto-
matically. Vertical spacing can be set by \FL, \ML and \LL. These commands stand for first,
middle and last line.
small They say, small is beautiful.
medium It seems that medium is the message.
large Large T--shirts are always sold out.

The spacing around the lines is related to the depth of a line.

\setuptabulate[distance={depth,medium}]

There are different ways to adapt this set up, like:

\setuptabulate[distance=none]
\setuptabulate[distance=big]
\setuptabulate[distance={blank,small}]
\setuptabulate[distance={1ex,medium}]
\setuptabulate[distance=1cm]

Tabulation is meant for the running text but it can also be used in a floating block. In that
case the spacing around tabulation is suppressed. In the running text the actual whitespace
and textwidth are taken into account.

• This means that a tabulation within an itemization is adapted to the indent.

You see? As we can expect the width of a paragraph is adapted to the width of the text.
And you can even put an itemize in such a cell.
− like this
− or that

• This little table was defined like this:

\starttabulate
\NC You see? \NC As we can expect the width of a paragraph is adapted

to the width of the text. And you can even put an
itemize in such a cell.
\startitemize[packed]
\item like this
\item or that
\stopitemize \NC \NR

\stoptabulate

We can use and abuse tabulations to obtain some special effects. Vice versa common effects
can be combined quite well with tabulations. The next, somewhat strange example will
illustrate that.

1. first • • • • • this or that α. alpha
2. second • • • • • so and so β. beta

Tabulation 308

18

3. third • • • • • here or there γ. gamma

In these kind of situations we should set the itemization with the key packed.

\starttabulate[|p(2cm)|p(4cm)|p|]
\NC \startitemize[n,packed]

\item first \item second \item third
\stopitemize

\NC \startitemize[packed][items=5,width=4em,distance=.5em]
\its this or that \its so and so \its here or there
\stopitemize

\NC \startitemize[g,packed,broad]
\item alpha \item beta \item gamma
\stopitemize

\NC\NR
\stoptabulate

The content of a tabulation has some limitations, because TEX first reads the complete table.
These limitations relate to the macros that use \catcode adaptations. In normal situations
you will not notice these limitations, only when you have typeset TEX input with TEX.

While discussing tables we already saw a financial table. These kind of tables can best be set
with the tabulation commands.

not so much 1.220
somewhat more 5.186
together 6.406

This tabulation was typed like this:

\starttabulate[|l|r|]
\NC not so much \NC 1.220 \NC \NR
\NC somewhat more \NC 5.186 \NC \NR
\NC together \NC \overbar{6.406} \NC \NR
\stoptabulate

As soon as we work with numbers there are several ways of alignment. Like in tables we
can make use of ~, but we have to indicate the meaning of ~ explicitly. This is caused by the
fact that we still want to use the ~ within paragraphs as an non--hyphenatable space.

\starttabulate[|l|~c|]
\NC this is less \NC ~12 \NC \NR
\NC than that \NC 185 \NC \NR
\stoptabulate

We return to the defining of categories of tabulations. An application of this option can be
found in the commands that make up a legend with a formula.

\definetabulate [legend] [|emj1|i1|mR|]
\definetabulate [legend] [two] [|emj1|emk1|i1|mR|]
\setuptabulate [legend] [unit=.75em,EQ={=}]

After these definitions that are default in ConTEXt we can type:

309 Tabulation

18

\startlegend
\NC w \NC the width of a box \NC pt \NR
\NC h \NC the height of a box \NC pt \NR
\NC d \NC the depth of a box \NC pt \NR
\stoplegend

This very simple legend becomes this:

w = the width of a box pt
h = the height of a box pt
d = the depth of a box pt

An extra entry is possible when we add the key two:

\startlegend[two]
\NC w \NC width \NC the width of a box \NC pt \NR
\NC h \NC height \NC the height of a box \NC pt \NR
\NC d \NC depth \NC de depth of a box \NC pt \NR
\stoplegend

This related tabulation inherits the set up of the original. We also could have defined
\startlegendtwo, but the mentioned definition origins from the older functionality that
was part of earlier ConTEXt versions.

w = width = the width of a box pt
h = height = the height of a box pt
d = depth = de depth of a box pt

In a similar way the commands for typesetting facts are defined.

\definetabulate [fact] [|R|ecmj1|i1mR|]
\setuptabulate [fact] [unit=.75em,EQ={=}]

The first column is set in roman and the next column is separated by an equal sign. That
second column is centered and is set in math mode. That column also has some more
whitespace. The last column is also set in math mode but the characters are set in roman.
Some whitespace is added.

\startfact
\NC width \NC w \NC 48pt \NR
\NC height \NC h \NC 9pt \NR
\NC depth \NC d \NC 3pt \NR
\stopfact

This results in:

width w = 48pt
height h = 9pt
depth d = 3pt

In reality we also give a value to inner and then specifications as below are possible:

\startfact
\\ width \\ w \\ 48pt \\
\\ height \\ h \\ 9pt \\

Tabulation 310

18

\\ depth \\ d \\ 3pt \\
\stopfact

Wewant to conclude with an example of an automatic calculation of the width of a paragraph.
This command shows —and we already saw that in other examples— that the last \NC is
redundant.

\starttabulate[|Bl|p|Bl|]
\NC Read Me \NC \input tufte \NC Edward Tufte \NR
\stoptabulate

Read Me We thrive in information--thick worlds because of our marvelous Edward Tufte
and everyday capacity to select, edit, single out, structure, high-
light, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, clas-
sify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate,
cluster, aggregate, outline, summarize, itemize, review, dip into,
flip through, browse, glance into, leaf through, skim, refine, enu-
merate, glean, synopsize, winnow the wheat from the chaff and
separate the sheep from the goats.

As was said earlier ConTEXt takes care of adequate page breaking in the middle of a tabula-
tion. When we set \tracetabulatetrue red lines are drawn in positions where breaking is
not allowed.

\starttabulate[|c|p|p|]
\NC \bf Alpha \NC \bf Beta \NC \bf Gamma \NC\NR
\NC 1 \NC right indeed \NC definitely wrong \NC\NR
\NC 2 \NC \thinrules[n=3] \NC \thinrules[n=3] \NC\NR
\NC 3 \NC oh yes \NC simply no \NC\NR
\NC 4 \NC very true \NC as false as can be \NC\NR
\NC 5 \NC \thinrules[n=5] \NC \thinrules[n=5] \NC\NR
\NC 6 \NC \thinrules[n=3] \NC \thinrules[n=4] \NC\NR
\stoptabulate

Alpha Beta Gamma
1 right indeed definitely wrong
2

3 oh yes simply no
4 very true as false as can be
5

311 Tabulation

18

6

\starttabulate[|c|p|p|]
\NC \bf Alpha \NC \bf Beta \NC \bf Gamma \NC\NR
\NC 1 \NC right indeed \NC definitely wrong \NC\NR
\NC 2 \NC oh yes \NC simply no \NC\NR
\NC 3 \NC very true \NC as false as can be \NC\NR
\NC 4 \NC the whole truth \NC but the truth \NC\NR
\stoptabulate

Alpha Beta Gamma
1 right indeed definitely wrong
2 oh yes simply no
3 very true as false as can be
4 the whole truth but the truth

Introduction 19

19 Formulas

19.1 Introduction
For what reason do we need a complete chapter on formulas? The reason is obvious: a
considerable part of the functionality of TEX relates to math typesetting since the main reason
for developing TEX was the need for typesetting math.

In ConTEXt math typesetting is not really an isue. ConTEXt was developed for typesetting ed-
ucational materials and not necessarily math. Therefore more attention was paid to chemical
formulas and consistent use of units than to math. Math was available anyhow.

In ConTEXt the functionality is more oriented towards the educational disciplines and these
can be found in specific modules. A module will not supply basic functionality because it
can be found in the core.

There are modules for chemical stuff, units and flow--charts, which all have their own manual.
The same goes for the math module. This module contains the same functionality as the
macros developed by the American Mathematical Society. Those macros are well--known in
the TEX community. Most extensions concern the interface and consistent spacing. In this
chapter we pay attention to the standard functionality in ConTEXt.

19.2 Basic commands
Typesetting formulas is one of the strong points of TEX. Special commands are available for
typesetting math. These commands are enclosed by single or double dollar signs.

In the running text we use single dollar signs: $a=b^2+1/c$ becomes a = b2 + 1/c. In
conjunction with in--line--math there is display--math, or rather formulas surrounded by
whitespace. Those formulas are frequently numbered. The location and way of numbering
can be set with:

unknown setup ‘setupformulas’

With left and right characters on the left or right side of the formula number are set up.
Default these are (and).

A (numbered) formula is defined with the commands:

\placeformula [...,...]
OPTIONAL

1 {...}
OPTIONAL

2 $$...$$3

1 REFERENCE

2 TEXT

3

313 Formulas

19 Basic commands

\placesubformula [...,...]
OPTIONAL

1 {...}
OPTIONAL

2 $$...$$3

1 REFERENCE

2 TEXT

3

The reference and subnumber are optional. Below we give some examples of formulas. In the
margin we display the references. Typing the formula number manually is necessary when
we make use of tables, matrices and TEX--commando’s like \displaylines. In the examples
we use $$ to save some space; however we advise you to use the command \startformula.

\placeformula $$ a + b = c $$

a + b = c (19.1)

\placeformula $$ a + b = c $$

a + b = c (19.2)

\placesubformula {a} $$ a + b = c $$

a + b = c (19.2a)

\placesubformula {b} $$ a + b = c $$

a + b = c (19.2b)

\placeformula [a] $$ a + b = c $$a: 19.3

a + b = c (19.3)

\placeformula [b] $$ a + b = c $$b: 19.4

a + b = c (19.4)

\placesubformula[c]{a} $$ a + b = c $$c: 19.4a

a + b = c (19.4a)

\placesubformula[d]{b} $$ a + b = c $$d: 19.4b

a + b = c (19.4b)

\placeformula $$ a + b = c \quad \formulanumber $$

a + b = c (19.5) (19.6)

\placeformula $$ a + b = c \quad \formulanumber $$

a + b = c (19.7) (19.8)

\placesubformula {a} $$ a + b = c \quad \formulanumber $$

Formulas 314

Basic commands 19

a + b = c (19.8a) (19.8a)

\placesubformula {b} $$ a + b = c \quad \formulanumber $$

a + b = c (19.8b) (19.8b)

\placeformula [e] $$ a + b = c \quad \formulanumber $$e: 19.9

a + b = c (19.9) (19.10)

\placeformula [f] $$ a + b = c \quad \formulanumber $$f: 19.11

a + b = c (19.11) (19.12)

\placesubformula[g]{a} $$ a + b = c \quad \formulanumber $$g: 19.12a

a + b = c (19.12a) (19.12a)

\placesubformula[h]{b} $$ a + b = c \quad \formulanumber $$h: 19.12b

a + b = c (19.12b) (19.12b)

\placesubformula $$ a + b = c \quad \formulanumber {a} $$

a + b = c (19.12a) (19.12)

\placesubformula $$ a + b = c \quad \formulanumber {b} $$

a + b = c (19.12b) (19.12)

\placeformula $$ a + b = c \quad \formulanumber[i] $$i: 19.13

a + b = c (19.13) (19.14)

\placeformula $$ a + b = c \quad \formulanumber[j] $$j: 19.15

a + b = c (19.15) (19.16)

\placesubformula $$ a + b = c \quad \formulanumber[k]{a} $$k: 19.16a

a + b = c (19.16a) (19.16)

\placesubformula $$ a + b = c \quad \formulanumber[l]{b} $$l: 19.16b

a + b = c (19.16b) (19.16)

\placeformula [m] $$ a + b = c \quad \formulanumber {a} $$m: 19.17

a + b = c (19.17a) (19.18)

\placeformula [n] $$ a + b = c \quad \formulanumber {b} $$n: 19.19

a + b = c (19.19b) (19.20)

315 Formulas

19 Basic commands

\placesubformula[o] $$ a + b = c \quad \formulanumber {a} $$o: 19.20

a + b = c (19.20a) (19.20)

\placesubformula[p] $$ a + b = c \quad \formulanumber {b} $$p: 19.20

a + b = c (19.20b) (19.20)

\placeformula [q] $$ a + b = c \quad \formulanumber[r]{a} $$q: 19.21
r: 19.21a

a + b = c (19.21a) (19.22)

\placeformula [s] $$ a + b = c \quad \formulanumber[t]{b} $$s: 19.23
t: 19.23b

a + b = c (19.23b) (19.24)

\placesubformula[u] $$ a + b = c \quad \formulanumber[v]{a} $$u: 19.24
v: 19.24a

a + b = c (19.24a) (19.24)

\placesubformula[w] $$ a + b = c \quad \formulanumber[x]{b} $$w: 19.24
x: 19.24b

a + b = c (19.24b) (19.24)

When we want no numbers we have to indicate that explicitly by means of [-]:

\placeformula[-]
$$\displaylines

{ab=ba\hfill\cr
ac+bc=(a+b)c\hfill\cr}$$

This results in:

ab = ba
ac + bc = (a + b)c

We also could have used here \startformula...\stopformula:

\placeformula[-]
\startformula
\displaylines{ab=ba\hfill\cr ac+bc=(a+b)c\hfill\cr}
\stopformula

The use of the \start...\stop--pair has the advantage that we can test symmetry in some
wordprocessors. The disadvantage is we can not see immediately that we work in math
mode.

unknown setup ‘startformula’

The next examples does use numbers. In this example [that’s it] is a logical name, a label,
for future referencing.

Formulas 316

Legends 19

\placeformula
\startformula
\displaylines

{a\times b=b\times a\hfill\formulanumber\cr
a+b=b+a\hfill\subformulanumber\cr
ac+bc=(a+b)c\hfill\formulanumber[that’s it]{x}\cr}

\stopformula

This becomes:
a × b = b × a (19.25)
a + b = b + a (19.25)
ac + bc = (a + b)c (19.26x)

19.3 Legends
In case of physics formulas you may want to explain the meaning of the used symbols. There
are two commands to do that:

\startlegend [...]
OPTIONAL

1 ...2 ...3 ...4 ... \stoplegend

1 two

2 EMPTY

3 EMPTY

4 EMPTY

\startfact ...1 ...2 ...3 ... \stopfact

1 EMPTY

2 EMPTY

3 EMPTY

A legend and facts are coded as follows:
\placeformula[for:force]$$F = m a$$

\startlegend
\leg F \\ force \\ N \\
\leg m \\ mass \\ kg \\
\leg a \\ acceleration \\ m/{s^2} \\
\stoplegend

Determine by means of formula~\in[for:force] the acceleration~a
when given is that:

\startfact
\fact mass \\ m \\ 10~kg \\
\fact force \\ F \\ 1500~N \\
\stopfact

317 Formulas

19 Units

This results in:
F = ma (19.27)

F = force N
m = mass kg
a = acceleration m/s2

Determine by means of formula 19.27 the acceleration a when given is that:

mass m = 10kg
force F = 1500N

A combination is also possible:

F = = force N
m = 10 = mass kg
a = 1500 = acceleration m/s2

This was specified in this way:

\startlegend[two]
\leg F \\ \\ force \\ N \\
\leg m \\ 10 \\ mass \\ kg \\
\leg a \\ 1500 \\ acceleration \\ m/{s^2} \\
\stoplegend

19.4 Units
A unit can be typeset with:

10~$\rm m^3$

For the purpose of consistent typesetting the command \unit is available. This is an example
of the use of synonyms as described in section 12.2.

\unit {strange} {m^3\!/s^2} {a strange unit}

In this case the \! takes care of backskipping the / in such a way that in stead of m3/s2 we
get m3/s2. In fact we can do without these kind of cryptic typing, because the unit module
offers a better alternative. The module is loaded in the set up area of your source file with:

\usemodule[unit]

After that you can type the recall unit by typing them. For example:

... 10 \Meter \Per \Second\ ...

... 33 \Kilo \Gram \Per \Square \Meter\ ...

At this point we advise you to read the manual that comes with this module for more
examples.

When we use math commands there may occur problems as soon as we use $ in a nested
way. When we are in math mode and we use a $ for the purpose of switching to math mode
we just end math mode like this:

$a \times b$

Formulas 318

Chemicals 19

TEX will produce an error because \times is typed outside math mode. In this example we
saw what goes wrong but the problem is less obvious in the next example:

\def\multiply{\times}
$a \multiply b$

This seems correct but with \multiply we leave math mode. We can prevent errors by
defining \multiply as follows:

\def\multiply{\ifmmode \times \else \times \fi}

The next commands does just that:

\mathematics {...}*

* TEXT

We can use this command in nested situations:

\mathematics{a\mathematics{b\mathematics{c\mathematics{d\mathematics{e}}}}}

and it will result in a correct output:

abcde

so do not use this:

abcde

which we would have obtained by typing:

abcde

19.5 Chemicals
Earlier we stated that in this chapter we also describe the module for chemical typesetting.
This module is loaded with:

\usemodule[chemic]

The first version of this module used PICTEX for positioning text and drawing the chemical
structures, the current version uses MetaPost for drawing the graphics. The results are better
and the files are more compact.

C

N

C

O

O

CH

COOC2H5

COOC2H5

This chemical structure was typed as follows:

319 Formulas

19 Math

\startchemical[with=fit,height=fit]
\chemical
[SIX,B,C,ADJ1,
FIVE,ROT3,SB34,+SB2,-SB5,Z345,DR35,SR4,CRZ35,SUB1,
ONE,OFF1,SB258,Z0,Z28]
[C,N,C,O,O,
CH,COOC_2H_5,COOC_2H_5]

\stopchemical

The interface (syntax) looks rather cryptic but after some practice its compactness is an asset.
There is an extensive manual and a collection of examples available.

One characteristic of chemical typesetting is the fact that all super-- respectively subscripts
are at the same height. This is not the case in math typesetting where the location of the
super-- and subscripts depend on the available vertical space. The command \chemical
takes this into account. When you want to put a chemical formula in a math formula —for
example when you want to display an expression for a chemical equilibrium— there is the
command \ch. This command has one argument and adapts automatically to its context:
$\frac{\ch{N}}{\ch{O}}$

19.6 Math
We limit ourselves only to those commands that are available by default. In addition to the
commands mentioned here, the math module implements many more:

\usemodule[math]

The extra commands are described in a separate manual.

Like in plain TEX we offer the next commands for switching to some specialized fonts:

\frak fraktur ABC

\goth gothic abc

\cal calligraphic ABC

Alternatively one can use the commands \fraktur, \gothic and \calligraphic which each
take one argument, like in \fraktur {TEXT}.

These are typical fonts meant for math typesetting and special characters.

Fractions can occur quite often so we also added the command \frac on request:
$\frac{a}{b}$ results as expected a

b . This command adapts to its surroundings as good
as possible.

For instructional purposes a frame or a background can be useful to indicate the specific
math symbol. There is a special version of \framed: \maframed. We give some examples:

\startformula
y + \maframed{y} + y^{2} + y^{\maframed{2}}

\stopformula

\startformula
x \times \maframed{y} \times y^{\maframed{z}_{\maframed{z}}}

\stopformula

Formulas 320

Math collection 19

y + y + y2 + y2

x × y × yzz

In this example we can see that the superscript 2 is rather big. This can be prevented by
using the commands \super and \suber in stead of ^ and _.

\startformula
x \times \maframed{y} \times y\super{\maframed{z}\suber{\maframed{z}}}

\stopformula

x × y × yzz

If you want to use ^ and _ anyhow, than you can use \enablesupersub to reach the same
effect.

To obtain a good spacing in framed math texts the offset equals overlay. The offset is
produced by giving frameoffset an adequate value. Other setups are also possible:

\startformula
x \times y\super{\maframed[framecolor=red]{z}\suber{z}}

\stopformula

x × yzz

For in--line math the command \inmaframed is available.

It is possible to typeset fractions without switching to math mode with the command:

\fraction {...}1 {...}2

1 TEXT

2 TEXT

The braces are essential in the next example.

If \fraction{123}{456} equals \fraction{x}{y}, then \fraction{y}{x} equals
\fraction{456}{123}.

results in:

If 123
456 equals x

y , then
y
x equals 456

123 .

19.7 Math collection
Math is a complicated matter and therefore we will not spend that many words on the
gory details. For the user it is enough to know that you can mix different math fonts in a
comfortable way and that ConTEXt will take care of the proper mapping on specific math
fonts.

Because the wide range of math symbols can come from different fonts, math characters are
organized into so called math collections. Normally such a collection is chosen automatically

321 Formulas

19 Math collection

when you load a font definition, just as with font encodings. The ams math fonts extend the
default math collection, which gives you a comfortable fall back. More information can be
found in the documentation of the math module.

You can generate a list of the current math character set with the command \showmathchar-
acters.

math characters – default
α 1 alpha
β 1 beta
γ 1 gamma
δ 1 delta
ε 1 epsilon
ζ 1 zeta
η 1 eta
θ 1 theta
ι 1 iota
κ 1 kappa
λ 1 lambda
µ 1 mu
ν 1 nu
ξ 1 xi
o 1 omicron
π 1 pi
ρ 1 rho
σ 1 sigma
τ 1 tau
υ 1 upsilon
φ 1 phi
χ 1 chi
ψ 1 psi
ω 1 omega
ε 1 varepsilon
ϑ 1 vartheta
$ 1 varpi
% 1 varrho
ς 1 varsigma
ϕ 1 varphi
A 0 Alpha
B 0 Beta
Γ 0 Gamma
∆ 0 Delta
E 0 Epsilon
Z 0 Zeta
H 0 Eta
Θ 0 Theta
I 0 Iota
K 0 Kappa

Λ 0 Lambda
M 0 Mu
N 0 Nu
Ξ 0 Xi
O 0 Omicron
Π 0 Pi
R 0 Rho
Σ 0 Sigma
T 0 Tau
Υ 0 Upsilon
Φ 0 Phi
X 0 Chi
Ψ 0 Psi
Ω 0 Omega
ℵ 2 aleph
ı 1 imath
 1 jmath
` 1 ell
℘ 1 wp
< 2 Re
= 2 Im
∂ 1 partial
∞ 2 infty
′ 2 prime
∅ 2 emptyset
∇ 2 nabla
> 2 top
⊥ 2 bot
4 2 triangle
∀ 2 forall
∃ 2 exists
¬ 2 neg
[1 flat
\ 1 natural
] 1 sharp
♣ 2 clubsuit
♦ 2 diamondsuit
♥ 2 heartsuit
♠ 2 spadesuit∐

3 coprod

∨
3 bigvee∧
3 bigwedge⊎
3 biguplus⋂
3 bigcap⋃
3 bigcup∫
3 intop∏
3 prod∑
3 sum⊗
3 bigotimes⊕
3 bigoplus⊙
3 bigodot∮
3 ointop⊔
3 bigsqcup

∫ 2 smallint
/ 1 triangleleft
. 1 triangleright
4 2 bigtriangleup
5 2 bigtriangledown
∧ 2 wedge
∨ 2 vee
∩ 2 cap
∪ 2 cup
‡ 2 ddagger
† 2 dagger
u 2 sqcap
t 2 sqcup
] 2 uplus
q 2 amalg
� 2 diamond
• 2 bullet
o 2 wr
÷ 2 div
� 2 odot
� 2 oslash
⊗ 2 otimes
	 2 ominus
⊕ 2 oplus
∓ 2 mp
± 2 pm
◦ 2 circ

Formulas 322

Math collection 19

© 2 bigcirc
\ 2 setminus
· 2 cdot
∗ 2 ast
× 2 times
? 1 star
∝ 2 propto
v 2 sqsubseteq
w 2 sqsupseteq
‖ 2 parallel
| 2 mid
a 2 dashv
` 2 vdash
↗ 2 nearrow
↘ 2 searrow
↖ 2 nwarrow
↙ 2 swarrow
⇔ 2 Leftrightarrow
⇐ 2 Leftarrow
⇒ 2 Rightarrow
≤ 2 leq
≥ 2 geq
� 2 succ
≺ 2 prec
≈ 2 approx
� 2 succeq
� 2 preceq
⊃ 2 supset
⊂ 2 subset
⊇ 2 supseteq
⊆ 2 subseteq
∈ 2 in
3 2 ni
� 2 gg
� 2 ll
6 2 not
↔ 2 leftrightarrow
← 2 leftarrow
→ 2 rightarrow
7 2 mapstochar
∼ 2 sim
' 2 simeq
⊥ 2 perp
≡ 2 equiv
� 2 asymp
_ 1 smile
^ 1 frown

↼ 1 leftharpoonup
↽ 1 leftharpoondown
⇀ 1 rightharpoonup
⇁ 1 rightharpoondown
↪ 1 lhook
↩ 1 rhook
. 1 ldotp
· 2 cdotp
: 0 colon
´ 0 acute
` 0 grave
¨ 0 ddot
˜ 0 tilde
˚ 0 mathring
¯ 0 bar
˘ 0 breve
ˇ 0 check
ˆ 0 hat
~ 1 vec
˙ 0 dot˜ 3 widetildê 3 widehat︷ 3 lmoustache︷ 3 rmoustache
(0 lgroup
) 0 rgroup
| 2 arrowvert
‖ 2 Arrowvert 3 bracevert
‖ 2 Vert
| 2 vert
↑ 2 uparrow
↓ 2 downarrow
l 2 updownarrow
⇑ 2 Uparrow
⇓ 2 Downarrow
m 2 Updownarrow
\ 2 backslash
〈 2 langle
〉 2 rangle
{ 2 lbrace
} 2 rbrace
d 2 lceil
e 2 rceil
b 2 lfloor
c 2 rfloor
√ 2 sqrt

| 2 lvert
| 2 rvert
‖ 2 lVert
‖ 2 rVert
† 2 dag
‡ 2 ddag
§ 2 S
¶ 2 P
© 2 Orb
. 1 mathperiod
. 1 textperiod
, 1 mathcomma
, 1 textcomma
Γ 0 varGamma
∆ 0 varDelta
Θ 0 varTheta
Λ 0 varLambda
Ξ 0 varXi
Π 0 varPi
Σ 0 varSigma
Υ 0 varUpsilon
Φ 0 varPhi
Ψ 0 varPsi
Ω 0 varOmega
↘ 2 internalAnd
� C boxdot
� C boxplus
� C boxtimes
� C square
� C Box
� C blacksquare
� C centerdot
♦ C Diamond
♦ C lozenge
� C blacklozenge
� C circlearrowright
	 C circlearrowleft

 C rightleftharpoons
� C leftrightharpoons
� C boxminus
 C Vdash
� C Vvdash
� C vDash
� C twoheadrightarrow
� C twoheadleftarrow
⇔ C leftleftarrows
⇒ C rightrightarrows

323 Formulas

19 Math collection

� C upuparrows
� C downdownarrows
� C upharpoonright
� C restriction
� C downharpoonright
� C upharpoonleft
� C downharpoonleft
� C rightarrowtail
� C leftarrowtail
� C leftrightarrows
� C rightleftarrows
� C Lsh
� C Rsh
 C rightsquigarrow
 C leadsto
! C leftrightsquigarrow
" C looparrowleft
C looparrowright
$ C circeq
% C succsim
& C gtrsim
' C gtrapprox
(C multimap
∴ C therefore
∵ C because
+ C doteqdot
+ C Doteq
, C triangleq
- C precsim
. C lesssim
/ C lessapprox
0 C eqslantless
1 C eqslantgtr
2 C curlyeqprec
3 C curlyeqsucc
4 C preccurlyeq
5 C leqq
6 C leqslant
≶ C lessgtr
8 C backprime
9 C dabar@
: C risingdotseq
; C fallingdotseq
< C succcurlyeq
= C geqq
> C geqslant
≷ C gtrless

@ C sqsubset
A C sqsupset
B C vartriangleright
B C rhd
C C lhd
C C vartriangleleft
D C trianglerighteq
D C unrhd
E C trianglelefteq
E C unlhd
F C bigstar
G C between
H C blacktriangledown
I C blacktriangleright
J C blacktriangleleft
M C vartriangle
M C triangleup
N C blacktriangle
O C triangledown
P C eqcirc
Q C lesseqgtr
R C gtreqless
S C lesseqqgtr
T C gtreqqless
V C Rrightarrow
W C Lleftarrow
Y C veebar
Z C barwedge
[C doublebarwedge
∠ C angle
] C measuredangle
^ C sphericalangle
∝ C varpropto
` C smallsmile
a C smallfrown
b C Subset
c C Supset
d C Cup
d C doublecup
e C Cap
e C doublecap
f C curlywedge
g C curlyvee
h C leftthreetimes
i C rightthreetimes
j C subseteqq
k C supseteqq

l C bumpeq
m C Bumpeq
≪ C llless
≪ C lll
≫ C gggtr
≫ C ggg
p C ulcorner
q C urcorner
s C circledS
t C pitchfork
u C dotplus
v C backsim
w C backsimeq
x C llcorner
y C lrcorner
{ C complement
ᵀ C intercal
} C circledcirc
~ C circledast
� C circleddash
� D lvertneqq
� D gvertneqq
� D nleq
� D ngeq
≮ D nless
≯ D ngtr
⊀ D nprec
� D nsucc
� D lneqq
	 D gneqq

 D nleqslant
� D ngeqslant
� D lneq
 D gneq
� D npreceq
� D nsucceq
� D precnsim
� D succnsim
� D lnsim
� D gnsim
� D nleqq
� D ngeqq
� D precneqq
� D succneqq
� D precnapprox
� D succnapprox
� D lnapprox

Formulas 324

Math collection 19

� D gnapprox
� D nsim
� D ncong
� D diagup
� D diagdown
 D varsubsetneq
! D varsupsetneq
" D nsubseteqq
D nsupseteqq
$ D subsetneqq
% D supsetneqq
& D varsubsetneqq
' D varsupsetneqq
(D subsetneq
) D supsetneq
* D nsubseteq
+ D nsupseteq
∦ D nparallel
- D nmid
. D nshortmid
/ D nshortparallel
0 D nvdash

1 D nVdash
2 D nvDash
3 D nVDash
4 D ntrianglerighteq
5 D ntrianglelefteq
6 D ntriangleleft
7 D ntriangleright
8 D nleftarrow
9 D nrightarrow
: D nLeftarrow
; D nRightarrow
< D nLeftrightarrow
= D nleftrightarrow
> D divideontimes
∅ D varnothing
@ D nexists
` D Finv
a D Game
f D mho
ð D eth
h D eqsim
i D beth

ג D gimel
k D daleth
l D lessdot
m D gtrdot
n D ltimes
o D rtimes
p D shortmid
q D shortparallel
r D smallsetminus
∼ D thicksim
≈ D thickapprox
u D approxeq
v D succapprox
w D precapprox
x D curvearrowleft
y D curvearrowright
z D digamma
κ D varkappa
k D Bbbk
} D hslash
~ D hbar
� D backepsilon

325 Formulas

19 Math collection

20

20 MetaPost
In a ConTEXt document we can use MetaPost code directly. For example:

\startMPgraphic
fill unitsquare scaled 100 withcolor (.2,.3,.4) ;

\stopMPgraphic

A direct relation with the ConTEXt color mechanism is obvious:

\startMPgraphic
fill unitsquare scaled 100 withcolor \MPcolor{mark} ;

\stopMPgraphic

MetaPost support is very extensive. You can store definitions and re--use them at random. If
possible processed MetaPost pictures are re--used.

A detailed discussion on embedding MetaPost graphics is beyond this manual, and therefore
will be covered elsewhere. For the moment it is enough to know the basics of putting for
instance graphics in the background. In the next example, a graphic is calculated each time
it is refered to:

\startuseMPgraphic{test a}
fill unitsquare xscaled \overlaywidth yscaled \overlayheight ;

\stopuseMPgraphic

\defineoverlay[A Nice Rectangle][\useMPgraphic{test a}]

\setupbackgrounds[page][background=A Nice Rectangle]

When the graphic does not change, we can best reuse it, like:

\startreusableMPgraphic{test b}
fill unitsquare xscaled \overlaywidth yscaled \overlayheight ;

\stopreusableMPgraphic

\defineoverlay[A Nice Rectangle][\reuseMPgraphic{test b}]

\setupbackgrounds[page][background=A Nice Rectangle]

When using the ConTEXt command line interface TEXexec, graphics are processed automat-
ically. Unless one calls MetaPost at runtime, a second pass is needed to get the graphics in
their final state.

21

21 Layers

TODO: All about layers

22

22 Interactive documents

TODO: This should explain the various interaction
menus and the use of widgets / ECMAscript

23

23 Modules

TODO: What modules are and how to write them

A

A Definitions

B

B Index
The pagenumbers refer to the chapter or paragraph that describes the topic.

a

abbreviations 201
align 30, 54
alignment 43, 68
columns 48

appendices 186
arranging 35
ascii 10

b

backgrounds
layout 161
text 160

backspace 26, 59
baselines 80
black rules 254
blocks 256
moving 265, 271
numbering 265

bodyfont 84
boldface 76
boxes 10
brackets 6
buffers 273

c

calligraphy 319
capital characters 82
capitals 82
chapters 178, 181
characters 10
character spacing 84
chemical formulas 318
citation 235
cm 11
cmyk 147
color 147
tables 292

colorgroups 151

columns 30, 48, 50
combined list 191
combining 263
commands 6
components 14
ConTEXt 5
cross references 208

d

date 167
definitions 219
descriptions 221
dimensions 11
directories 17
double--sided 59

e

em 11, 101
emphasize 79
enumeration
texts 221

environments 14
error messages 11
ε-TEX 12
ex 11, 101
extensions 10
external figures 275
extroductions 186

f

figures
combining 263
defining 275
extensions 282
listing 256
maximum 280
numbering 256
placing 256
recalling 279

Index 332

B

tables 281
files 10
directories 17

floats 256
font
definition 120

fonts 11, 76, 120
font size 84
footer 61
footers 26, 59
marking 178, 205

footnotes 30, 65
forms 226, 233
formulas
legends 316
overviews 312
placing 312
units 317

fractions 319
fraktur 319
frames 26, 244, 250
framing 244, 250
french spacing 42

g

german 169
gothic 319
gray conversion 147
grayscales 150
grid 30
grids 254

h

header 61
headers 26, 59, 186
marking 178, 205

heads 168, 178
hiding text 272
high text 47
hyphen 170
hyphenation 164

i

indentation 37

indenting 224
index 214
checking 18

inslagschemas 35
interaction
registers 214

inter character spacing 84
introductions 186
italic 76, 79
itemization 221
itemize 226, 233
items 226, 233

k

Knuth 5

l

label 225
labels 168, 213
language
quotes 235

languages 164
layout 26, 37
letter heads 36
linenumbers 208
lines 237, 239
linespace 30
linespacing 80
listing
figures 256
tables 256

lists 53, 191, 233
sorting 203

logos 203
logo types 36
low text 47

m

macros 6
makeup 71
margin
blocks 272
lines 253
text 43

333 Index

B

margins 26
marking 178, 205
math fonts 100
medaeval numbers 76
menus 26
mirroring 59, 271
modes 18
movies 283
moving text 265, 271, 273

n

new
lines 57
page 58

new lines 57
new pages 58
nts 12
numbering
blocks 265
chapters 178, 181, 187
figures 256
formulas 312
itemize 226
label 225
lines 57
pages 59
tables 256

o

old style 76
output format 18
overlays 162
overstrike 242
overviews
formulas 312
units 317

p

page design 25
pagenumbers 59
palettes 151
paper dimension 25
paragraphs 10, 37, 50
indentation 37

vertical spacing 39
parts 178
pdfTEX 12
placing
blocks 256
figures 256
formulas 312
tables 256

postponing text 272
ppchTEX 318
printing 33
products 14
projects 14
pt 11

q

questionnaire 226, 233, 239
quotation 235

r

references 191, 208
checking 18

registers 214
interaction 214

rgb 147
roman 75, 76

s

sans serif 75, 76
screen numbers 59
screens 160, 161
sections 178
selective typesetting 18
set ups 26
single--sided 59
slanted 76, 79
small--caps 82
small capitals 82
smaller layout 37
sorting 203
spacing 39, 80
spacing after colon 42
specials 18
squares 254

Index 334

B

start 13
stop 13
stopping 11
stretching 84
structure 13, 14, 177, 178
structuring elements 178
struts 43
styles 18
subscript 47
superscript 47
symbols 65
synonyms 201

t

TABLE 10
table of contents 191
tables 53, 285
buffers 300
color 292
listing 256
numbering 256
placing 256
running text 302
scaling 281, 300
splitting 299
templates 298

tabulate 53, 224
tabulation 48, 302
templates
table 298

testing 18

TEX 5
version 12

TEXexec 9
mode 18

TEXutil 9
theses 219
titles 178, 181
alternatives 187
margins 43

topspace 26
translate 169
typed text 156
typewriter 75, 76
typing 156
typography 73

u

underline 242
units 317

v

verbatim 156
verbatim text 156
vertical spacing 39

w

whitespacing 80
word spacing 42

C

C Commands
The pagenumbers refer to the chapter or paragraph that describes the command.

abbreviation 201
about 208
adaptlayout 26
AR 285
at 208
atpage 208

background 160
bbox 68
BC 285
begin«block» 265
BL 285
blackrule 254
blackrules 254
blank 39
BR 285
but 226

cal 319
calligraphic 319
CAP 82
Cap 82
cap 82
Caps 82
cbox 68
ch 318
chapter 178
characters 82
chemical 318
CL 285
color 147
colorvalue 150
column 48
comparecolorgroup 151
comparepalet 151
complete«combinedlist» 191
completelistof«floats» 256
completelistof«sorts» 203
completelistof«synonyms» 201
complete«register» 214
components 14
correctwhitespace 39

coupledocument 181
couplemarking 205
coupleregister 214
crlf 57
currentdate 167
current«name» 225

date 167
DC 285
de 164
decouplemarking 205
defineaccent 141
definealternativestyle 138
defineblocks 265
definebodyfont 125
definebodyfontenvironment 95
definebodyfontswitch 138
definecasemap 141
definecharacter 141
definecolor 147
definecolorgroup 151
definecombinedlist 191
definecommand 141
definedescription 219
definedfont 122
definefloat 256
definefont 122
definefontfeature 97
definefontstyle 138
definefontsynonym 120
defineframedtext 250
definehead 178
definelist 191
definelogo 36
definemakeup 71
definemarking 205
defineoverlay 162
definepalet 151
definepapersize 25
defineparagraphs 50
definereferenceformat 213
defineregister 214

Commands 336

C

definesorting 203
definesynonyms 201
definetabulate 302
definetext 61
definetypeface 89, 130
«description» 219
disablemode 18
DL 285
doifmode 18
doifmodeelse 18
doifnotmode 18
donttest 61
DR 285

em 79
en 164
enablemode 18
«enumeration» 221
enumeration 221
environment 14
externalfigure 275, 279

FC 285
fillinline 239
fillinrules 239
fixedspaces 42
footnote 65
formulanumber 312
FR 285
fr 164
frac 319
fraction 319
frak 319
fraktur 319
framed 244

getbuffer 273, 300
getmarking 205
godown 39
goth 319
gothic 319
graycolor 150
grayvalue 150
grid 254

hairline 237
hbox 68

head 226
headnumber 181
headtext 168
hideblocks 265
high 47
HL 285
hl 237

in 208
increment«name» 225
«indentation» 224
indentation 224
indenting 37
inframed 244
inleft 43
inline 208
inmaframed 319
inmarge 43
inothermargin 43
inright 43
installlanguage 165
item 226
items 233
its 226

keepblocks 265

«label» 225
label 225
labeltext 168
lbox 68
LC 285
leftaligned 54
loadmapfile 142
load«sorts» 203
load«synonyms» 201
logo 203
lohi 47
LOW 285
low 47
LR 285

maframed 319
mainlanguage 168
mar 226
marginrule 253
margintext 43

337 Commands

C

marking 205
mathematics 317
MC 285
mf 100
midaligned 54
momarking 178
moveongrid 30
MR 285

«name» 219, 221, 224
NC 285
next«name» 221, 225
next«register» 214
next«section» 187
nextsub«name» 221
nextsubsub«name» 221
nl 164
nocap 82
noheadersandfooterlines 61
noindenting 37
nolist 178, 191
nop 226
nospace 42
note 65
notopandbottomlines 61
nowhitespace 39
NR 285
numberofsubpages 59

overstrike 242
overstrikes 242

page 58
pagenumber 59
pagereference 208
par 37
«paragraph» 50
paragraph 37
part 178
place«combinedlist» 191
place«float» 256
placefootnotes 65
placeformula 312
placelist 191
placelistof«floats» 256
placelistof«sorts» 203
placelistof«synonyms» 201

placelocalfootnotes 65
placelogos 36
placeongrid 30
placeontopofeachother 263
place«register» 214
placesidebyside 263
placesubformula 312
placetable 285
preloadtypescripts 87
processblocks 265
product 14
project 14

quotation 235
quote 235

ran 226
rbox 68
ref 208
reference 208
«register» 214
reserve«float» 256
reset 265
resetmarking 205
reset«name» 221, 225
rightaligned 54
RL 285

sbox 68
section 178
see«register» 214
selectblocks 265
setnostrut 43
setstrut 43
setupalign 54
setuparrangin 35
setupbackground 160
setupbackgrounds 161
setupblackrules 254
setupblank 39
setupblock 265
setupbodyfont 84
setupbodyfontenvironment 95
setupbottom 61
setupbottomtexts 61
setupbuffer 273
setupcapitals 82

Commands 338

C

setupcaptions 256
setupcolors 147
setupcolumns 48
setupcombinations 263
setupcombinedlist 191
setupdescriptions 219
setupencoding 142
setupenumerations 221
setupexternalfigures 275
setupfillinline 239
setupfillinrules 239
setup«floats» 256
setupfloats 256
setupfooter 61
setupfootertexts 61
setupfootnotes 65
setupformulae 312
setupframedin 244
setupframedtexts 250
setuphead 181
setupheader 61
setupheadertexts 61
setupheadnumber 181
setupheads 181
setupheadtext 168
setuphyphenmark 170
setupindentations 224
setupindenting 37
setupinmargin 43
setupinterlinespace 80
setupitemize 226
setupitems 233
setuplabeltext 168
setuplanguage 165
setuplayout 26
setuplinenumbering 57
setuplines 57
setuplist 191
setupmakeup 71
setupmarginblocks 272
setupmarginrule 253
setupmarking 205
setupnarrower 37
setupoutput 18
setuppagenumber 59
setuppagenumbering 59
setuppagesubnumbering 59

setuppalet 151
setuppapersize 25
setupparagraphs 50
setupquotation 235
setupreferencing 208
setupregister 214
setupscreens 160
setupsorting 203
setupspacing 42
setupsynonyms 201
setuptables 285
setuptabulate 302
setuptext 61
setuptextruleen 241
setuptexttexts 61
setupthinrules 237
setuptolerance 54
setuptop 61
setuptoptexts 61
setuptype 156
setuptyping 156
setupwhitespace 39
showbodyfont 98
showbodyfontenvironment 98
showcolor 147
showcolorgroup 151
showexternalfigures 279
showframe 26
showgrid 30
showlayout 26
showpalet 151
showprint 33
showsetups 26
showstruts 43
smallcapped 82
someline 208
somwhere 208
«sorteer» 203
sp 164
space 42
SR 285
startalignment 54
startappendices 186
startbackground 160
startbodypart 186
startbuffer 273, 300
startchemical 318

339 Commands

C

startcolor 147
startcolumns 48
startcombination 263
startcomponent 14
start«description» 219
startencoding 141
start«enumeration» 221
startenvironment 14
startextroductions 186
startfact 316
start«float»text 256
startformula 312
startframedtext 250
starthiding 272
startintroductions 186
startitemize 226
startlegend 316
startline 208
startlinecorrection 39
startlinenumbering 57
startlines 57
startlocalenvironment 14
startlocalfootnotes 65
startmapping 141
startmarginblock 272
startmarginrule 253
startmode 18
start«name»makeup 71
startnarrower 37
startnotmode 18
startopposite 271
startpacked 39
start«paragraph» 50
startpostponing 272
startproduct 14
startproject 14
startquotation 235
startraster 160
startregister 214
startstandardmakeup 71
starttable 285
starttables 285
starttabulate 53, 302
starttext 13
starttypescript 89, 130
starttyping 156
stretched 84

strut 43
sub 226
subformulanumber 312
subject 178
sub«name» 221
subpagenumber 59
subsection 178
subsubject 178
subsub«name» 221
subsubsection 178
subsubsubject 178
subsubsub«name» 221
switchtobodyfont 84
sym 226
«synonym» 201

taal 164
tbox 68
tex 156
textreference 208
textrule 241
thinrule 237
thinrules 237
title 178
totalnumberofpages 59
translate 169
typ 156
type 156
typebuffer 273
typefile 156

underbar 242
underbars 242
unit 317
useblocks 265
useexternalfigure 275
usemodule 318
usetypescript 86, 130
usetypescriptfile 88, 130

vbox 68
version 18
VL 285
vl 237
vtop 68

whitespace 39

Commands 340

C

Word 82
WORDS 82
Words 82

writebetweenlist 191
writetolist 191
writeto«register» 214

D Files in tex/context/base

D Distributed ConTEXt files

D.1 Files in tex/context/base
filename(s) title subtitle
attr-ini.tex (lua) Attribute Macros Initialization
char-act.lua Character Macros Active characters via lua
char-cmp.lua Character Macros Lua character composition
char-def.tex (lua) Character Macros Unicode Support
char-ini.tex (lua) Character Macros Character Support (Initialization)
char-map.lua Character Macros Case mapping
char-mth.lua Character Macros Math named character table
char-syn.lua Character Macros Named character synonyms
char-tok.lua Character Macros Lua token handlers
char-utf.tex (lua) Character Macros Unicode Support (UTF)
colo-ema.tex Color Macros Emacs Colors
colo-ext.tex Color Macros Extras
colo-hex.tex Color Macros Hex Colors
colo-ini.tex Color Macros Initialization
colo-new.tex (mkii,mkiv,lua) Color Macros Initialization
colo-rgb.tex Color Macros RGB
colo-run.tex Color Macros Runtime loaded commands
colo-xwi.tex Color Macros X Windows
cont-cs.tex Context Czech Format Generation
cont-cz.tex Context Czech Format Generation
cont-de.tex Context German Format Generation
cont-en.tex (lua) Context English Format Generation
cont-err.tex System Files Just A warning
cont-fil.tex Miscellaneous Macros File Synonyms
cont-fr.tex Context German Format Generation
cont-gb.tex Context English Format Generation
cont-it.tex Context Italian Format Generation
cont-log.tex Miscellaneous Macros TEX Logos
cont-mtx.tex Miscellaneous Macros Experimental MetaTeX Macros
cont-new.tex (mkii,mkiv) Miscellaneous Macros New Macros
cont-nl.tex Context Dutch Format Generation
cont-old.tex Miscellaneous Macros Old Macros
cont-ro.tex Context Romanian Format Generation
cont-uk.tex Context English Format Generation
context.tex Context Format Generation
cont-sys.ori Miscellaneous Macros System Specific Setups
cont-usr.ori User Format Specifications System Specific Setups
context-characters.lmx Lua-enabled html pages companion to comm-xml.tex
context-debug.lmx Lua-enabled html pages companion to comm-xml.tex
context-error.lmx Lua-enabled html pages companion to comm-xml.tex
context.css Lua-enabled html pages CSS setups
core-bar.tex Core Macros Margin Bars and alike
core-blk.tex Core Macros Blockmoves
core-box.tex Core Macros Boxes
core-buf.tex (mkii,mkiv,lua) Core Macros Buffers
core-con.tex (mkii,mkiv,lua) Core Macros Conversion Macros
core-ctx.tex (mkii,mkiv,lua) Core Macros Job Control
core-dat.tex Core Macros Database Support
core-def.tex Core Macros Defaults

Distributed ConTEXt files 342

Files in tex/context/base D

core-des.tex Core Macros Descriptions
core-fig.tex Core Macros Figure Inclusion
core-fil.tex Core Macros File Support
core-fld.tex Core Macros Fill in fields
core-fnt.tex Core Macros Font Support
core-gen.tex Core Macros General
core-grd.tex Core Macros Grid Snapping (Experimental)
core-hlp.tex Core Macros Help (Experimental)
core-inc.tex (mkii,mkiv,lua) Core Macros Figure Inclusion
core-ini.tex Core Macros Additional Initialization
core-ins.tex Insertion Macros Insertions
core-int.tex Core Macros Interaction
core-itm.tex Core Macros itemgroups
core-job.tex (mkii,mkiv,lua) Core Macros Job Handling
core-lme.tex Core Macros LAst Minute Extensions
core-lnt.tex Core Macros Line Notes
core-lst.tex Core Macros Lists
core-ltb.tex Core Macros Line Tables
core-mak.tex Core Macros General Makeup Commands
core-mar.tex Core Macros Markings
core-mat.tex Core Macros Math Fundamentals
core-mis.tex Core Macros Miscelaneous
core-nav.tex Core Macros Navigation
core-new.tex Core Macros New ones
core-not.tex Core Macros Note Handling
core-ntb.tex Core Macros Natural Tables
core-num.tex Core Macros Numbering
core-obj.tex (mkii,mkiv,lua) Core Macros Object Handling
core-par.tex Core Macros Paragraph Tricks
core-pgr.tex Core Macros Positioning Support
core-pos.tex (mkii,mkiv,lua) Core Macros Positioning Support
core-ref.tex Core Macros Cross Referencing
core-reg.tex (mkii,mkiv,lua) Core Macros Register Management
core-rul.tex (mkii,mkiv,lua) Core Macros Ruled Stuff Handling
core-sec.tex Core Macros Sectioning
core-snc.tex Core Macros Synchronization Support
core-spa.tex (mkii,mkiv,lua) Core Macros Spacing
core-stg.tex Core Macros Strategies
core-swd.tex Core Macros Section Worlds
core-syn.tex (mkii,mkiv,lua) Core Macros Synonyms and Sorts
core-sys.tex (mkii,mkiv) Core Macros System
core-tab.tex Core Macros TABLE Embedding
core-tbl.tex Core Macros Text Flow Tabulation
core-trf.tex Core Macros Transformations
core-tsp.tex Core Macros Splitting Tables
core-two.tex (mkii,mkiv,lua) Core Macros Two Pass Data
core-uti.tex (mkii,mkiv,lua) Core Macros Utility File Handling
core-var.tex Core Macros Variables
core-ver.tex (mkii,mkiv) Core Macros Verbatim
core-vis.tex Core Macros Visualization
enco-032.tex Encoding Macros Unicode Goodies
enco-037.tex Unicode Macros Encoding for vector 37
enco-acc.tex Encoding Macros Composed Characters Commands
enco-agr.tex Unicode Macros Ancient Greek
enco-ans.tex Encoding Macros YandY texnansi Encoding
enco-cas.tex Encoding Macros Named Glyph Case Mapping
enco-chi.tex Encoding Macros Traditional and Simplified Chinese

343 Distributed ConTEXt files

D Files in tex/context/base

enco-com.tex Encoding Macros Composed Characters Commands
enco-cyr.tex Encoding Macros Cyrillic
enco-def.tex Encoding Macros Default Character Definitions
enco-ec.tex Encoding Macros LaTEX EC Encoding
enco-ecm.tex Encoding Macros Glyphs that may not be present in EC
enco-el.tex Encoding Macros EuroLetter
enco-fde.tex Encoding Macros German Input Filter
enco-ffr.tex Encoding Macros French Input Filter
enco-fpl.tex Encoding Macros Polish Input Filter
enco-fro.tex Encoding Macros Romanian Input Filter
enco-fsl.tex Encoding Macros Slovenian Specialities
enco-grk.tex Encoding Macros Greek
enco-heb.tex Encoding Macros Hebrew
enco-ibm.tex Encoding Macros Hebrew
enco-ibm.tex Backward Compatibility IBM (DOS) Regime
enco-il2.tex Encoding Macros Czech and Slovak ISO Latin 2 Encoding
enco-ini.tex (mkii,mkiv) Encoding Macros Initialization
enco-lat.tex Backward Compatibility Latin2 Regime
enco-mis.tex Encoding Macros Missing Glyphs
enco-pdf.tex Encoding Macros YandY texnansi Encoding
enco-pfr.tex (mkii,mkiv) Encoding Macros PDF Font Resource Inclusion
enco-pol.tex Encoding Macros Polish Mixed Encoding
enco-qx.tex Encoding Macros Polish QX Encoding
enco-raw.tex Encoding Macros plain ASCII Encoding
enco-run.tex Encoding Macros Runtime Macros
enco-t5.tex Encoding Macros New Vietnamese Encoding
enco-tbo.tex Encoding Macros TeXBaseOne Encoding
enco-uc.tex Encoding Macros Unicode (backwards mapping)
enco-utf.tex Encoding Macros UTF-* Encoding
enco-vis.tex Backward Compatibility Vietnamese Regime
enco-vna.tex Encoding Macros Vietnamese Accents
enco-win.tex Backward Compatibility Windows Regime
enco-x5.tex Encoding Macros Vietnamese Encoding
filt-bas.tex Filter Macros A Base Collection
filt-ini.tex Filter Macros Initialization
font-afm.lua MKIV font code Handling AFM files
font-arb.tex Backward Compatibility Old arabtex loader
font-bfm.tex Font Macros Mixed Normal and Bold Math
font-chi.tex Font Macros Chinese
font-col.tex (lua) Font Macros Fallbacks (collections)
font-def.lua MKIV font code Parsing font definitions
font-enc.lua MKIV font code Encoding remapper
font-ext.lua MKIV font code Font expansion and protrusion
font-fbk.lua MKIV font code Font fallbacks (experimental)
font-heb.tex Backward Compatibility Old arabtex hebrew loader
font-ini.tex (mkii,mkiv,lua) Font Macros Initialization
font-jap.tex Font Macros Japanese
font-map.lua MKIV font code Mapfile loader
font-old.lua MKIV font code old obsolete stuff
font-otf.lua MKIV font code Handling OTF and TTF files
font-run.tex Font Macros Runtime Macros
font-set.tex (lua) Lua Macros Font Loading Support
font-syn.lua MKIV font code Font filename aliases
font-tfm.lua MKIV font code Handling TFM files
font-uni.tex Font Macros Unicode Initialization
font-unk.tex Font Macros Unknown Defaults
font-vf.lua MKIV font code Handling VF files

Distributed ConTEXt files 344

Files in tex/context/base D

hand-def.tex Handling Macros Default Protruding Factors
hand-ini.tex (mkii,mkiv) Handling Macros Initialization
java-ans.tex JavaScript Macros Answer Analization
java-exa.tex JavaScript Macros Example Support
java-fil.tex JavaScript Macros Filing and Printing
java-fld.tex JavaScript Macros Field Support
java-ini.tex JavaScript Macros Initialization
java-stp.tex JavaScript Macros Stepping
l-aux.lua Lua libraries Low-level auxiliary routines
l-boolean.lua Lua libraries Handling of lua booleans
l-dimen.lua Lua libraries Calculations with TEX dimensions
l-dir.lua Lua libraries Operations on directories
l-file.lua Lua libraries Operations on files and filenames
l-io.lua Lua libraries File IO routines
l-lpeg.lua Lua libraries Low-level lpeg helpers
l-math.lua Lua libraries A few extra math routines
l-md5.lua Lua libraries Using MD5 checksums
l-number.lua Lua libraries Number manipulations
l-os.lua Lua libraries Operating System interface
l-set.lua Lua libraries Set operations
l-string.lua Lua libraries String manipulations
l-table.lua Lua libraries Table manipulations
l-unicode.lua Lua libraries Unicode helper routines
l-url.lua Lua libraries URL handling
l-utils.lua Lua libraries Utility file handling
l-xml.lua Lua libraries XML parser
l-xml-edu.lua Lua libraries old XML parser (obsolete)
l-xmlctx.lua Lua libraries CTX helper routines
lang-all.xml XML databases Language data
lang-alt.tex Language Macros Altaic Languages
lang-ana.tex Language Macros Anatolian Languages
lang-ara.tex Language Macros Arabic Languages
lang-art.tex Language Macros Artificial Languages
lang-bal.tex Language Macros Baltic Languages
lang-cel.tex Language Macros Celtic Languages
lang-chi.tex Language Macros Chinese
lang-ctx.tex Language Macros Generic Patterns
lang-cyr.tex Language Macros Cyrillic Languages
lang-dis.tex Language Macros Distribution Patterns
lang-frd.tex Language Macros Language Frequency Table Data
lang-frq.tex Language Macros Language Frequency Table Support
lang-ger.tex Language Macros Germanic Languages
lang-grk.tex Language Macros Uralic Languages
lang-ind.tex Language Macros Indo Iranian Languages
lang-ini.tex (mkii,mkiv,lua) Language Macros Initialization
lang-ita.tex Language Macros Italic Languages
lang-jap.tex Language Macros Japanese
lang-lab.tex Language Macros Language Head and Label Texts
lang-mis.tex Language Macros Language Options
lang-run.tex Language Macros Runtime Macros
lang-sla.tex (mkii,mkiv) Language Macros Slavic Languages
lang-spa.tex Language Macros Spacing
lang-spe.tex Language Macros Specifics
lang-sla.tex (mkii,mkiv) Language Macros Uralic Languages
lang-tst.lua Language Macros Experimental lua tests
lang-url.tex (mkii,mkiv,lua) Language Macros Language Options
lang-vn.tex Language Macros Vietnamese

345 Distributed ConTEXt files

D Files in tex/context/base

luat-cbk.lua Lua MkIV core Callbacks
luat-crl.lua Lua MkIV core Curl interface
luat-deb.tex (lua) Communication Macros Initialization
luat-env.tex (lua) Lua Macros ConTeXt features
luat-exe.lua Lua MkIV core Executing external comnands
luat-ini.tex (lua) Lua Macros Initialization
luat-inp.lua Lua MkIV core Finding files
luat-iop.lua Lua MkIV core I/O processing
luat-lib.tex (lua) Lua Macros Unicode Support
luat-kps.lua Lua MkIV core Kpathsea emulation
luat-lmx.tex (lua) Lua Macros LMX Support
luat-log.tex (lua) Lua Macros LOGO Support
luat-lua.lua Lua MkIV core Low-level lua routines
luat-rmp.lua Lua MkIV core XML remapping
luat-sta.lua Lua MkIV core System states
luat-tex.lua Lua MkIV core Process logging and statistics
luat-tmp.lua Lua MkIV core Caching information
luat-tra.lua Lua MkIV core Tracing routines
luat-tre.lua Lua MkIV core XML Tree routines
luat-uni.tex (lua) Lua Macros Unicode Support
luat-zip.lua Lua MkIV core Zip file interface
lxml-ini.tex (lua) Lua based xml Support Initialization
m-arabtex.tex Modules Arabic
m-chart.tex Modules Flow Charts
m-chemic.tex Extra Modules ppchTEX (Plain Pictex Context cHemie TEX)
m-cweb.tex Extra Modules cweb Pretty Printing Macros
m-database.tex Modules Database Thingies
m-dratex.tex Extra Modules DRATEX Loading Macros
m-editsnc.tex Modules Editor Synchronization
m-educat.tex Extra Modules Educational Extras
m-gamma.tex Extra Modules Basic Omega Support
m-gnuplot.tex Extra Modules gnuplot Inclusion
m-graph.tex Extra Modules MetaPost graph module support
m-layout.tex Modules Additional Layouts
m-level.tex Extra Modules Catching Nesting Errors
m-narrowtt.tex Modules Narrow Verbatim
m-newmat.tex Math Module AMS-like math extensions
m-pdfsnc.tex Modules Editor Synchronization
m-pictex.tex Extra Modules PICTEX Loading Macros
m-plus.tex Extra Modules Loading extra features
m-pstricks.tex Extra Modules pstricks Connections
m-invull.tex Extra Modules Exercise
m-r.tex Modules R Support
m-steps.tex Modules Step Charts and Tables
m-streams.tex Modules Streams
m-subsub.tex Private Modules More Section Levels
m-tex4ht.tex Private Modules Preliminary tex4ht support
m-timing.tex Modules Timing
m-tryout.tex Extra Modules Tryout Features
m-units.tex Extra Modules Scientific Units
m-visual.tex Extra Modules Visualization and Faking
math-ams.tex Math Macros AMS Specials
math-cow.tex Math Macros Cow Math
math-def.lua Math Macros MKIV definitions
math-ent.lua Math Macros MKIV Math entities
math-eul.tex Math Macros Virtual Euler Specials
math-ext.tex Math Macros Extra Macros

Distributed ConTEXt files 346

Files in tex/context/base D

math-fou.tex Math Macros Fourier Specials
math-ini.tex (mkii,mkiv,lua) Math Macros Basic Macros
math-lbr.tex Math Macros Lucida Specials
math-mis.tex Math Macros Miscelaneous Symbols
math-pln.tex System Macros Efficient Plain TEX loading
math-run.tex Math Macros Runtime Macros
math-tex.tex Plain Specials
math-tim.tex Math Macros Mathtime Specials
math-uni.tex Math Macros unicode support
meta-clp.tex MetaPost Graphics Clipping
meta-dum.tex MetaPost Graphics Dummy (External) Graphics
meta-fig.tex (mkii,mkiv) MetaPost Graphics Stand Alone Graphics
meta-ini.tex (mkii,mkiv) MetaPost Graphics Initialization
meta-mis.tex MetaPost Graphics Misc Test Graphics
meta-nav.tex MetaPost Graphics Navigational Graphics
meta-pag.tex MetaPost Graphics Initialization
meta-pdf.tex (mkii,mkiv,lua) Support Macros MetaPost to pdf conversion
meta-pre.tex MetaPost Graphics Predefined Goodies
meta-tex.tex (mkii,mkiv) Support Macros MetaPost fast text insertion
meta-txt.tex MetaPost Graphics Text Tricks
meta-xml.tex MetaPost Graphics XML Hacks
mlib-ctx.tex (lua) MetaPost Integrated Graphics Basics
mlib-pdf.tex (lua) MetaPost Integrated Graphics Conversion to PDF
mlib-pps.tex (lua) MetaPost Integrated Graphics Basics
mlib-run.lua MetaPost Integrated Graphics job control
mult-com.tex Multilingual Macros Commands
mult-con.tex Multilingual Macros Constants
mult-fst.tex Multilingual Macros Speed Up
mult-ini.tex (mkii,mkiv,lua) Multilingual Macros Initialization
mult-sys.tex Multilingual Macros System
node-ini.tex (lua) Character Macros Node Support (Initialization)
page-app.tex Core Macros Independent page building
page-bck.tex Page Macros Backgrounds
page-flt.tex OTR Macros Floating Bodies
page-flw.tex OTR Macros Text Flows
page-imp.tex Core Macros Pagebody Building (Imposition)
page-ini.tex Page Macros Initializations
page-lay.tex Page Macros Layout Specification
page-lin.tex (mkii,mkiv,lua) Core Macros Line Numbering
page-log.tex Page Macros Logos
page-lyr.tex Page Macros Layers
page-mak.tex Page Macros Simple MakeUp
page-mar.tex Core Macros Marginal Things
page-mul.tex OTR Macros Multi Column Output
page-new.tex Page Macros Page New
page-nnt.tex Page Macros Footnotes
page-num.tex Core Macros Numbering
page-one.tex OTR Macros Default Routine
page-par.tex Core Macros Line Numbering
page-pls.tex Core Macros Page Setup
page-run.tex Page Macros Runtime Macros
page-set.tex OTR Macros Column Sets
page-sid.tex OTR Macros Side Floats
page-spr.tex Page Macros Spreading
page-str.tex Core Macros Page Streams
page-txt.tex Page Macros Texts
pdfr-def.tex PDF Font Resources Character definitions (autogenerated)

347 Distributed ConTEXt files

D Files in tex/context/base

pdfr-ec.tex PDF Font Resources EC encoding
ppchtex (m-chemie).tex Extra Modules ppchTEX (Plain Pictex Context cHemie TEX)
prop-ini.tex Property Macros Initialization
prop-lay.tex Property Macros Layers
prop-mis.tex (mkii,mkiv) Property Macros Miscelaneous
prop-run.tex Property Macros Runtime Macros
regi-8859-1.tex (lua) Regime Macros iso-8859-1 (West European)
regi-8859-10.tex (lua) Regime Macros iso-8859-10 (Nordic)
regi-8859-13.tex (lua) Regime Macros iso-8859-13 (Baltic)
regi-8859-15.tex (lua) Regime Macros iso-8859-15 (West European)
regi-8859-16.tex (lua) Regime Macros iso-8859-16 (Romanian)
regi-8859-2.tex (lua) Regime Macros iso-8859-2 (East European)
regi-8859-3.tex (lua) Regime Macros iso-8859-3 (South European)
regi-8859-4.tex (lua) Regime Macros iso-8859-4 (North European)
regi-8859-5.tex (lua) Regime Macros iso-8859-5 (Cyrillic)
regi-8859-7.tex (lua) Regime Macros iso-8859-7 (Greek)
regi-8859-11.lua Regime Macros iso-8859-11
regi-8859-14.lua Regime Macros iso-8859-14
regi-8859-6.lua Regime Macros iso-8859-6
regi-8859-8.lua Regime Macros iso-8859-8
regi-cp1255.lua Regime Macros code page 1255
regi-cp1256.lua Regime Macros code page 1256
regi-cp1258.lua Regime Macros code page 1258
regi-8859-9.tex (lua) Regime Macros iso-8859-9 (Turkish)
regi-cp1250.tex (lua) Regime Macros cp1250 (East European)
regi-cp1251.tex (lua) Regime Macros cp1251 (Cyrillic)
regi-cp1252.tex (lua) Regime Macros cp1252 (West European)
regi-cp1253.tex (lua) Regime Macros cp1253 (Greek)
regi-cp1254.tex (lua) Regime Macros cp1254 (Turkish)
regi-cp1257.tex (lua) Regime Macros cp1257 (Windows Baltic)
regi-cyp.tex Regime Macros Cyrillic Plus
regi-cyr.tex Regime Macros Cyrillic
regi-def.tex Regime Macros Default Character Definitions
regi-ibm.tex Regime Macros The Good Old MSDOS IBM codepage
regi-ini.tex (mkii,mkiv,lua) Regime Macros Initialization
regi-mac.tex Regime Macros Mac Encoding
regi-run.mkii Regime Macros Runtime Macros
regi-syn.tex Regime Macros Synonyms
regi-uni.tex Regime Macros Unicode
regi-utf.tex Regime Macros UTF-8
regi-vis.tex Regime Macros viscii
rlxcache.rlx RLX files Cache
rlxtools.rlx RLX files Tools
s-abr-01.tex Style File General Abbreviations 1
s-abr-02.tex Style File General Abbreviations 2
s-abr-03.tex Style File General Abbreviations 3
s-cdr-01.tex Style File CDROM Cover
s-chi-00.tex Style File Basic Chinese Style
s-faq-00.tex Style File FAQ Common Macros
s-faq-01.tex Style File FAQ Interactive Version
s-faq-02.tex Style File FAQ Paper Version
s-faq-03.tex Style File FAQ General Framework
s-fnt-01.tex Style File Font Environment 1
s-fnt-02.tex Style File Font Environment 2
s-fnt-10.tex Style File Font Environment definitions
s-grk-00.tex Style File CB Greek Support
s-jap-00.tex Style File Basic Japanese Style

Distributed ConTEXt files 348

Files in tex/context/base D

s-mag-01.tex Style File Magazine Base Style
s-map-se.tex Style File Maps basis stijl
s-mod-00.tex Style File Documentation Base Environment
s-mod-01.tex Style File Documentation Paper Environment
s-mod-02.tex Style File Documentation Screen Environment
s-pre-00.tex Style File Presentation Environment 0
s-pre-01.tex Style File Presentation Environment 1
s-pre-02.tex Style File Presentation Environment 2
s-pre-03.tex Style File Presentation Environment 3
s-pre-04.tex Style File Presentation Environment 4
s-pre-05.tex Style File Presentation Environment 5
s-pre-06.tex Style File Presentation Environment 6
s-pre-07.tex Style File Presentation Environment 7
s-pre-08.tex Style File Presentation Environment 8
s-pre-09.tex Style File Presentation Environment 9
s-pre-10.tex Style File Presentation Environment 10
s-pre-13.tex Style File Presentation Environment 13
s-pre-14.tex Style File Presentation Environment 14
s-pre-15.tex Style File Presentation Environment 15
s-pre-16.tex Style File Presentation Environment 16
s-pre-19.tex Style File Presentation Environment 19
s-pre-22.tex Style File Presentation Environment 22
s-pre-20.tex Style File Presentation Environment 20
s-pre-30.tex Style File Presentation Environment 30
s-pre-50.tex Style File Presentation Environment 50
s-pre-60.tex Style File Presentation Environment 60
s-pre-61.tex Style File Presentation Environment 61
s-pre-62.tex Style File Presentation Environment 62
s-pre-63.tex Style File Presentation Environment 63
s-pre-64.tex Style File Presentation Environment 64
s-ptj-01.tex Style File PracTeX Journal Style
s-syn-01.tex Style File Preliminary Syntax Stuff
s-sys-01.tex Style File Generate List of Math Symbol
sort-def.tex (mkii,mkiv) Sort Macros Defaults
sort-ini.tex (mkii,mkiv,lua) Sort Macros Initialization
sort-lan.tex (mkii,mkiv,lua) Sort Macros Language Definitions
spec-def.tex (mkii,mkiv) Special Macros Definitions
spec-dpm.tex Special Macros DVIPDFM support
spec-dpx.tex Special Macros DVIPDFMx support
spec-dvi.tex Special Macros Generic TEX Solutions
spec-fdf.tex (mkii,mkiv) pdf Macros Support Macros
spec-ini.tex Special Macros Initialization
spec-mis.tex Special Macros Miscellaneous Macros
spec-pdf.tex (lua) Special Macros Adobe Acrobat version 2.1
spec-ps.tex Special Macros Adobe PostScript
spec-tpd.tex (mkii,mkiv) Special Macros pdfTEX
spec-tr.tex Special Macros Thomas Rokicki’s DVIPS
spec-tst.tex PDF Macros Special Test Macro
spec-var.tex Special Macros Variables
spec-win.tex Special Macros YandY’s DIWINDO
spec-xtx.tex Special Macros X ETEX support
spec-xtx.tex Special Macros X ETEX support
spec-yy.tex Special Macros YandY’s DVIPSONE and DVIWINDO
supp-ali.tex Support Macros Alignment
supp-box.tex Support Macros Boxes
supp-dir.tex Support Macros Directional Things
supp-emp.tex Support Macros emTEX specials to pdf conversion

349 Distributed ConTEXt files

D Files in tex/context/base

supp-eps.tex Support Macros eps tools
supp-fil.tex (mkii,mkiv,lua) Support Macros Files
supp-fun.tex Support Macros Fun Stuff
supp-ini.tex Support ystem Macros Initializations
supp-lan.tex Support Macros Language Options
supp-mat.tex Support Macros Math
supp-mis.tex Support Macros Missing (For Generic Use)
supp-mpe.tex Support Macros METAPOST Special Extensions
supp-mps.tex Support Macros MetaPost Inclusion
supp-mrk.tex Support Macros Marks
supp-num.tex Support Macros Number (Digit) Handling
supp-pat.tex Language Macros Loading (Generic) Patterns
supp-pdf.tex Support Macros MetaPost to pdf conversion
supp-ran.tex Support Macros Random Number Generation
supp-spe.tex Support Macros Specials
supp-tpi.tex Support Macros tpic Conversion
supp-vis.tex Support Macros Visualization
symb-cow.tex Symbol Libraries Cow Symbols
symb-eur.tex Symbol Libraries Adobe Euro Symbols
symb-glm.tex Symbol Libraries Guillemots
symb-ini.tex Symbol Libraries Basic Symbols Commands
symb-jmn.tex Symbol Libraries Special Navigational Symbols
symb-mis.tex Symbol Libraries Miscelaneous
symb-mvs.tex Symbol Libraries Martin Vogels Symbole
symb-nav.tex Symbol Libraries Navigational Symbols
symb-run.tex Symbol Libraries Runtime Macros
symb-uni.tex Symbol Libraries Unicode Symbols
symb-was.tex Symbol Libraries Roland Waldi’s Symbols (wasy-2)
syst-cat.tex (mkii,mkiv) System Macros Catcode Handling
syst-chr.tex System Macros Character Related Things
syst-con.tex (mkii,mkiv,lua) System Macros Conversions
syst-etx.tex System Macros Efficient Plain TEX loading
syst-ext.tex System Macros Extras
syst-fnt.tex System Macros Font Things
syst-gen.tex System Macros General
syst-mtx.tex System Macros MetaTEX specifics
syst-new.tex Support Macros New Ones
syst-omg.tex System Macros A couple of Omega goodies
syst-pdt.tex System Macros pdfTEX specifics
syst-pln.tex System Macros Efficient Plain TEX loading
syst-prm.tex System Macros Primitive Behavior
syst-rtp.tex (mkii,mkiv) Core Macros Run Time Processes
syst-str.tex (mkii,mkiv) System Macros String Processing
syst-tex.tex System Macros Efficient Plain TEX loading
syst-var.tex System Macros Variables
syst-xtx.tex System Macros X ETEX specifics
thrd-pic.tex Third party macros PicTeX
thrd-ran.tex Third party macros Randomizer
thrd-tab.tex Third party macros TaBlE
thrd-trg.tex Third party macros Trigonometry
todo-mkii.tex TODO list MKII
todo-mkiv.tex TODO list MKIV
toks-ini.tex (lua) Character Macros Token Support (Initialization)
type-akb.tex Typescript Macros Adobe’s Famous Gang of Fonts
type-buy.tex Typescript Macros A Few Commercial Fonts
type-cbg.tex Typescript Macros CB Greek
type-cow.tex Typescript Macros Cow Fonts

Distributed ConTEXt files 350

Files in tex/context/base D

type-def.tex Typescript Macros Default Definitions
type-dis.tex Typescript Macros Distribution scripts
type-enc.tex Typescript Macros Encoding scripts
type-exa.tex Typescript Macros Example scripts
type-exp.tex Typescript Macros Experimental Definitions
page-new.tex Page Macros Fontsite 500
type-ghz.tex Typescript Macros Hermann Zapf’s Fonts
type-gyr.tex Typescript Macros TeXGyre Collection
type-hgz.tex Typescript Macros Hermann Zapf’s Fonts
type-ini.tex Typescript Macros Initialization
type-map.tex Typescript Macros Mapfile scripts
type-msw.tex Typescript Macros Microsoft Windows Fonts
type-old.tex Typescript Macros Ghosts from the Past
type-omg.tex Typescript Macros Basic Omega Gamma Definitions
type-one.tex Typescript Macros Type One Definitions
type-otf.tex Typescript Macros Opentype Definitions
type-pre.tex Typescript Macros Compatibility scripts
type-run.tex Typescript Macros Runtime Macros
type-siz.tex Typescript Macros Sizing scripts
type-spe.tex Typescript Macros Special scripts
type-syn.tex Typescript Macros Filename scripts
type-tmf.tex Typescript Macros Core TEX Fonts
type-xtx.tex Typescript Macros X ETEX’s font treasures
typo-ini.tex Typographic Macros Initialization
unic-000.tex Unicode Macros Vector 0
unic-001.tex Unicode Macros Vector 1
unic-002.tex Unicode Macros Vector 2
unic-003.tex Unicode Macros Vector 3
unic-004.tex Unicode Macros Vector 4
unic-005.tex Unicode Macros Vector 5
unic-030.tex Unicode Macros Vector 30
unic-031.tex Unicode Macros Vector 31
unic-032.tex Unicode Macros Vector 32
unic-033.tex Unicode Macros Vector 33
unic-034.tex Unicode Macros Vector 34
unic-037.tex Unicode Macros Vector 37
unic-039.tex Unicode Macros Vector 39
unic-251.tex Unicode Macros Vector 251
unic-cjk.tex Unicode Macros CJK Vectors
unic-exp.tex Unicode Support Unicode vector expansion
unic-ini.tex (mkii,mkiv) Unicode Support Unicode and UTF-8 support
unic-run.tex Unicode Support Goodies
verb-c.tex Verbatim Macros Pretty C Verbatim
verb-eif.tex Verbatim Macros Pretty Eiffel Verbatim
verb-ini.tex Verbatim Macros Initialization
verb-js.tex Verbatim Macros Pretty JavaScript Verbatim
verb-jv.tex Verbatim Macros Pretty Java Verbatim
verb-lua.lua Verbatim Macros Pretty Lua verbatim
verb-mp.tex (lua) Verbatim Macros Pretty MetaPost Verbatim
verb-pas.tex Verbatim Macros Pretty Pascal and Modula Verbatim
verb-pl.tex Verbatim Macros Pretty Perl Verbatim
verb-raw.tex Verbatim Macros RAW
verb-sql.tex Verbatim Macros Pretty sql Verbatim
verb-tex.tex (lua) Verbatim Macros Pretty TEX verbatim
verb-xml.tex Verbatim Macros Pretty XML verbatim
x-calcmath.mkiv Modules Calculator Math
x-cals.mkiv XML Modules Cals table renderer

351 Distributed ConTEXt files

D Files in tex/context/base

x-chemml.tex (mkii,mkiv) XML Modules Loading CHEMML Filters
x-chemml.xsd XML Schemas ChemML (XSD)
x-contml.tex XML Support Basic Context commands
x-contml.xsd XML Schemas ML (XSD)
x-corres.tex XML Modules Handling Correspondence Base
x-corres.rng XML Schemas Coresspondence (Relax NG)
x-ct.xml XML Modules Structures
x-dir-01.tex Directory Handling Overview (1)
x-fdf-00.tex XML Modules FDF support
x-fe.tex foXet Simple Extensions
x-fig-00.tex Style File Figure Base Loading
x-fig-00.dtd XML Schemas Figure databases (DTD)
x-fig-00.xsd XML Schemas Figure databases (XSD)
x-fig-01.tex Style File Figure Base Generation
x-fig-02.tex Style File Figure Base Inclusion (I)
x-fig-03.tex Style File Figure Base Inclusion (II)
x-fo.tex foXet Formatting Objects
x-foxet.tex foXet Main foXet loader
x-ldx.tex XML Modules LDX support
x-ldx.ctx CTX process files Lua Documentation Generator
x-mathml.tex (mkii,mkiv,lua) XML Modules Loading MathML Filters
x-mathml.xsd XML Schemas MathML (XSD)
x-newmml.tex (mkii,mkiv) XML Modules ChemML renderer
x-newmme.tex XML Modules MathML Entities
x-newmml.tex (mkii,mkiv) XML Modules MathML Renderer
x-newmmo.tex XML Modules MathML Renderer/Open Math Extensions
x-newpml.tex XML Support Units
x-om2cml.xsl XSL Transformations OpenMath to MathML
x-openmath.xsl XSL Transformations OpenMath
x-physml.tex XML Modules Loading PHYSML Filters
x-physml.xsd XML Schemas PhysML (XSD)
x-res-00.tex Style File Resource Libraries
x-fig-01.tex Style File Figure Base Generation
x-res-02.tex Style File Figure Base Inclusion (I)
x-res-03.tex Style File Figure Base Inclusion (II)
x-res-04.tex Style File Figure Base Loading
x-res-08.tex Style File Resource Reporting
x-res-09.tex Style File Resource Reporting (2)
x-res-10.tex Style File Resource Dummy Generation
x-res-11.tex Style File Resource Reporting (3)
x-res-12.tex Style File Resource Checking
x-res-20.tex Style File Figure Lists
x-res-50.tex Style File Multimedia Presentation
x-sch-00.tex Style File XML Schema Basics
x-sch-01.tex Style File XML Schema Presentation
x-set-01.tex Setup Mappings Macro Definitions
x-set-02.tex Setup Mappings Macro Definitions
x-set-11.tex (mkii,mkiv) Setup Definitions Macro Definitions
x-set-12.tex Setup Definitions Macro Definitions
x-sm2om.xsl XSL Transformations SimpleMath to OpenMath
x-xml-01.tex XML Style File Formatting X?? files
x-xml-02.tex XML Style File Pretty Printing
x-xml-11.tex XML Style File Formatting X?? files
x-xml-11.tex XML macros ChemML
xtag-ent.tex XML Support A bunch of Entities
xtag-exp.tex XML Support Expansion Related Things
xtag-ext.tex XML Support Extra Macros

Distributed ConTEXt files 352

Files in tex/context/base D

xtag-hyp.tex XML Support hyphenation support
xtag-ini.tex (mkii,mkiv) XML Support Initialization
xtag-map.tex XML Support Remapping
xtag-mea.tex XML Support ISOAMSA entities
xtag-meb.tex XML Support ISOAMSB entities
xtag-mec.tex XML Support ISOAMSC entities
xtag-meh.tex XML Support ISOTECH entities
xtag-men.tex XML Support ISOAMSN entities
xtag-meo.tex XML Support ISOAMSO entities
xtag-mer.tex XML Support ISOAMSR entities
xtag-mmc.tex XML Support Math ML
xtag-mml.tex XML Support Math ML
xtag-mmp.tex XML Support Math ML
xtag-mxa.tex XML Support MathML ISOAMSA Entity aliases
xtag-mxb.tex XML Support MathML ISOAMSB Entity aliases
xtag-mxc.tex XML Support MathML ISOAMSC Entity aliases
xtag-mxh.tex XML Support MathML ISOTECH Entity aliases
xtag-mxn.tex XML Support MathML ISOAMSN Entity aliases
xtag-mxo.tex XML Support MathML ISOAMSO Entity aliases
xtag-mxr.tex XML Support MathML ISOAMSR Entity aliases
xtag-pml.tex XML Support Physics ML
xtag-pmu.tex XML Support Units
xtag-pre.tex XML Support Predefined Things
xtag-prs.tex XML Support Parsing
xtag-raw.tex XML Support reducing specials
xtag-rng.tex XML Support Relax NG
xtag-run.tex XML Support Visualization
xtag-exp.tex XML Support Stacking Data
xtag-utf.tex XML Support UTF-8 support
xtag-xsd.tex XML Support Schemas
xtag-xsl.tex XML Support XSLT processing

E

E texmfstart manual

Introduction
This manual is about a small (Ruby) script that can be used to run a script or open a document
which is located somewhere in the texmf tree. This scripts evolved out of earlier experiments
and is related to scripts and programs like runperl, runruby and irun.

One of the main reasons for texmfstart to exist is that it enables us to be downward compat-
ible when using a TEX based environment. TEX itself is pretty stable, but this is not true for
the whole collection of files that comes with a distribution and the way they are organized.
We will see some other reasons for using this script as well.

We can also use this script for lanching applications that need access to resources in the TEX
tree but that lack the features to locate them.

The script has a few dependencies on libraries. This means that relocating the script to a bin
path may give problems. One can make a self--contained version by saying:

texmfstart –selfmerge

One can undo this with the –selfclean option. Normally users don’t have to worry about
this because in the ConTEXt distribution the merged version is shipped. A MS Windows
(pseudo) binary can be made with exerb or one can simply associate the .rb suffix with the
Ruby program.

FTYPE RubyScript=c:\data\system\ruby\bin\ruby.exe %%1 %%*

ASSOC .rb=RubyScript
ASSOC .rbw=RubyScript

On Unix one can make a copy without suffix:

cp texmfstart.rb /path/to/bin/texmfstart
chmod +x texmfstart

Alternative approaches have been discussed on the ConTEXt and TEXLive mailing lists and
can be found in their archives.

Launching programs
The primary usage of texmfstart is to launch programs and scripts. We can start the texexec
Perl script with:

texmfstart texexec.pl –pdf somefile

We can also start the pstopdf Ruby script:

texmfstart pstopdf.rb –method=3 cow.eps

However, we can omit the suffix:

texmfstart texexec –pdf somefile
texmfstart pstopdf –method=3 cow.eps

texmfstart manual 354

E

The suffixless method is slower unless the scripts are known. For familiar ConTEXt scripts
it’s best not to use the suffix since this permits us to change the scripting language. ConTEXt
related scripts are known. Because in the meantime texexec has become a Ruby script, users
who use the suffixless method automatically will get the right version.
You can also say:
texmfstart –file=pstopdf –method=3 cow.eps

When locating a file to run, several methods are applied, one being kpsewhich. You can
control the path searching by providing a program space, which by default happens to be
context.
texmfstart –program=context –file=pstopdf –method=3 cow.eps

The general pattern is:
texmfstart switches filename arguments

Here switches control texmfstart’s behaviour, and arguments are passed to the program
identified by filename.
Sometimes the operating system will spoil our little game of passing arguments. In the
following case we want the output of texexec to be written to a log file. By using quotes,
we can pass the redirection without problems.
texmfstart texexec "somefile.tex > whatever.log"

Generating stubs
One of the reasons for writing texmfstart is that it permits us to write upward compatible
scripts (batch files), so instead of
texexec –pdf somefile
texexec –pdf anotherfile

We prefer to use:
texmfstart texexec –pdf somefile
texmfstart texexec –pdf anotherfile

Instead of using texmfstart directly you can also use it in a stub file. For MS Windows such
a file looks like:
@echo off
texmfstart texexec %*

In this case, the file itself is named texexec.cmd. Now, given that no new functionality of
texmfstart itself is needed, one will automatically use the version of texexec that is present
in the (latest) installed ConTEXt tree.
It is possible to generate stubs automatically. You can provide a path where the stub will be
written. This permits tricks like the following. Say that on a cdrom we have the following
structure:
tex/texmf-mswin/bin/texexec.bat
tex/texmf-linux/bin/texexec
tex/texmf-local/scripts/context/ruby/texexec.rb

355 texmfstart manual

E

If we are on the main tex path, we can run texmfstart as follows:
texmfstart –make –windows –stubpath=tex/texmf-mswin/bin \

../../texmf-local/scripts/context/ruby/texexec.rb
texmfstart –make –unix –stubpath=tex/texmf-linux/bin \

../../texmf-local/scripts/context/ruby/texexec.rb

This will generate start up scripts that point directly to the Perl script. Such a link may fail
when files get relocated. In that case you can use the –indirect directive, which will force
the texmfstart into the stub file.
texmfstart –make –windows –indirect –stubpath=tex/texmf-mswin/bin \

../../texmf-local/scripts/context/ruby/texexec.rb
texmfstart –make –unix –indirect –stubpath=tex/texmf-linux/bin \

../../texmf-local/scripts/context/ruby/texexec.rb

However, the prefered way and most simple way to generate the stubs for the scripts that
come with ConTEXt is:
texmfstart –make all

This will generate stubs suitable for the current operating system in the current path.

Documents
You can use texmfstart to open a document.
texmfstart showcase.pdf

This will open the document showcase.pdf, when found. The chance is minimal that such a
document can be located by kpsewhich. In that case, texmfstart will search the tree itself.
Given that it is supported on your platform, you can also open a pdf file on a given page.
texmfstart –page=2 showcase.pdf

On MS Windows the following command will open the pdf file in a web browser. This is
needed when you want support for form submission.
texmfstart –browser examplap.pdf

Search strategy
In a first attempt, kpsewhich will be used to locate a file. When kpsewhich cannot locate the
file, the following environment variables will be used:
RUBYINPUTS ruby scripts with suffix rb
PERLINPUTS perl scripts with suffix pl
PYTHONINPUTS python scripts with suffix py
JAVAINPUTS java archives with suffix jar
PDFINPUTS pdf documents with suffix pdf

It using them fails as well, the whole tree is searched, which will take some time.
When a file found, its location is remembered and passed on to nested runs. So, in general,
a nested run will start faster.

texmfstart manual 356

E

Directives
The script accepts a few directives. Some are rather general:

–verbose report some status and progress information
–arguments an alternative for providing the arguments to be passed
–clear don’t pass info about locations to child processes

Directives that concern starting an application are:

–program=str the program space where kpsewhich will search
–locate report the call as it should happen (no newline)
–report report the call as it should happen (simulated)
–browser start the document in a web browser
–file an alternative for providing the file
–direct run a program without searching for it’s location
–execute use Ruby’s ’exec’ instead of ’system’
–batch not yet implemented

You can create startup scripts by providing one of the following switches in combination
with a filename.

–make create a start script or batch file for the given program
–windows when making a startup file, create a windows batch file
–linux when making a startup file, create a unix script
–stubpath destination of the startup file
–indirect always use texmfstart in a stub file

Some directives can be accompanied by specifications, like:

–page=n open the document at this page
–path=str change from the current path to the given path
–before=str not yet implemented
–after=str not yet implemented
–tree=str use the given TEX tree
–autotree automatically determine the TEX tree to use
–environment=str use the given tmf environment file

Conditional directives are:

–iftouched=str,str only run when the given files have different time stamps
–ifchanged=str only run when the given file has changed (md5 check)

Special features:

–showenv show the environment variables known at runtime
–edit open the given file in an editor

In addition, there are prefixes for filenames:

bin:filename expanded name, based on PATH environment variable
kpse:filename expanded name, based on kpsewhich result
rel:filename expanded name, backtracking on current path (./..)
env:name expanded name, based on environment variable name
path:filename pathpart of filename as located by kpsewhich

357 texmfstart manual

E

Performance
The performance of the indirect call is of course less than a direct call. You can gain some
time by setting the environment variables or by using a small TEX tree.

The script tries to be clever. First it tries to honor a given path, and if that fails it will strip
the path part and look on the current path. When this fails, it will consult the environment
variables. Then it will use kpsewhich and when that fails as well, it will start searching the
TEX trees. This may take a while, especially when you have a complete tree, like the one on
TEX Live.30

If you want, you can use the built in kpsewhich functionality (written in Ruby) by setting
the environment variable KPSEFAST to yes. The built in handler is a bit faster and maintains
its own file database. Such a database is generated with:

tmftools –reload

Using prefixes
You can also use texmfstart to launch other programs that need files in one of the TEX trees:

texmfstart –direct xsltproc kpse:somescript.xsl somefile.xml

or shorter:

texmfstart bin:xsltproc kpse:somescript.xsl somefile.xml

In both cases somescript.xsl will be resolved and in the second case bin: will be stripped.
The –direct switch and bin: prefix tell texmfstart not to search for the program, but to
assume that it is a binary. The kpse: prefix also works for previously mentioned usage.

A convenient way to edit your local context system setup file is the following; we don’t need
to go to the path where the file resides.

texmfstart bin:scite kpse:cont-sys.tex

Because editing is happening a lot, you can also say:

texmfstart –edit kpse:cont-sys.tex

You can set the environment variable TEXMFSTART_EDITOR to your favourite editor.

Conditional processing
A bit obscure feature is triggered with –iftouched, for instance:

texmfstart –iftouched=normal.pdf,lowres.pdf \
downsample.rb –verylow normal.pdf lowres.pdf

Here, downsample.rb is only executed when normal.pdf and lowres.pdf have a different
modification time. After execution, the times are synchronized. This feature is rather handy
when you want to minimize runtime. We use it in the resource library tools.

On my computer I use multiple trees parallel to the latest TEX Live tree. This results in a not that intuitively and30

predictable search process. The cover of this manual reflects state of those trees.

texmfstart manual 358

E

texmfstart –iftouched=foo.bar,bar.foo convert_foo_to_bar.rb

A similar option is ifchanged:

texmfstart –ifchanged=whatever.mp texexec –mpgraphic whatever.mp

This time we look at the MD5 checksum, when the sum is changed, texexec will be run,
otherwise we continue.

TEX trees
There are a few more handy features built in. The reason for putting those into this launching
program is that the sooner they are executed, the less runtime is needed later in the process.

Imagine that you have installed your tree on a network attached storage device. In that case
you can say:

texmfstart –tree=//nas-1/tex texexec –pdf yourfile

There should be a file setuptex.tmf in the root of the tree. An example of such a file is
part of the ConTEXt distribution (minimal trees). This feature permits you to have several
trees alongside and run specific ones. You can also specify additional environments, using
–environment.

Such an environment file is platform independent and looks as follows. The %VAR% variables
will be replaced by their meaning, while the $VAR variables are left untouched. The = sets a
value, while > and < prepend and append the given value to the current value.

author: Hans Hagen - PRAGMA ADE - Hasselt NL - www.pragma-ade.com
#
usage: texmfstart –tree=f:/minimal/tex ...
#
this assumes that calling script sets TEXPATH without a trailing
slash; %VARNAME% expands to the environment variable, $VARNAME
is left untouched; we also assume that TEXOS is set.

TEXMFMAIN = %TEXPATH%/texmf
TEXMFLOCAL = %TEXPATH%/texmf-local
TEXMFFONTS = %TEXPATH%/texmf-fonts
TEXMFEXTRA = %TEXPATH%/texmf-extra
TEXMFPROJECT = %TEXPATH%/texmf-project
VARTEXMF = %TMP%/texmf-var
HOMETEXMF =

TEXMFOS = %TEXPATH%/%TEXOS%
OSFONTDIR = %SYSTEMROOT%/fonts

TEXMFCNF = %TEXPATH%/texmf{-local,}/web2c
TEXMF = {$TEXMFOS,$TEXMFPROJECT,$TEXMFFONTS,

$TEXMFLOCAL,$TEXMFEXTRA,!!$TEXMFMAIN}
TEXMFDBS = $TEXMF

TEXFORMATS = %TEXMFOS%/web2c/{$engine,}
MPMEMS = %TEXFORMATS%

359 texmfstart manual

E

TEXPOOL = %TEXFORMATS%
MPPOOL = %TEXPOOL%

PATH > %TEXMFOS%/bin
PATH > %TEXMFLOCAL%/scripts/perl/context
PATH > %TEXMFLOCAL%/scripts/ruby/context

RUBYLIB > %TEXMFLOCAL%/scripts/ruby/context

TEXINPUTS =
MPINPUTS =
MFINPUTS =

When you only want to set a variable that has no value yet, you can use an ?. These symbols
have alternatives as well:

= « assign a value to the variable
? ?? only assign a valuehen the variable is unset
< += append a value to the current value of the variable
> =+ prepend a value to the current value of the variable

F

F GNU Free Documentation License
Version 1.2, November 2002

Copyright C© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter

361 GNU Free Documentation License

F

of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed
to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the text
near the most prominent appearance of the work’s title, preceding the beginning of the body
of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as “Ac-
knowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title”
of such a section when you modify the Document means that it remains a section “Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

GNU Free Documentation License 362

F

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing

363 GNU Free Documentation License

F

distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for au-
thorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

GNU Free Documentation License 364

F

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties–for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical In-
variant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles
in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

365 GNU Free Documentation License

F

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent doc-
uments or works, in or on a volume of a storage or distribution medium, is called an “ag-
gregate” if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit. When the Document
is included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations re-
quires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to

GNU Free Documentation License 366

F

the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

